
Towards a Parallel Disk-Based Algorithm for Multilevel k-way Hypergraph
Partitioning

Aleksandar Trifunovic William J. Knottenbelt

Department of Computing, Imperial College London
South Kensington Campus, London SW7 2AZ, UK

email:{at701,wjk }@doc.ic.ac.uk

Abstract

In this paper we present a disk-based parallel formu-
lation of the multilevelk-way hypergraph partitioning al-
gorithm. This algorithm provides the capability to parti-
tion very large hypergraphs that hitherto could not be par-
titioned since the memory required exceeds that available
on a single workstation. The algorithm has three main
phases: parallel coarsening, sequential partitioning of the
coarsest hypergraph and parallel refinement. At each par-
allel coarsening and refinement step disk is used to min-
imise memory usage. We apply the algorithm to very large
hypergraphs withΘ(107) vertices from the domain of per-
formance modelling and show that the partitioning quality
is approximately20% better in terms of the(k − 1) metric
than approximate partitionings produced by a state-of-the-
art parallel graph partitioning tool.

1. Introduction

Hypergraph partitioning finds application in a number of
areas including, but not limited to, VLSI circuit design [2]
and decomposition for parallel sparse-matrix vector multi-
plication [8]. The partitioning problem usually requires the
set of vertices of the hypergraph to be partitioned intok dis-
joint subsets such that the weight of each of the disjoint sub-
sets does not differ from another by more than a prescribed
amount. The weight of the set of vertices is expressed as
the sum of the constituent vertex weights. The partitioning
is carried out in such a way that a certain objective function
over the hyperedges is minimized. In the case of the paral-
lel decomposition of sparse matrices the objective function
becomes the(k−1) metric [8]. This is the sum, over all hy-
peredges that span different partitions, of hyperedge weight
multiplied by the number of spanned partitions minus one.
This is not to be confused with hyperedgecut which is the

sum, over all hyperedges that span different partitions, of
hyperedge weight. The value of the objective function for
a particular partitioning is often referred to as thecutsizeof
the partitioning.

Computing the optimal bisection of a hypergraph under
the hyperedge cut metric (and hence the(k−1) metric since
k = 2 for a bisection) is known to be NP-complete [14].
Thus, research has focused on developing polynomial time
heuristic algorithms that give good sub-optimal solutions.
Much work has been done on sequential algorithms and a
survey relating to algorithms in VLSI design is presented
in [2]. Recently, the most successful heuristic algorithms
(in terms of cutsize and runtime) have been those based
on the multilevel paradigm [17, 7]. Multilevel algorithms
form a pipeline broadly consisting of three stages. During
the coarsening stage a sequence of successively smaller hy-
pergraphs is constructed by merging selected vertices. The
initial partitioning stage then computes the partitioning of
the smallest (coarsest) hypergraph in the sequence. Finally,
during the uncoarsening stage this partitioning is projected
through the sequence of hypergraphs constructed during the
coarsening stage and is further refined after each projection.

Computing thek-way partitioning (wherek > 2) can
be done either via the recursive bisection method (divide-
and-conquer) or by computing the thek-way partitioning
directly. In [20] the authors experimentally show that the
direct partitioning method can be superior both in terms
of runtime and the(k−1) metric to recursive bisection for
larger values ofk.

In [6, 9] hypergraph partitioning is applied to the paral-
lel computation of response time densities in Markov and
Semi-Markov chains. The partitioning is a pre-processing
step to the parallel sparse-matrix vector type operations that
form the kernel operations in such solvers. A good partition
can greatly reduce the amount of interprocessor communi-
cation incurred, which is especially important when the ra-
tio of network latency to processor speed is high (such as

is the case in commodity workstation clusters). In partic-
ular for the response time density calculations the result-
ing partition is reused many times, making the quality of
the partitioning algorithms key to the scalability of these al-
gorithms. The sparse matrices that need to be partitioned
may have upwards ofΘ(107) rows (vertices) andΘ(108)
non-zeros (pins) so that in these cases the problem becomes
intractable by sequential computation. By comparison, the
largest hypergraph in the current VLSI benchmark suite has
just184 752 vertices and860 036 pins [1].

In the absence of a parallel hypergraph partitioning al-
gorithm, parallel graph partitioning was used in [6, 9] to
distribute the matrix across the processors. While superior
to a random partition, graph partitioning schemes do not
accurately reflect the actual communication cost incurred
during parallel matrix vector multiplication but merely pro-
vide (and thus attempt to minimize) an upper bound [8]. In
this paper we present a disk-based parallel formulation built
upon a sequential multilevelk-way partitioning algorithm
for hypergraphs [20]. The target architecture is a cluster
of commodity workstations connected by a switched eth-
ernet network. The algorithm is evaluated on a number of
sparse hypergraphs arising from response time density com-
putations and is shown to consistently outperform a leading
parallel graph partitioning tool ParMeTiS [23] in terms of
cutsize by up to27%.

The rest of this paper is organized as follows. Section 2
describes sequential multilevel hypergraph partitioning in
more detail. Section 3 presents the parallel formulation and
Section 4 the experimental evaluation. Finally, concluding
remarks and ideas on further research directions are pre-
sented in Section 5.

2. Sequential Multilevel Hypergraph Partition-
ing

As shown in Fig. 1, a hypergraph is an extension of a
graph data structure in which edges connect arbitrary, non-
empty sets of vertices. Formally, we define a hypergraph
H(V, E) as follows. V is defined to be the set of vertices
andE the set of hyperedges, where each hyperedgeei ∈ E
is a subset of the vertex setV . With each vertexvi ∈ V is
associated a weightwi, which in the case of a row-wise par-
allel sparse-matrix decomposition is given by the number of
hyperedges incident on that vertex. This corresponds to the
number of non-zeros in the row (i.e. the computational load
that each row induces on a processor). Similarly, with each
hyperedgeei ∈ E is associated a costci. In the case of
the parallel sparse-matrix decomposition, this is unity since
it corresponds to the cost of communication a vector ele-
ment across a processor boundary. Thesizeof a hyperedge
is defined as its cardinality.

Thek-way partitioning problem is to findk disjoint sub-

e1

e2

e4

e5

e3
e1 e2

e3

v 4
v 5 v 5

v 1
v 1 v 2

v 4

v 3
v 3

v 2

Graph Hypergraph

Figure 1. A graph and a hypergraph

setsVi, (i = 0, . . . , k − 1) of the vertex setV with corre-
sponding weightsWi, (i = 0, . . . , k − 1) such that, given a
prescribed balance criterion0 < ε < 1,

(1− ε)Wave < Wi < (1 + ε)Wave

holds∀i = 0, . . . , k − 1 and the objective function over the
hyperedges is minimized. HereWave denotes the average
partition weight. When the objective function is the(k−1)
metric, the partition cost (or cutsize) is given by

Pcost =
n−1∑

i=0

(λi − 1)ci

where λi is the number of partitions spanned by hyper-
edgeei. This formalizes the intuition of the parallel sparse-
matrix decomposition that minimizes the communication
cost subject to maintaining a computational load balance.

The multilevel paradigm is preferred toflat approaches
(i.e. those that do not attempt to coarsen the hypergraph) be-
cause it scales well in terms of runtime and solution quality
with increasing problem size. Iterative improvement algo-
rithms are more likely to get trapped in poor local minima
as problem size increases. Alternative approaches to obtain-
ing good solutions such as spectral methods are reviewed in
more detail in [2]. However, for large problem instances
these are usually incorporated within the multilevel frame-
work to preserve realistic runtimes [4].

The following subsections describe the multilevel
pipeline in more detail.

2.1. The Coarsening Phase

The aim of the coarsening phase is to reduce the original
problem instance via a succession of smaller hypergraphs
that maintain as far as possible the structure of the original
hypergraph.

Coarsening is performed by merging the vertices of the
hypergraph together to form vertices of the coarse hyper-
graph. The corresponding hyperedges of the coarse hyper-
graph are constructed from the original set of hyperedges

2

via the latter vertex mapping. Single vertex hyperedges
in the coarse hypergraph are discarded as they cannot con-
tribute to the cutsize of a partitioning of the coarse hyper-
graph. If more than one hyperedge maps onto the same hy-
peredge of the coarse hypergraph only one hyperedge is re-
tained, with its cost set to be the sum of the costs of the
hyperedges that mapped onto it.

It is desirable for the coarsening phase to maintain the
natural clusters (highly connected vertices) in the original
hypergraph as clusters of coarse vertices in the coarsened
hypergraphs. In addition, the coarsening should reduce the
size and number of hyperedges, as well as reducing theex-
posed hyperedge cost, which is defined as the sum of in-
dividual hyperedge costs and which represents the upper
bound on the cutsize of a partitioning. The coarsening al-
gorithm has significant impact on the final solution quality
since most heuristic algorithms tend to terminate at local
minima with respect to the heuristic. Thus, a poor coars-
ening algorithm may only allow a partitioning algorithm to
explore parts of the solution space where the local minima
solutions are of poor quality relative to the global minimum.

Coarsening algorithms are discussed in detail in both [2]
and [17]. During our experiments we have found that the
FirstChoice coarsening algorithm [20] and related algo-
rithms [8] result in balanced partitionings and fast runtimes
for our case study hypergraphs. The FirstChoice coarsening
algorithm proceeds as follows. The vertices of the hyper-
graph are visited in a random order. For each vertexvi, all
vertices (both those already matched and those unmatched)
that are connected via hyperedges incident onvi are consid-
ered for matching withvi. A connectedness metric is com-
puted between pairs of vertices and the most strongly con-
nected vertex tovi is chosen for the matching, provided that
the resultant cluster does not exceed a prescribed maximum
weight. This condition is imposed to prevent a large imbal-
ance in vertex weights in the coarsest hypergraphs. Note
that more than two vertices may map to the same cluster
in the coarse hypergraph. Another family of algorithms,
known asHyperedge Coarseningalgorithms [17], seek a
maximal independent set of hyperedges. The sets of ver-
tices that belong to each of the hyperedges in the set are col-
lapsed together to form vertices in the coarse hypergraph. In
order to find the maximal independent set, the hyperedges
are sorted in decreasing order of hyperedge cost. Ties are
broken in increasing order of hyperedge size. The hyper-
edges are now visited in this prescribed order and for each
hyperedge that consists of solely unmatched vertices, its
vertices are mapped to a single cluster in the coarse hyper-
graph. The remaining vertices may then be mapped as sin-
gleton clusters in the coarse hypergraph or the hyperedges
may once again be visited in the above order and groups be-
longing to the same hyperedges may be mapped to the same
clusters. In our experiments, Hyperedge Coarsening often

led to less tightly balanced partitionings while not resulting
in an improvement in cutsize over FirstChoice coarsening.

An important parameter to the coarsening algorithm is
the ratio of the number of vertices in successive coarser hy-
pergraphs. A low ratio implies that many coarsening stages
may be required, thus increasing the runtime of the overall
algorithm. On the other hand, a larger ratio may result in
a poorer quality of coarsening as vertices are matched into
sub-standard clusters. In [17] the author reports that a ratio
in the range 1.5–1.8 provides a reasonable balance between
runtime and solution quality. Our experience is similar with
our case study hypergraphs, using ratios in the range 1.5–
2.0.

2.2. The Initial Partitioning Phase

The initial partitioning phase provides a partitioning of
the coarsest hypergraph. This will be subsequently refined
as it is being projected through the sequence of successively
finer hypergraphs. Because the coarsest hypergraph tends to
be significantly smaller than the original problem instance,
the time taken to compute the initial partitioning is usually
considerably less than the time taken by the other phases of
the multilevel pipeline.

In [20] the authors use recursive bisection to compute the
initial k-way partitioning. We also adopt this approach but
note that it is possible to use a directk-way method here to
produce a partitioning of similar quality in a similar order
of time since the coarsest hypergraph is very small (of the
order of a few hundred nodes). Bisection is typically per-
formed using theGreedy Growing Algorithm[8, 22]. This
algorithm begins with a randomly selected vertex and grows
a single partition around it by assigning the most highly
connected vertex to the partition from the remaining ver-
tices until the desired partition size is achieved. Because
the algorithm is randomized, a number of initial partition-
ings is computed and the best is retained for the uncoarsen-
ing phase.

2.3. The Uncoarsening Phase

Here we propagate the initial partitioning back through
the successively finer hypergraphs and at each step fur-
ther refine the partitioning using heuristic refinement tech-
niques. When the overallk-way partitioning is computed
via recursive bisection, the refinement phase consists of
a bisection refinement algorithm. Traditionally, iterative
improvement algorithms based on the Fiduccia-Mattheyses
(FM) algorithm are used. These performpasses, during
each of which each vertex is moved from its starting parti-
tion at most once; the best sequence of moves found by the
heuristic is actually performed leading to the refined par-
titioning. The algorithms operate inO(p) time per pass,

3

wherep is the number of pins in the hypergraph, and usu-
ally converge within a few passes [13] to local minima with
respect to the heuristic used. More sophisticated refinement
algorithms have been developed, motivated by the idea of
escaping from poor local minima [25, 10, 11, 12].

Extending the FM-algorithm to compute ak-way par-
titioning at each refinement step (as opposed to using re-
cursive bisection) increases both the time complexity of the
algorithm and the likelihood that the algorithm terminates
at a relatively poor local minimum [20]. However, good
results have been reported with agreedy refinementalgo-
rithm, especially for increasing values ofk [20]. The greedy
refinement algorithm performs iterations during which the
vertices are visited in a random order and moved to the par-
tition that results in the largest positive gain. Since the hy-
pergraph is sparse, the algorithm avoids calculating the gain
to every other of the(k − 1) partitions as follows. Ver-
tices are not considered for a move if they are internal to
their current partition (i.e. all adjacent vertices are also in
the same partition). Otherwise, the gain of a move is only
computed for neighbouring partitions (those partitions that
contain adjacent vertices) if the move to the neighbouring
partition does not violate the balance constraint. Experi-
ments have showed that the algorithm typically converges
after a small number of iterations [20].

A more sophisticated refinement scheme repeats the
whole coarsening and refinement process to the refined par-
titioning while preserving properties of the partitioning dur-
ing the coarsening phase. This type of refinement is called
a V-Cycle[17, 7] and is a feature of the toolkhMeTiS. It
attempts to converge to a better solution than would be ob-
tained by simply performing the multilevel pipeline once,
but can significantly increase runtime.

3. Parallel Multilevel Hypergraph Partitioning

This section describes the main contribution of this pa-
per, namely the parallel formulation of an existing sequen-
tial multilevel k-way partitioning algorithm. The algo-
rithms that make up the multilevel pipeline are inherently
sequential in nature, making it difficult to easily find op-
portunities for concurrency. Moreover, whereas successful
parallel formulations for graph partitioning exist [18, 21, 3],
none have yet been forthcoming for hypergraph partition-
ing. It is worth noting the main difference between graphs
and hypergraphs: whereas the cardinality of every edge in a
graph is two, the cardinality of a hyperedge in a hypergraph
can vary from 1 to an upper bound given by the number of
vertices. It has been shown that, in general, there does not
exist a graph model that correctly represents the cut prop-
erties of the corresponding hypergraph [16]. Thus, it does
not seem possible to directly apply the parallel graph par-
titioning algorithms to hypergraphs although they may give

U
n

co
arsen

in
g

 an
d

 R
efin

em
en

t P
h

ase

C
o

ar
se

n
in

g
 P

h
as

e

Initial Partitioning Phase
Sequential

H2H2

H1

H0

H3

H1

H0

In Parallel

Figure 2. Parallel Multilevel Pipeline

reasonable approximations in some cases.
In the absence of obvious fine-grained parallelism, a

coarse-grained formulation is sought. Note that, during
the initial partitioning stage (i.e. after coarsening the orig-
inal hypergraph), the problem instance should be small
enough for sequential computation on a single processing
unit. Hence, assuming that multiple runs of the sequential
algorithm are required, they can be carried out on the avail-
able processors in parallel. The parallel multilevel pipeline
is illustrated in Fig. 2. The sections below describe the par-
allel coarsening and refinement phases in more detail.

3.1. Parallel Coarsening Phase

The target architecture for our parallel formulation is
a cluster of commodity PC worstations connected by
switched 100 Mbps ethernet. Given the relatively high la-
tency of the interconnect, an important objective for the par-
allel formulation is to minimise the communication costs.
This poses the question as to how the data should be dis-
tributed across the processors during coarsening.

The natural way to store a hypergraph acrossp proces-
sors would be to store|E|/p hyperedges on each processor.
However, this complicates the process of finding a match for
a given vertex as required in sequential FirstChoice coarsen-
ing. Finding adjacent vertices may now involve communi-
cation with every processor since each processor may con-
tain hyperedges incident on this vertex. Alternatively, we
may decide to map vertices from the individual hyperedges
to single clusters in the coarse hypergraph, as in hyperedge
coarsening. But, unless the sets of hyperedges on individual
processors are independent, this could not be done concur-
rently since each time we map vertices from a hyperedge to

4

a single cluster, we need to make sure that one of these ver-
tices is not being mapped by another hyperedge on another
processor.

Instead, we exploit the known characteristics of the hy-
pergraph problem instances. It is well known that transition
matrices of Markov and semi-Markov chains generated by
a breadth first search exhibit a particular structure of non-
zero elements [24]. We analyse how this structure trans-
lates to the corresponding hypergraph by examining the be-
haviour of a simple (Edge Coarsening) vertex matching al-
gorithm [20]. The algorithm visits the vertices in a ran-
dom order and looks for maximal vertex matches subject to
the maximum prescribed cluster weight (in the coarse hy-
pergraph) with unmatched vertices. If no suitable matches
exist, the vertex is matched as a singleton vertex. The algo-
rithm terminates when the number of vertices in the coarse
hypergraph has been reduced by a prescribed amount. The
vertex set of the fine hypergraph is partitioned into a number
of contiguous blocks such that, when a vertex matches with
a vertex from its own block, we denote it as a local match
and when it matches with a vertex from another block we
denote it a remote match. Vertices that match as singletons
are denoted singleton matches. Table 1 shows the aggregate
percentages of the above matches over ten runs of the algo-
rithm on hypergraph representations of transition matrices,
whose characteristics can be found in the Appendix.

The tendency for vertices to match with their immediate
neighbours can be exploited in the way the hypergraph is
mapped onto the processors during the coarsening stage. A
good coarsening may be achieved by restricting the candi-
date vertices to immediate neighbours of a vertex. We note
that our algorithm may still be correctly applied to general
hypergraphs that do not exhibit this tendency, albeit at a per-
formance penalty. Processors are made responsible for a
contiguous subset of the vertex setV . In addition, the pro-
cessors only store locally those hyperedges that contain lo-
cal vertices. This information is then sufficient to merge the
vertices using the FirstChoice coarsening algorithm. Once
the vector mapping the vertices to their coarse clusters is
computed across the processors, the processors simply con-
tract the local hyperedges using their portion of the mapping
vector. The processors then communicate their portions of
the mapping vector to the otherp − 1 processors in round-
robin fashion to enable every processor to fully contract
their locally held hyperedges in the knowledge that the re-
sulting locally-stored coarse hyperedge set will be indepen-
dent from coarse hyperedge sets stored elsewhere (achieved
by using a hash function to assign ownership of hyperedges
to particular processors). This completes a single stage of
the coarsening phase in parallel. Once the hypergraph has
shrunk by a sufficient amount (as measured by its number
of pins) a fewer number of processors is used in the sub-
sequent stages until the hypergraph is small enough to fit

on a single processor. At this stage, the sequential multi-
level pipeline can be used. Each intermediate coarsened hy-
pergraph is stored on disk to make the algorithm memory-
efficient. These hypergraphs will subsequently be used dur-
ing the refinement phase.

3.2. Parallel Refinement Phase

It was noted in [20] that the greedyk-way refinement al-
gorithm is inherently parallel. Our tool currently employs
a simple implementation in which processors are responsi-
ble for k/p partitions and the associated hyperedges. They
concurrently perform local refinement followed by round-
robin communication of partitions to the remainingp − 1
processors in order for refinement to capture possible ver-
tex moves across each partition boundary. The difficulty
in efficient parallelisation of the refinement stage is captur-
ing the global nature ofk-way refinement in parallel while
preserving concurrency. The current implementation is far
from ideal in that the opportunity for a vertex to move in
the best direction from its original partition is lost if, during
one of the local refinement stages, it moves in an inferior
direction that nevertheless results in positive gain. Further-
more, the current implementation tends to work better as the
desired number of partitions increases for a constant num-
ber of processors used. Thus we currently use the fewest
number of processors necessary for a particular refinement
stage. As during the parallel coarsening phase, disk storage
is used in order to make the algorithm memory efficient.

4. Experimental Results

The parallel algorithm was experimentally evaluated on
hypergraph representations of transition matrices from the
Voting Model with 250 and 300 customers [5]. The main
characteristics of these models are given in the Appendix.
Both problem instances are too large to be partitioned on a
single workstation so a suitable comparison was provided
by the parallel graph partitioning tool ParMeTiS [23] that
was previously used to compute approximate partitionings
for very large transition matrix instances in [6, 9]. To con-
vert the matrix into the appropriate inputs for our paral-
lel hypergraph partitioner and for ParMeTiS, we use the
transformations presented in [8]. The computational com-
plexity of the latter transformations are the same, namely
O(m), wherem is the number of non-zero elements in the
matrix. Although the optimisation objectives for the two
tools are different (as discussed in Section 3, ParMeTiS
can only minimise an approximation to the true commu-
nication cost while our tool models it exactly), we compare
with ParMeTiS because such state-of-the-art parallel graph
partitioners are currently the only feasible way to reduce

5

Hypergraph # partitions % local % remote % singleton
Voting 100 2 90.1 0.9 9.0
Voting 100 4 88.1 2.9 9.0
Voting 100 8 84.4 6.7 8.9
Voting 100 16 77.2 13.9 8.9
Voting 100 32 62.8 28.2 9.0

Voting 125 2 90.4 0.7 8.9
Voting 125 4 88.8 2.3 8.9
Voting 125 8 85.9 5.2 8.9
Voting 125 16 79.9 11.2 8.9
Voting 125 32 68.6 22.5 8.9

Voting 150 2 91.5 0.7 7.8
Voting 150 4 90.2 2.0 7.8
Voting 150 8 87.5 4.7 7.8
Voting 150 16 82.4 9.8 7.8
Voting 150 32 72.4 19.8 7.8

Voting 175 2 91.6 0.6 7.8
Voting 175 4 90.5 1.7 7.8
Voting 175 8 88.2 4.0 7.8
Voting 175 16 83.8 8.4 7.8
Voting 175 32 75.1 17.1 7.8

Table 1. Vertex Connectivity Analysis

communication costs for very large matrices (albeit in an
indirect manner).

Our experimental pipeline consists of three phases:

1. Parallel coarsening using our parallel formulation of
the FirstChoice coarsening algorithm.

2. The coarsening algorithm interfaced with the state-
of-the-art sequential multilevel partitioning tool
khMeTiS [19].

3. Finally, the output partition vector given bykhMeTiS
was refined in parallel using the parallelk-way parti-
tioning algorithm.

The parallel algorithm was implemented in the C++ lan-
guage using the Message Passing Interface (MPI) stan-
dard [15]. The architecture used in the experiments con-
sisted of a cluster of commodity PC workstations connected
by switched 100 Mbps ethernet network. Each PC was
equipped with a 2.8GHz Pentium(4) CPU and 1GB RAM.
The results of the experiments are shown in Table 2, in
which Parkway denotes the results attained by our parallel
algorithm. The 250 customer model was partitioned using
four processors while the 300 customer model was parti-
tioned using eight processors. A balance constraint of5%
was used for all experiments meaning that no weight of any
partition should differ from the average partition weight by
more than5%. A reduction factor of2.0 was used during

the parallel coarsening phase in our implementation while
ParMeTiS used the default value for its multilevel algo-
rithm.

The results indicate that our parallel hypergraph parti-
tioning formulation significantly dominates the approxima-
tion given by parallel graph partitioning in terms of cutsize.
On average, our algorithm produces(k − 1) cutsizes20%
lower than those produced by parallel graph partitioning
on the voting model with 300 hundred customers and16%
lower on the smaller voting model with 250 customers. In
turn, the parallel graph partitioning significantly dominates
our disk-based algorithm in terms of runtime. While hy-
pergraph partitioning should inherently take more time than
graph partitioning, we believe that a possible reason for the
poor runtime exhibited by the parallel hypergraph partition-
ing algorithm is due to both slow disk access time and disk
contention. This may be because we have been using the
disk storage on our departmental file server which experi-
ences very high congestion.

5. Conclusion

We have devised a parallel formulation of the multilevel
k-way hypergraph partitioning algorithm and have demon-
strated its ability to partition very large hypergraphs with
Θ(107) vertices by combining the memory and processing
power of several workstations. To the best of our knowl-

6

Voting 250 model on 4 processors Voting 300 model on 8 processors
Parkway ParMeTiS Parkway ParMeTiS

No. of Partitions (k-1) cut time(s) (k-1) cut time(s) (k-1) cut time(s) (k-1) cut time(s)

8 91 511 1 309 117 354 25 - - - -
16 182 206 1 393 249 415 27 322 737 4 827 442 387 85
32 354 561 1 495 402 681 32 529 763 4 762 687 659 61
64 525 856 1 777 610 597 33 874 652 5,007 1 033 312 80

total: 1 154 134 5 974 1 380 047 117 1 727 152 14 596 2 163 358 246

Table 2. Parallel Partitioning Results

edge this is the first time that hypergraphs of this size have
been successfully partitioned, since previously no parallel
hypergraph partitioners existed and these hypergraphs are
too large to be partitioned in the memory of a single work-
station. We have further demonstrated that the quality of the
hypergraph partitionings produced by our parallel tool com-
fortably exceeds the approximate partitionings produced by
existing parallelgraphpartitioning tools.

However, there are also some shortcomings in the cur-
rent implementation which we will address as part of our
future work. In particular we note that, while the extensive
use of disk has minimised the amount of memory used, as
well as reducing the number of communication operations
required, it has also resulted in relatively poor runtimes. It
is possible to significantly improve the parallel runtime by
reducing the number of disk-based operations and by us-
ing a better hardware configuration that reduces contention
for shared disks. We also note that partitioning runtime will
not be a significant factor for many problem instances where
a single partitioning may be reused several thousand times
(e.g. in the parallel Laplace Transform-based response time
analyser described in [6]).

Another focus of future reasearch is the development of a
more efficient and flexible parallel formulation of thek-way
refinement algorithm. Aside from potentially leading to in-
ferior refinement quality in comparison to the sequentialk-
way refinement algorithm, the current implementation is re-
stricted in that it can only compute partitionings wherek is
a non-negative integer power of two that is greater than the
number of processors available.

References

[1] C. Alpert. The ISPD98 Circuit Benchmark Suite. InProc.
International Symposium of Physical Design, pages 80–85,
April 1998.

[2] C. Alpert, J. Huang, and A. Kahng. Recent Directions in
Netlist Partitioning. Integration, the VLSI Journal, 19(1–
2):1–81, 1995.

[3] S. Barnard. PMRSB: Parallel Multilevel Recursive Spectral
Bisection. InProc. 1995 ACM/IEEE Supercomputing Con-
ference, 1995.

[4] S. Barnard and H. Simon. A Fast Multilevel Implemen-
tation of Recursive Spectral Bisection for Partitioning Un-
structured Problems.Concurrency: Practice and Experi-
ence, 6(2):101–117, April 1994.

[5] J. Bradley, N. Dingle, P. Harrison, and W. Knottenbelt. Per-
formance Queries on semi-Markov Stochastic Petri Nets
with an Extended Continuous Stochastic Logic. InProc.
10th International Workshop on Petri Nets and Performance
Models (PNPM’03), pages 62–71, Urbana-Champaign IL,
USA, September 2nd–5th 2003.

[6] J. Bradley, N. Dingle, W. Knottenbelt, and H. Wilson.
Hypergraph-based Parallel Computation of Passage Time
Densities in Large semi-Markov Models. InProc. 4th Inter-
national Conference on the Numerical Solution of Markov
Chains (NSMC’03), pages 99–120, Urbana-Champaign IL,
USA, September 2nd–5th 2003.

[7] A. Caldwell, A. Kahng, and I. Markov. Improved Algo-
rithms for Hypergraph Bipartitioning. InProc. 2000 Confer-
ence on Asia South Pacific Design Automation, pages 661–
666. ACM/IEEE, January 2000.

[8] U. Catalyurek and C. Aykanat. Hypergraph-Partitioning-
Based Decomposition for Parallel Sparse-Matrix Vector
Multiplication. IEEE Transactions on Parallel and Dis-
tributed Systems, 10(7):673–693, 1999.

[9] N. Dingle, W. Knottenbelt, and P. Harrison. Uniformiza-
tion and Hypergraph Partitioning for the Distributed Com-
putation of Response Time Densities in Very Large Markov
Models. Journal of Parallel and Distributed Computing,
2004. (To appear).

[10] S. Dutt and W. Deng. A Probability-based Approach to
VLSI Circuit Partitioning. InProc. 33rd Annual Design Au-
tomation Conference, pages 100–105, June 1996.

[11] S. Dutt and W. Deng. VLSI Circuit Partitioning by Cluster-
Removal Using Iterative Improvement Techniques. InProc.
1996 IEEE/ACM International Conference on Computer-
Aided Design, pages 194–200, Nov 1996.

[12] S. Dutt and H. Theny. Partitioning Around Road-
blocks: Tackling Constraints with Intermediate Relaxations.
In Proc. 1997 IEEE/ACM International Conference on
Computer-Aided Design, pages 350–355, Nov 1997.

[13] C. Fiduccia and R. Mattheyses. A Linear Time Heuristic For
Improving Network Partitions. InProc. 19th IEEE Design
Automation Conference, pages 175–181, 1982.

[14] M. Garey and D. Johnson.Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman
and Co., 1979.

7

Hypergraph Model Parameters #vertices #nets #pins Size On Disk (MB)
Voting 100 100/30/4 249 760 249 760 1 391 617 8.2
Voting 125 125/40/4 541 280 541 280 3 044 557 18
Voting 150 150/40/5 778 850 778 850 4 532 947 26
Voting 175 175/45/5 1 140 050 1 140 050 6 657 722 39
Voting 250 250/60/10 5 218 300 5 218 300 32 986 597 186
Voting 300 300/80/10 10 991 040 10 991 040 69 823 797 392

Table 3. Characteristics of hypergraphs used in the paper

[15] W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MIT Press, Cambridge, Massachussets, 2nd edition, 1999.

[16] E. Ihler, D. Wagner, and F. Wagner. Modeling Hypergraphs
by Graphs with the same Mincut Properties.Information
Processing Letters, 45:171–175, March 1993.

[17] G. Karypis. Multilevel Hypergraph Partitioning. Technical
Report #02-25, University of Minnesota, 2002.

[18] G. Karypis and V. Kumar. A Coarse-Grain Parallel Formu-
lation of Multilevelk-way Graph Partitioning Algorithm. In
Proc. 8th SIAM Conference on Parallel Processing for Sci-
entific Computing, 1997.

[19] G. Karypis and V. Kumar.hMeTiS: A Hypergraph Parti-
tioning Package, Version 1.5.3. University of Minnesota,
November 1998.

[20] G. Karypis and V. Kumar. Multilevelk-way Hypergraph
Partitioning. Technical Report #98-036, University of Min-
nesota, 1998.

[21] G. Karypis and V. Kumar. A Parallel Algorithm for Multi-
level Graph Partitioning and Sparse Matrix Ordering.Jour-
nal of Parallel and Distributed Computing, 48:71–95, 1998.

[22] G. Karypis and V. Kumar. A Fast and High Quality Multi-
level Scheme for Partitioning Irregular Graphs.SIAM Jour-
nal on Scientific Computing, 20(1):359–392, 1999.

[23] G. Karypis, K. Schloegel, and V. Kumar.ParMeTiS: Paral-
lel Graph Partitioning and Sparse Matrix Ordering Library,
Version 3.0. University of Minnesota, September 2002.

[24] W. Knottenbelt. Parallel Performance Analysis of Large
Markov Models. PhD thesis, Imperial College, London,
United Kingdom, February 2000.

[25] B. Krishnamurthy. An Improved min-cut Algorithm for Par-
titioning VLSI Networks.IEEE Transactions on Computers,
33(C):438–446, May 1984.

A. Appendix

The hypergraphs used in this paper are derived from a
high-level Semi-Markov model of a voting system shown
in Fig. 3. A full description of this model can be found in
[6]. In this system, voters cast votes through polling units
which in turn register votes with all available central voting
units. Both polling units and central voting units can suf-
fer breakdowns, from which there is a soft recovery mech-
anism. If, however, all the polling or voting units fail, then,

Figure 3. Semi-Markov Stochastic Petri net
Voting System Model

with high priority, a failure recovery mode is instituted to
restore the system to an operational state. The number of
voters, polling units and central voting servers is config-
urable, and each combination of these parameters results
in a sparse transition matrix of a different size, as shown
in Table 3. The minimum information required to store a
hypergraph are the weights of the vertices and the costs of
the hyperedges in addition to the list of constituent vertices
from each of the hyperedges (the pins). The sizes of hy-
pergraphs on disk from Table 3 assume 32-bit integer types
with no compression.

The aim of the analysis performed on these models is to
find the response time density of the time taken for a certain
number of voters to successfully register their votes. This
requires the numerical inversion of the Laplace Transform
of the response-time density, which in turn requires the so-
lution of many thousands of sets of linear equations with the
same non-zero sparsity pattern. Hypergraph partitioning is
used to reduce the amount of inter-processor communica-
tion required to solve each system of linear equations in
parallel. Note that the hypergraph partitioning needs only
be performed once, but is reused several thousand times.

8

