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Abstract. In many real-world systems incoming tasks split into subtasks which
are processed by a set of parallel servers. In such systems two metrics are of po-
tential interest: response time and subtask dispersion. Previous research has been
focused on the minimisation of one, but not both, of these metrics. In particular, in
our previous work, we showed how the processing of selected subtasks can be de-
layed in order to minimise expected subtask dispersion and percentiles of subtask
dispersion in the context of split-merge systems. However, the introduction of
subtask delays obviously impacts adversely on task response time and maximum
sustainable system throughput. In the present work, we describe a methodology
for managing the trade off between subtask dispersion and task response time.
The objective function of the minimisation is based on the product of expected
subtask dispersion and expected task response time. Compared with our previous
methodology, we show how our new technique can achieve comparable subtask
dispersion with substantial improvements in expected task response time.
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1 Introduction

In the modern world we are surrounded by systems in which incoming tasks can natu-
rally be decomposed into subtasks that are processed by a set of parallel servers. Com-
pleted subtasks are held in an output buffer pending arrival of its sibling subtasks. When
all child subtasks of a given task have completed service and are present in the output
buffer, the task is deemed to have completed service. Two classes of performance met-
rics are of concern in such systems: those related to task response time and those related
to subtask dispersion (i.e. the time between the arrival of the first and last subtasks orig-
inating from a given task in the output buffer). The former class has been the subject
of extensive research [2, 3, 6, 7, 9–11, 13, 14, 16, 18, 21, 22], while the latter class has
received less attention [19, 20], although reducing subtask dispersion can be of critical
importance in certain real-life contexts.

Consider by way of example the processing of customer orders in an automated
warehouse. Incoming orders (tasks) are made up of several items (subtasks), each of
which must be retrieved from a different part of the warehouse. Partially completed
orders must be held in an output buffer, and each order can only be released from
the output buffer and dispatched to the customer when all items making up the order
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have been retrieved. The output buffer space is often limited and difficult to manage
on account of its high utilisation, so it is important to keep subtask dispersion low. At
the same time keeping task response time low (i.e. increasing system throughput) is an
important concern. Another example is a restaurant in which customer orders (tasks)
consisting of different menu items (subtasks) must be concurrently prepared such that
all dishes for a particular table of customers are ready at roughly the same time. In
the mean time, partially completed orders for tables are held on a service counter (the
output buffer), which should not be overburdened. Simultaneously a good standard of
customer service dictates that customers should receive their orders in reasonable time.

Parallel queueing systems are natural modelling abstractions for these kinds of sys-
tems. Here we focus on an analytically tractable subclass of such systems, namely
split-merge systems. In our previous research [19,20] we showed that reduction of sub-
task dispersion in such systems can be achieved through the application of judiciously
chosen delays to subtask processing. This naturally has an adverse impact on task re-
sponse time (as characterised in [12]), and therefore on maximum sustainable system
throughput. This adverse impact increases with workload intensity, and can even re-
sult in previously stable systems becoming unstable. There is therefore an urgent need
to define an analtyical framework which allows effective balancing of subtask disper-
sion and response time concerns. To this end, we formally characterise the subtask
dispersion–response time trade-off in split-merge systems as an optimisation problem.
The objective function is the product of the expected subtask dispersion and expected
task response times. We were inspired in this research by the survey on multi-objective
optimisation techniques by Marler and Arora [15], in particular the exposition of prod-
uct methods, as well as the work of Gandhi, Harchol-Balter et al. [8] which explored
energy–performance trade-offs in server farms by means of an objective function based
on the energy–response time product (ERP).

The remainder of this paper organised as follows. Section 2 presents definitions of
split-merge queueing systems, and important results related to the theory of homoge-
neous and heterogeneous order statistics. Section 3 characterises the subtask dispersion–
response time trade-off in split-merge systems and presents a methodology for its opti-
misation based on a modified Newton’s method. Section 4 presents a case study which
illustrates the benefits of our proposed approach in comparison to approaches based on
the unique minimisation of either subtask dispersion or task response time. Section 5
concludes and considers directions for future work.

2 Preliminaries

2.1 Split-Merge Systems

As shown in Fig. 1, a split-merge system consists of split and merge points, a queue be-
fore the split point (a split queue) and N heterogeneous parallel servers with queueing
capability after service (merge buffers). Tasks enter the split queue according to a Pois-
son process with mean rate λ. Whenever all parallel servers are idle and the split queue
is not empty, a task is taken from the head of the split queue and is injected into the
system, splitting into N subtasks at the split point. Each subtask is sent to its allocated
parallel server where it is served according to a general service time distribution with
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mean 1/µi, i = 1, ..., N . Completed subtasks enter a merge buffer. When all subtasks
(originating from a particular task) are present in the merge buffers, the original task
exits the system via the merge point.

F
1
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FN

λ

Split
point

Merge
point

Fig. 1: Split–Merge queueing model.

In the Fig. 1 the merge buffers have been shown as separate entities but in many real
applications they share the same physical space, which we will term the output buffer.

2.2 Theory of Order Statistics [5].

The theory of order statistics studies the behaviour and properties of arranged random
variables and the statistics derived from them [5].

Definition 1. Let the increasing sequenceX(1), X(2), . . . , X(n) be a permutation of the
real-valued random variablesX1, X2, . . . , Xn, i.e. theXi arranged in increasing order
X(1) 6 X(2) 6 . . . 6 X(n). Then X(i) is the ith order statistic for i = 1, 2, . . . , n.

The random variables Xi are typically assumed to be identically and independently
distributed (iid) with cumulative distribution function F (t), but of course the X(i) are
dependent because of the ordering. The extreme valuesX(1) andX(n) are the minimum
and maximum order statistics respectively. T = X(n) −X(1) is the range.

2.3 Theory of Heterogeneous Order Statistics

Relaxing the assumption that theXi should be identically distributed leads to the theory
of heterogeneous order statistics [4, 20].

Definition 2. We consider n independent, real-valued random variables X1, . . . , Xn

where each Xi has an arbitrary probability distribution Fi(t) and probability den-
sity function fi(t) = F ′i (t). In this case of “heterogeneous” (or independent, but not
necessarily identically distributed) random variables, we call the corresponding order
statistics heterogeneous order statistics.
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The cumulative distribution functions of the minimum and maximum order statistics
are:

F(1)(t) = Pr{X(1) 6 t} = 1−
n∏
i=1

[1− Fi(t)],

and

F(n)(t) = Pr{X(n) 6 t} =
n∏
i=1

Fi(t).

In addition the cumulative distribution function of the range X(n) −X(1) is [20]:

Frange(t) =

n∑
i=1

∫ ∞
−∞

fi(x)

n∏
j=1,j 6=i

[Fj(x+ t)− Fj(x)] dx (1)

3 Subtask Dispersion–Response Time Trade-off

3.1 Metrics for split-merge systems

Two important metrics of operational interest in split-merge systems are subtask dis-
persion, defined as the difference between the arrival times of the first and last subtasks
originating from a given task in the output buffer, and task response time, defined as the
difference between the arrival time of a task in the split queue and the time at which the
task leaves the system via the merge point. There is a conflicting tension between these
two metrics. Indeed, in previous research we have considered how to minimise mean
subtask dispersion [12, 19] and percentiles of subtask dispersion [20] by delaying the
processing of the subtasks in such a way as to cluster subtask completion times. Whilst
we apply a constraint to ensure that no delay is added to the bottleneck server, the intro-
duction of subtask delays does naturally have an adverse impact on mean task response
time (as quantified in [12]), with a corresponding reduction in maximum sustainable
system throughput.

3.2 Application of heterogeneous order statistics to split-merge systems

We consider a split-merge system with i parallel servers. Suppose Xi ∼ Fi(x) is a ran-
dom variable that describes the (heterogenous) service time distribution of the ith par-
allel server. Then the heterogeneous order statistics X(i) correspond to ordered subtask
completion times (since in a split-merge system all subtasks originating from a given
task start service at the same time). The minimum heterogeneous order statistic X(1)

corresponds to the time of first subtask completion and the maximum heterogeneous
order statistic X(n) corresponds to the time of last subtask completion (equivalently,
task response time). The range X(n) −X(1) corresponds to subtask dispersion.
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3.3 Introducing deterministic subtask delays

As in our previous research, in order to provide a means to control the subtask dispersion–
response time trade-off we introduce a vector of deterministic delays d = (d1, d2, ...dn),
where element di represents the delay applied to the processing times of the ith paral-
lel server. The random variables that describe the parallel service times with applied
delays are: Xd

i ∼ Fi(x − di) ∀i with corresponding heterogeneous order statistics
Xd

(1), X
d
(2), . . . , X

d
(n).

3.4 An objective function for the subtask dispersion–response time trade-off

In order to express the subtask dispersion–response time trade-off for a split-merge sys-
tem subject to subtask delay vector d we create an objective function formed from the
product of mean task response time (E[Rλ,d]) and mean subtask dispersion (E[Dd]).
The former metric is computed using the Pollaczek-Khinchine formula for mean task
response time in an M/G/1 queue with service distribution Xd

(n). This is because
a split-merge system is conceptually equivalent to an M/G/1 queue whose service
time is the maximum of its set of parallel service times (giving mean service time
µ−1 = E[Xd

(n)]). The latter metric is computed as the expected difference between
the maximum and minimum heterogeneous order statistics. We note dependence be-
tween order statistics is irrelevant when considering mean values due to the linearity
property of expectation operator, i.e. E[Dd] = E[Xd

(n) −X
d
(1)] = E[Xd

(n)]− E[Xd
(1)].

We thus express the trade-off as a function of d and λ:

T (d, λ) = E[Rd,λ]E[Dd] = E[Rd,λ](E[Xd
(n)]− E[Xd

(1)]) (2)

=
(ρ+ λµV ar[Xd

(n)]

2(µ− λ)
+ µ−1

)
×
(∫ ∞

0

1−
n∏
i=1

Fi(x− di)dx−
∫ ∞
0

(
1− (1−

n∏
i=1

(1− Fi(x− di)))
)
dx
)

The variance of Xd
(n) can be computed as:

Var[Xd
(n)] = 2

∞∫
0

x
(
1−

n∏
i=1

Fi(x− di)
)
dx−

( ∞∫
0

1−
n∏
i=1

Fi(x− di) dx
)2

In the above we have assumed that each major component of the objective func-
tion (i.e. mean subtask dispersion and mean task response time) should be given equal
weighting. We note that, in line with the treatment of weighted product methods in [15],
each component can be raised to a different exponent (> 1) in order to express a pref-
erence about the relative importance of the components.

3.5 Optimising the objective function

We seek the vector of subtask delays dmin which minimises T (d, λ). That is,

dmin = arg min
d

T (d, λ) (3)
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We can apply Newton’s method to find dmin iteratively:

dk+1 = dk − γ
[
HT (dk,λ)

]−1∇T (dk, λ), k ≥ 0 (4)

where HT (dk,λ) is the Hessian matrix (matrix of second order partial derivatives) of the
objective function T (dk, λ) and dk is the kth iterate of the subtask delay vector. The
initial subtask delay vector is chosen heuristically as:

d0 = ((max
i

E
[
Xi

]
− E

[
X1

]
)(1− ρ), . . . , (max

i
E
[
Xi

]
− E

[
Xn

]
)(1− ρ)) (5)

where ρ = λ/µ.
In Eq. (4) γ < 1 is a constant introduced to satisfy the Wolfe conditions [23, 24].

The step size γ needs to be chosen to be small enough to support convergence yet large
enough to make rapid progress towards the minimum. There are two inequalities which
must hold to ensure this. Firstly:

T
(
dk + γ

(
−H−1T (dk,λ)

∇T (dk, λ)
)
, λ
)
≤

T (dk, λ) + c1γ∇TT (dk, λ)
(
−H−1T (dk,λ)

∇T (dk, λ)
) (6)

And secondly:

∇TT
(
dk + γ(−H−1T (dk,λ)

∇T (dk, λ)), λ
)(
−H−1T (dk,λ)

∇T (dk, λ)
)
≥

c2∇TT (dk, λ)
(
−H−1T (dk,λ)

∇T (dk, λ)
) (7)

Here c1 and c2 are constants, which should be chosen such that 0 < c1 < c2 < 1,
c1 � c2. Practically, for the purposes of Newton and quasi-Newton methods it is rec-
ommended to set c1 as 10−4 and for c2 to take on 0.9 [17]. Inequality (6) above cor-
responds to the Armijo rule [1] which guarantees that the step size γ will decrease the
objective function sufficiently, while Inequality (7) ensures the curvature condition.

3.6 Implementation

We have implemented the above optimisation technique in C++. Using Newton’s method,
we begin by initialising d0 according to Eq. (5) and choose an appropriate γ satisfying
Inequalities (6) and (7). On each iteration k the method calculates the inverse Hessian
matrix and gradient of the objective function, which gives a direction for the updated
vector dk+1. Evaluation of the objective function involves computation of mean task re-
sponse time using the Pollaczek-Khinchine formula and computation of mean subtask
dispersion, which in turn involves evaluating the expected value of the minimum and
maximum heterogeneous order statistics by numerical integration (using the trapezoidal
rule). The vector of optimal delays is deemed to be found as dk when

∂T (dk, λ)

∂dk
= 0.
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4 Case Study

Consider a split-merge system with 3 parallel servers having heterogeneous service time
density functions (as considered in [20]):

f1(t) = Pareto(α = 3, b = 3.5) (E[X1] = 5.25, Med[X1] = 4.41, Var[X1] = 9.19)

f2(t) = Erlang(n = 2, λ = 1) (E[X2] = 2, Med[X2] = 1.68, Var[X2] = 2)

f3(t) = Det(5) (E[X3] = 5, Med[X3] = 5, Var[X3] = 0)

Without adding any subtask delays, mean subtask dispersion is E[Dd=0] = 3.576 time
units and maximum sustainable task throughput is λmax = 0.182 tasks per time unit.

For λ = 0.01, mean task response time is E[Rd=0,0.01] = 5.651 time units, while
for λ = 0.15, mean task response time is E[Rd=0,0.15] = 18.658 time units.

Using our previously developed optimisation technique designed to minimise mean
subtask dispersion without regard to impact on response time [19] we obtain the vector
of optimal subtask delays:

dD = (0.608, 3.372, 0)

as shown in Fig. 2.
After applying these delays, maximum sustainable throughput drops to λmax =

0.161 and mean subtask dispersion improves to E[DdD
] = 1.72354. For λ = 0.01,

mean task response time rises to E[RdD,0.01] = 6.434, a 14% increase. For λ = 0.15
mean task response time dramatically increases to E[RdD,0.15] = 51.382, an increase
of 175%.

Now we optimise the same system except under the subtask dispersion–response
time trade-off developed in the present paper. With λ = 0.01 we obtain the following
vector of optimal subtask delays:

dT = (0.453, 3.002, 0)

as shown in Fig. 3. Mean subtask dispersion becomes E[DdT
] = 1.755 time units,

which is only 1.8% higher than the dispersion obtained under delay vector dD. Mean
task response time is E[RdT ,001] = 6.24 (a 10% rise in comparison to a system without
delays, but a 3% reduction compared to the response time under delay vector dD).

With λ = 0.15 the vector of optimal subtask delays drops to:

dT = (0.0928, 2.043, 0.0)

as shown in Fig. 4. Mean subtask dispersion is now E[DdT
] = 2.079, a 21% increase

over the dispersion obtained under delay vector dD, but still a good improvement over
the system without added delays (3.576). The corresponding distributions of subtask
dispersion are shown in Fig. 5. It is apparent that the trade-off is able to maintain
competitive dispersion with our previous methodology, especially for high percentiles.
Mean task response time is E[RdT ,0.15] = 22.875, which is 23% worse than the system
without delays but a 55% improvement on mean task response time under delay vector
dD. The corresponding distributions of response time are shown in Fig. 6. It is appar-
ent that the trade-off is able to maintain competitive response times as compared to the
system with no delays, in stark contrast with our previous methodology.
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E[D]

d1
d2

Fig. 2: Surface plot of mean subtask dispersion against subtask delays using our previ-
ous methodology from [19].

T(d, λ)

d1
d2

Fig. 3: Surface plot of subtask dispersion–response time trade-off objective function
against subtask delays for λ = 0.01.
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T(d, λ)

d1
d2

Fig. 4: Surface plot of subtask dispersion–response time trade-off objective function
against subtask delays for λ = 0.15.

E[
D

d
,λ
]

t

Fig. 5: Distributions of subtask dispersion with λ = 0.15 without any delays (red line)
with delays optimised for E[Td,0.15] (green line) and for E[Dd] (blue line).
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E[
R

d
,λ
]

t

Fig. 6: Distributions of task response time given λ = 0.15, without any delays (red
line), with delays optimised for E[Td,0.15] (green line) and delays optimised for E[D]
(blue line).
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Fig. 7: Expected response time of case study split-merge system for various customer
arrival rates without any delays (red line), with delays optimised for subtask dispersion–
response time trade-off (green line), and with delays optimised for mean subtask disper-
sion alone (blue line). Subtask delay vectors are also shown for the subtask dispersion–
response time trade-off.



Trading off Subtask Dispersion and Response Time in Split-Merge Systems 11

It is interesting to note that under our trade-off as λ converges to the maximum
sustainable throughput of the split-merge system without delays (cf. [12]), the vector
of optimal subtask delays tends to a vector of zeros. Indeed, optimising the case study
system for λ = 0.18 leads to the vector of optimal subtask delays:

d = (0.0, 0.0, 0.0)

Fig. 7 shows how the vector of optimal delays changes with λ, and how it converges
to the zero-vector as λ approaches λmax = 0.182. We note that the maximum sustainable
throughput of the system optimised under our previous methodology is rather less than
that of the system without delays, whereas the maximum sustainable throughput of the
system without delays is maintained using the present methodology.

5 Conclusion

In this paper we have described a framework for delaying the dispatch of subtasks
to parallel servers in split-merge systems in order to manage the trade-off between re-
sponse time and subtask dispersion. At the core of our technique is an objective function
computed as the product of expected subtask dispersion and expected response time.
Previous research has concentrated on the optimisation of each one of these metrics in
isolation, frequently resulting in signficant deterioration in the other. By contrast, the
present approach is able to achieve an excellent compromise between the two metrics,
without adversely affecting the maximum sustainable throughput of the system.

One possible direction for future work is to develop similar techniques for the opti-
misation of fork-join systems, which are less synchronised – and much less analytically
tractable – relatives of split-merge systems. Although this is expected to be a very chal-
lenging exercise, it would open up the application of our technique to an even broader
range of real-world systems.
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