
Controlling Variability in Split-Merge Systems

Iryna Tsimashenka William Knottenbelt Peter Harrison

Imperial College London, 180 Queen’s Gate,
London SW7 2AZ, United Kingdom,

Email: {it09,wjk,pgh}@doc.ic.ac.uk

Abstract. We consider split-merge systems with heterogeneous subtask
service times and limited output buffer space in which to hold completed
but as yet unmerged subtasks. An important practical problem in such
systems is to limit utilisation of the output buffer. This can be achieved
by judiciously delaying the processing of subtasks in order to cluster sub-
task completion times. In this paper we present a methodology to find
those deterministic subtask processing delays which minimise any given
percentile of the difference in times of appearance of the first and the
last subtasks in the output buffer. Technically this is achieved in three
main steps: firstly, we define an expression for the distribution of the
range of samples drawn from n independent heterogeneous service time
distributions. This is a generalisation of the well-known order statistic
result for the distribution of the range of n samples taken from the same
distribution. Secondly, we extend our model to incorporate deterministic
delays applied to the processing of subtasks. Finally, we present an op-
timisation scheme to find that vector of delays which minimises a given
percentile of the range of arrival times of subtasks in the output buffer.
A case study illustrates the applicability of our proposed approach.

1 Introduction

Numerous physical systems of practical interest feature a queue of incoming tasks
which split into synchronised subtasks that are processed in parallel at a set of
(potentially heterogeneous) servers. Subtasks that complete service are held in
an output buffer until all of its siblings have completed service. Examples of
such systems include the processing of logical I/O requests by a RAID enclosure
housing several physical disk drives [10], parallel job processing in MapReduce
environments comprising several compute nodes [19], and the assembly of cus-
tomer orders made up of multiple items in the highly-automated warehouses of
large online retailers [15].

The importance of performance prediction in such systems has been long ap-
preciated by performance modellers who have devised appropriate abstractions
for their representation, most notably split-merge queueing systems and their
less synchronised – but analytically much less tractable – counterparts, fork-join
queueing systems [2]. Understandably, for both kinds of model, the primary focus
of research work to date has been on the computation of moments of response



time, most especially the mean. For example, Harrison and Zertal present an
approximation for moments of the maximum of service times in a split-merge
queueing system with general heterogeneous service times [8]; this gives an exact
result in the case of exponential queues. For fork-join systems with homogeneous
Markovian service time distributions, Nelson and Tantawi describe a technique
which yields approximate upper and lower bounds on the mean response time as
a function of the number of servers [13]. For the same system, Varki et al. [17]
present approximate bounds on mean response time. Varma and Makowski [18]
use interpolation between light and heavy traffic modes to approximate the mean
response time for a homogeneous system of fork-join M/M/1 queues. The same
fork-join system was considered in [9], where the maximum order statistic pro-
vides an easily-computable upper bound on response time.

By contrast, the focus of the present paper is not response time computa-
tion; rather it concerns ways to control the variability of subtask completion
time (that is the difference in time between the arrival of the first and last sub-
tasks of a task in the output buffer) in split-merge systems. The idea is to try to
cluster the arrival of subtasks in the output buffer by applying judiciously cho-
sen deterministic delays to subtasks before they are dispatched to the parallel
servers. This has especial relevance for systems that involve the retrieval of or-
ders comprising multiple items from automated warehouses [15], since partially
completed subtasks must be held in a physical buffer space that is often limited
and highly utilised; consequently it is difficult to manage. Despite this, to the
best of our knowledge, this problem has not received significant attention in the
literature. Our previous work [16] presented a simple mean-based methodology
for computing the vector of deterministic subtask delays that minimises a cost
function given by the difference between the expected maximum and expected
minimum subtask completion times (across all subtasks arising from a particular
task). However, an expected value does not always satisfy service level objectives;
in addition there is a dependence between the maximum and minimum subtask
completion times which must be taken into account for any distributional anal-
ysis. The methodology we present here yields the set of subtask delays which
minimises any given percentile of the distribution of the difference in the time
of appearance of the first and last subtasks in the output buffer.

The technical contribution of this paper begins with a generalisation of the
well-known order statistics result for the distribution of the range when n sam-
ples are taken from a given distribution F (t). In particular, we present an exact
analytical expression for the distribution of the range of n samples taken from
heterogeneous distributions Fi(t) (i = 1, . . . , n). Having extended this theory
to incorporate deterministic subtask processing delays, we show how an opti-
misation procedure can be applied to a split-merge system to find that vector
of subtask delays which minimises a given percentile of the range of subtask
completion times.

The rest of the paper is organised as follows. Section 2 describes essential
preliminaries including a definition of split-merge systems and selected results
from the theory of order statistics. Section 3 presents various heterogeneous order

2



statistic results, including the distribution of the range. Section 4 shows how the
basic split-merge model can be enhanced to support deterministic delays, defines
an appropriate objective function, and presents a related optimisation procedure.
Section 5 presents a case study which demonstrates the applicability of our work.
Section 6 concludes and considers appropriate directions for future work.

2 Essential Preliminaries

2.1 Parallel Systems

A split-merge system (see Fig. 1) is a composition of a queue of waiting tasks (as-
sumed to arrive according to a Poisson process with mean rate λ), a split point,
several heterogeneous servers (which serve their allocated subtask with general
service time distribution with mean service rate 1/µi), buffers for completed sub-
tasks (merge buffers) and a merge point [2]. We note that in practice in physical
systems it is not uncommon for the merge buffers to share the same physical
space which is managed as a single logical output buffer. When the queue of

X1

X2

XN

λ

Split
point

Merge
point

Fig. 1: Split–Merge queueing model.

waiting tasks is not empty and the parallel servers are idle, a task is injected
into the system from the head of the queue. The task is split into n subtasks at
the split point and the subtasks arrive simultaneously at the n parallel servers to
receive service. Completed subtasks join a merge buffer. Only after all subtasks
(belonging to a particular task) are present in the merge buffers does the original
task depart the system via the merge point. We note that this split-merge system
is a more synchronised type of fork-join system. In split-merge systems parallel
servers are blocked after they have served a subtask while the original task is
in the system, whereas in fork-join systems there is no queue of waiting tasks,
but there is a queue of subtasks at each parallel server. Split-merge systems can
also be said to be a more conservative type of fork-join system in the sense that
analysis of task response time in a split-merge system yields an upper bound on
task response time in a fork-join system [9].

3



2.2 Theory of Order Statistics [6].

Definition: Let the increasing sequence X(1), X(2), . . . , X(n) be a permutation of
the real valued random variables X1, X2, . . . , Xn, i.e. the Xi arranged in ascend-
ing order X(1) 6 X(2) 6 . . . 6 X(n). Then X(i) is called the ith order statistic, for
i = 1, 2, . . . , n. The first and last order statistics, X(1) and X(n), are the minimum
and maximum respectively, which are also called the extremes. T = X(n) −X(1)

is the range.

We assume initially that the random variables Xi are identically distributed
as well as independent (iid), but of course the X(i) are dependent because of the
ordering.

Distribution of the kth-Order Statistic (iid case)

If X1, X2, . . . , Xn are n independent random variables, the cumulative distri-
bution function (cdf) of the maximum order statistic (the maximum) is simply
given by

Fn(x) = Pr{X(n) 6 x} = Pr{Xi 6 x, 1 6 i 6 n} = Fn(x)

Likewise, the cdf of the minimum statistic is:

F1(x) = Pr{X(1) 6 x} = 1−Pr{X(1) > x} = 1−Pr{Xi > x, 1 6 i 6 n} = 1−[1−F (x)]n

These are special cases of the general cdf of the rth order statistic, Fr(x), which
can be expressed as:

Fr(x) = Pr{X(r) 6 x} = Pr{at least r of the Xi 6 x}

=

n∑
i=r

(
n
i

)
F (x)i[1− F (x)]n−i

(1)

The pdf of Xr, fr(x) = F ′r(x), where the prime denotes the derivative with
respect to x, when it exists, is then:

fr(x) =
n!

(r − 1)!(n− r)!
F r−1(x)f(x)[1− F (x)]n−r.

Multiplying both sides by “small” ε, this result follows intuitively from noting
that we require one of the Xi to take a value in the interval (x, x + ε], exactly
r − 1 of the Xi to be less than or equal to x and exactly n − r of them to be
greater than x. The coefficient n!/((r − 1)!1!(n − r)!) is the number of ways of
doing this, given that the Xi are stochastically indistinguishable.

The joint density function of the rth and sth order statistics X(r), X(s), where
(1 6 r < s 6 n), is:

frs(x, y) = SrsF
r−1(x)f(x)[F (y)− F (x)]s−r−1f(y)[1− F (y)]n−s (2)

4



where Srs = n!
(r−1)!(s−r−1)!(n−s)! , by similar reasoning. The corresponding joint

cdf Frs(x, y) of X(r) and X(s) may be obtained by integration of the pdf or,
alternatively, for x < y we have:

Frs(x, y) = Pr{at least r of the Xi 6 x, at most n− s of the Xi > y}

=

n∑
j=s

j∑
i=r

Pr{exactly i of the Xi 6 x, exactly n− j of the Xi > y}

=

n∑
j=s

j∑
i=r

n!

i!(j − i)!(n− j)!
F i(x)[F (y)− F (x)]j−i[1− F (y)]n−j

Finally, the joint pdf for the k order statistics X(n1), . . . , X(nk), 1 6 n1 < . . . <
nk 6 n), is, similarly, for x1 6 . . . 6 xk:

fn1,...,nk
(x1, . . . , xk) = Sn1,...,nk

Fn1−1(x1)f(x1)[F (x2)− F (x1)]n2−n1−1f(x2) · · ·
[F (xk)− F (xk−1)]nk−nk−1−1f(xk)[1− F (xk)]n−nk

where Sn1,...,nk
= n!

(n1−1)!(n2−n1−1)!...(nk−nk−1−1)!(n−nk)!
.

Distribution of the Range

The pdf fTrs(x) of the interval Trs = X(s) −X(r) follows from the joint pdf of
the rth and sth order statistics in Eq. 2 by setting y = x + trs and integrating
over x, giving:

fTrs
(trs) = Srs

∫ ∞
−∞

F r−1(x)f(x)[F (x+trs)−F (x)]s−r−1f(x+trs)[1−F (x+trs)]
n−sdx

In the special case when r = 1 and s = n, Trs is the range T = X(n) −X(1) and
the pdf simplifies to:

f(t) = n(n− 1)

∫ ∞
−∞

f(x)[F (x+ t)− F (x)]n−2f(x+ t)dx

The cdf of T then follows by integrating inside the integral with respect to x,
giving:

F (t) = n

∫ ∞
−∞

f(x)

∫ t

0

(n− 1)f(x+ t′)[F (x+ t′)− F (x)]n−2dt′dx

= n

∫ ∞
−∞

f(x)
[
[F (x+ t′)− F (x)]n−1

]t′=t

t′=0
dx

= n

∫ ∞
−∞

f(x)[F (x+ t)− F (x)]n−1dx (3)

As noted in [6], this equation follows intuitively by noting that the integrand
(multiplied by an infinitesimal quantity dx) is the probability that Xi falls into
the interval (x, x+ dx] (for some i) and the remaining n− 1 of the Xj , j 6= i fall
into (x, x+ t]. There are n ways of choosing i, giving the factor n.

5



3 Heterogeneous Order Statistics

We now consider n independent, real-valued random variables X1, . . . , Xn where
each Xi has an arbitrary probability distribution Fi(x) and probability density
function fi(x) = F ′i (x). In this case of “heterogeneous” (or independent, but not
necessarily identically distributed) random variables, we call the order statistics
heterogeneous order statistics to distinguish them from the better known results
where the random variables are implicitly assumed to be identically distributed.

Recent decades have seen increasing consideration given to the heterogeneous
case in the literature. Key theoretical results for the distribution and density
functions of heterogeneous order statistics are summarised in [7]. This includes
the work of Sen [14], who derived bounds on the median and the tails of the
distribution of heterogeneous order statistics. Practical issues related to the nu-
merical computation of the ith heterogeneous order statistic are considered in [5],
with special consideration of recurrence relations among distribution functions
of order statistics.

Distribution of the rth Heterogeneous Order Statistic

The rth heterogeneous order statistic, derived similarly to Eq. 1, has the follow-
ing cdf:

F(r)(x) = Pr{X(r) 6 x} = Pr{at least r of the Xi 6 x}

=

n∑
i=r

∑
{`1,`2}∈Pi

i∏
k=1

F`1k(x)

n−i∏
k=1

[1− F`2k(x)]
(4)

where Pi is the set of all two-set partitions {D,E} of {1, 2, . . . , n} with |D| = i
and |E| = n− i, and `hk is the kth component of the vector `h for h = 1, 2.

Similarly to the homogeneous case, the minimum and maximum order statis-
tics are respectively given by:

F(1)(x) = Pr{X(1) 6 x} = 1− Pr{X(1) > x} =

1− Pr{Xi > x | 1 ≤ i ≤ n} = 1−
n∏

i=1

[1− Fi(x)],

and

F(n)(x) = Pr{X(n) 6 x} = Pr{Xi 6 x | 1 ≤ i ≤ n} =

n∏
i=1

Fi(x).

Differentiating Eq. 4 and simplifying yields the pdf:

f(r)(x) =

n∑
i=r

∑
{`1,`2}∈Pi

 i∑
j=1

i∏
k=1,k 6=j

F`1k(x)

n−i∏
k=1

[1− F`2k(x)]f`1j (x)−

n−i∑
j=1

i∏
k=1

F`1k(x)

n−i∏
k=1,k 6=j

[1− F`2k(x)]f`2j (x)


6



=

n∑
i=r

n∑
h=1

 ∑
{`1,`2}∈Ph−

i−1

i−1∏
k=1

F`1k(x)

n−i∏
k=1

[1− F`2k(x)]fh(x)−

Ii<n

∑
{`1,`2}∈Ph−

i

i∏
k=1

F`1k(x)

n−i−1∏
k=1

[1− F`2k(x)]fh(x)



=

n∑
h=1

fh(x)

 n∑
i=r

∑
{`1,`2}∈Ph−

i−1

i−1∏
k=1

F`1k(x)

n−i∏
k=1

[1− F`2k(x)]−

n∑
i=r+1

∑
{`1,`2}∈Ph−

i−1

i−1∏
k=1

F`1k(x)

n−i∏
k=1

[1− F`2k(x)]


=

n∑
h=1

fh(x)
∑

{`1,`2}∈Ph−
r−1

r−1∏
k=1

F`1k(x)

n−r∏
k=1

[1− F`2k(x)]

where I• is the indicator function and Ph−
i is the set of all 2-set partitions of

{1, 2, . . . , n} \ {h} with i elements in the first set and 1 ≤ h ≤ n. In fact this
result also follows from an intuitive argument using the infinitesimal interval
(x, x+ ε], as in the homogeneous case.

The joint density function frs(x, y) of two order statistics, X(r) and X(s), for
1 6 r < s 6 n, follows similarly as:

f(r)(s)(x, y) =
∑

1≤h1 6=h2≤n

fh1
(x)fh2

(y)
∑

{`1,`2,`3}∈P
h1−,h2−
r−1,s−r−1

r−1∏
k=1

F`1k(x)× (5)

s−r−1∏
k=1

[F`2k(y)− F`2k(x)]

n−s∏
k=1

[1− F`3k(y)]

where Ph1−,h2−
i1,i2

is the set of all 3-set partitions of {1, 2, . . . , n} \ {h1, h2} with
i1 elements in the first set, i2 elements in the second set, and so n− i1 − i2 − 2
in the third, and 1 ≤ h1 6= h2 ≤ n.

Distribution of the Range for Heterogeneous Order Statistics

From the joint pdf of two heterogeneous order statistics in Eq. 5, we obtain the
pdf of the interval Trs = X(r) −X(s) by setting trs = y − x:

f(r:s)(trs) =
∑

1≤h1 6=h2≤n

∫ ∞
−∞

fh1(x)fh2(x+ trs) (6)

∑
{`1,`2,`3}∈P

h1−,h2−
r−1,s−r−1

r−1∏
k=1

F`1k(x)

s−r−1∏
k=1

[F`2k(x+ trs)− F`2k(x)]

n−s∏
k=1

[1− F`3k(x+ trs)]dx

7



For the range, we want the special case in which r = 1, s = n and T =
X(n) −X(1), giving the pdf:

f(1:n)(t) =
∑

1≤h1 6=h2≤n

∫ ∞
−∞

fh1
(x)fh2

(x+ t)
∑

{`1,`2,`3}∈P
h1−,h2−
0,n−2

n−2∏
k=1

[F`2k(x+ t)− F`2k(x)]dx

=
∑

1≤h1 6=h2≤n

∫ ∞
−∞

fh1
(x)fh2

(x+ t)
∏

k 6=h1,h2

[Fk(x+ t)− Fk(x)]dx (7)

The cdf now follows by integration (inside the sum and integral with respect
to x):

F(1:n)(t) =
∑

1≤h1 6=h2≤n

∫ ∞
−∞

fh1
(x)

∫ t

0

fh2
(x+ t′)

∏
k 6=h1,h2

[Fk(x+ t′)− Fk(x)]dx dt′

=
∑

1≤h1≤n

∫ ∞
−∞

fh1
(x)

∏
k 6=h1

[Fk(x+ t)− Fk(x)]dx (8)

In fact, the same result can be obtained by noting that Eq. 3 generalises using
the argument given immediately following it. This is that, given a particular
choice of i = 1, 2, . . . , n, the integrand (multiplied by an infinitesimal quantity
dx) is the probability that Xi falls into the interval (x, x + dx] and the other
Xj , j 6= i fall into (x, x + t]. Of course there are n ways of choosing i, and so
we have to sum over n terms; in the homogeneous case, all these terms are the
same, which gave the factor n. For heterogeneous order statistics, we therefore
obtain:

Frange(t) = F(1:n)(t) =

n∑
i=1

∫ ∞
−∞

fi(x)

n∏
j=1,j 6=i

[Fj(x+ t)− Fj(x)]dx (9)

This is a useful result, which requires a sum of only n terms. It will form the
basis for range-optimisation in split-merge systems with heterogeneous service
time distributions as considered in the next section.

4 Controlling Variability in Split-Merge systems

Introducing Delays

Our aim is to control the variability of subtask completion (equivalently merge
buffer arrival) times by introducing a vector of delays:

d = (d1, d2, . . . , di, . . . , dn−1, dn) (10)

Here, element di of the vector d denotes the deterministic delay that will be
applied before a subtask is sent to server i for processing. We note that in order

8



to avoid unnecessarily delaying all subtasks we require that the subtask delay
for at least one server (the “bottleneck” server) be set to 0.

After applying the delays from Eq. 10, the distribution of the range from
Eq. 9 becomes:

Frange(t,d) =

n∑
i=1

∫ ∞
−∞

fi(x− di)
n∏

j=1,j 6=i

[Fj(x+ t− dj)− Fj(x− dj)]dx (11)

We assume that, ∀i, fi(t−di) = 0, ∀t < di. Similarly, ∀j, Fj(t−dj) = 0, ∀t < dj .

Optimisation procedure

In this section we move away from our previous mean-based technique [16] to-
wards a more sophisticated framework for finding delay vectors which provide
soft (probabilistic) guarantees on variability. More specifically, for a given prob-
ability α, we aim to minimise the 100αth percentile of variability with respect
to d. That is, we aim to solve for d in:

min
d
F−1range(α,d) (12)

Put another way, we aim to find that vector d which yields the lowest value for
the 100αth percentile of the difference in the completion times of the first and
the last subtasks (belonging to each task).

Practically, we developed a numerical optimisation procedure by prototyping
it in Mathematica and subsequently implementing a full version of it in C++
for efficiency reasons. Evaluation of Eq. 11 for a given α and d is performed by
means of straightforward numerical integration using the trapezoidal rule. While
this is adequate and accurate for almost all continuous service time density and
distribution functions, complications arise in the case of the pdf of deterministic
service time density functions because of their infinitely thin, infinitely high
impulse. We choose to resolve this by replacing the deterministic pdf with delay
parameter a by the Gaussian approximation:

fDet(a)(x) ≈ 1

c
√
π
e−

(x−a)2

c2

which becomes exact as c→ 0; in practice we set c = 0.01.
In order to invert Eq. 11 for a given α and d, we make use of the well-known

Bisection method [4] which in turn exploits Bolzano’s Intermediate Value Theo-
rem. Although it is more computationally expensive than the Newton-Rhapson
method, we choose the Bisection method because its gradient-free nature makes
it considerably more robust. In circumstances where computational efficiency is
a critical concern, we note that it is possible to apply more efficient gradient-free
algorithms such as Brent’s method [3].

Finally, we explore the optimisation surface of F−1range(α,d) with the ini-
tial d = {0, . . . , 0} using a numerical optimization procedure. We constrain the
search such that di ≥ 0 for all i and

∏
i di = 0 (that is, the “bottleneck” server(s)

9



should have no unnecessary additional delay). In our implementation, we have
used a simple Nelder-Mead optimisation technique [12], although we note that a
range of more sophisticated (and correspondingly considerably more complex to
implement) gradient-free optimisation techniques are also available, e.g. [1,11].

5 Case Study

Consider a split-merge system with 3 parallel servers having heterogeneous ser-
vice time density functions:

f1(t) = Pareto(α = 3, b = 3.5) (E[X1] = 5.25, Med[X1] = 4.40972, Var[X1] = 9.1875)

f2(t) = Erlang(n = 2, λ = 1) (E[X2] = 2, Med[X2] = 1.67835, Var[X2] = 2)

f3(t) = Det(5) (E[X3] = 5, Med[X3] = 5, Var[X3] = 0)

Without adding any extra delays, it is straightforward to apply Eq. 9 in a simple
root finding algorithm (e.g. the Bisection method) to compute the 50th (α = 0.5)
and 90th (α = 0.9) percentile of the range of subtask arrival times as t = 3.629
time units and t = 5.52998 time units respectively.

Incorporating delays into the distribution of the range of subtask merge buffer
arrival times as per Eq. 11, and executing a Nelder-Mead optimisation (suitably
constrained so that

∏
i di = 0) to solve Eq. 12 given α = 0.5 for d yields

d = (0.79335, 3.47083, 0)

as shown in Figure 2. We note that in this case the “bottleneck” server is server
3, despite the fact that the server 1 has a higher mean service time than server
3. With the incorporation of the optimal delays, the 50th percentile of the range
of subtask arrival times becomes t = 1.32592, representing an improvement of
63.4% over the original system configuration without delays.

For α = 0.9 we obtain

d = (0, 2.68176, 1.45705)

as shown in Figure 3. We note that for this percentile the “bottleneck” switched
from server 3 to server 1. With the incorporation of the optimal delays, the 90th
percentile of the range of subtask arrival times becomes t = 3.77626, representing
an improvement of 31.7% over the original system configuration without delays.

Figure 4 shows how the distribution of the range of subtask merge buffer
arrival times changes according to the optimised percentile. We note that a
change of the optimised percentile can have a significant impact on the quantiles
of Frange(t,d), according to how the “bottleneck” server shifts.

Although it is not our focus, it is interesting to consider the effect of the
subtask delays on the expected task completion time. For a system without
delays, the expected task completion time is E[X(n)] = 5.75712 time units. After
introducing subtask delays in order to minimise the 50th and 90th percentile
of the range of subtask processing times, the expected task completion time
becomes 6.57628 time units (14% increase) and 7.00894 time units (26%) increase
respectively.

10



d2 d1

F−1
range(0.5,d)

Fig. 2: 50th percentile of the range of subtask merge buffer arrival times
for various deterministic processing delays. The optimal delay vector is d =
(0.79335, 3.47083, 0).

d3 d2

F−1
range(0.9,d)

Fig. 3: 90th percentile of the range of subtask merge buffer arrival times
for various deterministic processing delays. The optimal delay vector is d =
(0, 2.68176, 1.45705).

11



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

F
ra

n
g
e
(t
,d

)

t

Frange(t, (0, 0, 0)) (original)
Frange(t, (0.79335, 3.47073, 0)) (opt 50th perc)
Frange(t, (0, 268176, 145705)) (opt 90th perc)

Fig. 4: Distributions of the range of subtask merge buffer arrival times given
subtask delays optimised for various percentiles.

12



6 Conclusions and Future Work

This paper has presented a methodology for controlling variability in split-merge
systems. Here variability is defined in terms of a given percentile of the range
of arrival times of subtasks in the merge buffers, and is controlled through the
application of judiciously chosen deterministic delays to subtask service times.
The methodology has three main building blocks. The first is an exact analyt-
ical expression for the distribution of the range of subtask merge buffer arrival
times over n heterogeneous servers in a split-merge system. This is a natural
generalisation of the well-known order statistics result for the distribution of
the range taken over n homogeneous servers. The second is the introduction of
deterministic subtask delays into the aforementioned expression. The third is
a optimisation procedure which yields the vector of subtask delays which min-
imises a given percentile of the range of subtask merge buffer arrival times. We
presented a case study which showed that the choice of percentile can have a
significant impact on the optimal delay vector and the “bottleneck” server.

As previously mentioned fork-join systems are significantly less analytically
tractable than split-merge systems. However, they are more realistic abstractions
of many real world systems on account of their less-constrained task synchronisa-
tion. Consequently a natural future direction of this work is to try and generalise
our results to fork-join systems. In line with previous research we believe we are
unlikely to find an exact analytical expression for the distribution of the range
of join buffer arrival times. However, a numerical approach and/or an analytical
approximation may be possible.

Finally, the scalability of our methodology to very large split-merge systems
with 100+ service nodes is currently an open question. However, large-scale prob-
lems are sometimes encountered when modelling real-life systems. Consequently
we will conduct experiments to assess the scaling behavior of our methodology. It
may be beneficial to devise an approach that makes use of parallel computations
using MPI (Message Passing Interface).

13



References

[1] M. M. Ali and M. N. Gabere. A simulated annealing driven multi-start algo-
rithm for bound constrained global optimization. Journal of Computational
and Applied Mathematics, 223(10):2661–2674, 2010.

[2] G. Bolch et al. Queueing Networks and Markov Chains. John Wiley, 2006.
[3] R.P. Brent. In Algorithms for Minimization Without Derivatives, Dover

Books on Mathematics, chapter 4. Dover Publications, 2002.
[4] E. F. Burden and R. L. Burden. Numerical Methods 3rd edition. Cram101

Textbook Outlines. Academic Internet Publishers, 2006.
[5] G. Cao and M. West. Computing distributions of order statistics. Commu-

nications in Statistics – Theory and Methods, 26(3):755–764, 1997.
[6] H. A. David. Order Statistics. Wiley Series in Probability and Mathematical

Statistics. John Wiley, 1980.
[7] H. A. David and H. N. Nagaraja. The non-IID case. In Order Statistics,

chapter 5, pages 95–120. John Wiley & Sons, Inc., 3rd edition, 2005.
[8] P. G. Harrison and S. Zertal. Queueing models of RAID systems with

maxima of waiting times. Perf. Evaluation, 64(7–8):664–689, August 2007.
[9] A. Lebrecht and W. J. Knottenbelt. Response Time Approximations in

Fork-Join Queues. In 23rd Annual UK Performance Engineering Workshop
(UKPEW), July 2007.

[10] A. S. Lebrecht, N. J. Dingle, and W. J. Knottenbelt. Analytical and Simula-
tion Modelling of Zoned RAID Systems. The Computer Journal, 54(5):691–
707, May 2011.

[11] R. M. Lewis, A. Shepherd, and V. Torczon. Implementing generating set
search methods for linearly constrained minimization. SIAM Journal on
Scientfic Computing, 29(6):2507–2530, 2007.

[12] J. A. Nelder and R. Mead. A simplex method for function minimization.
The Computer Journal, 7(4):308–313, 1965.

[13] R. Nelson and A. N. Tantawi. Approximate analysis of fork/join synchro-
nization in parallel queues. IEEE Trans. on Computers, 37(6):739 –743,
1988.

[14] P. K. Sen. A note on order statistics for heterogeneous distributions. The
Annals of Mathematical Statistics, 41(6):pp. 2137–2139, 1970.

[15] R. Serfozo. Basics of Applied Stochastic Processes. Springer, 2009.
[16] I. Tsimashenka and W. J. Knottenbelt. Reduction of Variability in

Split–Merge Systems. In Imperial College Computing Student Workshop
(ICCSW 2011), pages 101–107, 2011.

[17] E. Varki, A. Merchant, and H. Chen. The M/M/1 fork-join queue with
variable sub-tasks.

[18] S. Varma and A. M. Makowski. Interpolation approximations for symmetric
fork-join queues. Performance Evaluation, 20(1–3):245 – 265, 1994.

[19] M. Zaharia et al. Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling. In Proc. 5th European Conference on
Computer Systems (EuroSys ’10), pages 265–278, 2010.


	Controlling Variability in Split-Merge Systems
	References

