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Abstract

Recent progress in sports analytics has been driven by

the availability of spatio-temporal and high level data.

Video-based action recognition in sports can significantly

contribute to these advances. Good progress has been made

in the field of action recognition but its application to sports

mainly focuses in detecting which sport is being played. In

order for action recognition to be useful in sports analytics

a finer-grained action classification is needed. For this rea-

son we focus on the fine-grained action recognition in ten-

nis and explore the capabilities of deep neural networks for

this task. In our model, videos are represented as sequences

of features, extracted using the well-known Inception neu-

ral network, trained on an independent dataset. Then a

3-layered LSTM network is trained for the classification.

Our main contribution is the proposed neural network ar-

chitecture that achieves competitive results in the challeng-

ing THETIS dataset, comprising low-resolution monocular

videos of tennis actions. We also show that the network is

learning semantically meaningful information as most er-

rors are interpretable and sensitive to player expertise.

1. Introduction

Sports analytics are on the rise, thanks to the volume

and richness of data that is now available in this domain.

For years, sports data was collected manually and consisted

mainly of match results and coarse statistics (e.g. percent-

age of first serves in, in tennis). In recent years, spatio-

temporal data such as locations of the players and high-level

information has been made available, enabling the analysis

to go a step further. In our work we are interested in classi-

fying fine-grained tennis actions automatically from videos

with the objective to bring an extra dimension to the anal-

ysis of the sport. We focus on tennis, but our work has the

potential to be extended to other sports.

Current research in vision-based action recognition ap-

plied to sports is limited, mirroring the lack of benchmark

datasets for this problem. Some of the most popular sports

action datasets include UCF-Sport [19, 23] or more recently

the Sports-1M dataset [13]. These datasets contain videos

from many different sports and their labels describe which

sport is being played. Different from these, we are inter-

ested in detecting finer-grained actions, such as specific ten-

nis shots (serve, backhand and forehand) or even which

sub-type of stroke (e.g. flat serve). This task accentuates

the imbalance between a high intra-class variability and a

low inter-class variability, bringing an additional challenge

when compared to coarser action recognition. However, we

also think that in order for action labels to be useful in more

nuanced applications like professional training, these must

be of fine-grained actions.

Some research has been done in the area of tennis ac-

tion recognition. In [30, 31] the authors present a video

descriptor based on optical flow and classify actions into

‘left-swing’ and ‘right-swing’ with a support vector ma-

chine. In [8] tennis actions are classified into ‘non-hit’, ‘hit’

and ‘serve’. Unfortunately, the videos used in these experi-

ments are not publicly available ([8] uses the ACASVA Ac-

tions Dataset [6] which provides features and labels, but not

the RGB videos). Therefore, for our work we wanted to

evaluate our methods using a publicly available dataset so

that future research can be compared to our methods.

Amongst the many existing datasets for action recogni-

tion, we found one that conveniently suited our objective

of fine-grained action recognition in tennis: THETIS [10].

Presented in 2013, THETIS is a complete dataset of fine-

grained tennis actions comprising footage from 55 different

subjects performing 12 distinct tennis shots multiple times.

The videos are RGB, low-definition, monocular and shot

in-the-wild, with dynamic background and occlusions. Our

objective is to build a model able to classify the videos into

the 12 fine-grained actions from raw footage, without the
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need of pre-processing (e.g. silhouette detection) and with

the ability to generalize to other tasks. For this reason, we

are interested in exploring deep learning techniques instead

of more traditional approaches based on hand-crafted fea-

tures (both will be described later in more detail).

The proposed algorithm extracts features from each

frame individually by using the well-known convolutional

neural network (CNN) named Inception [25, 26], pre-

trained on an independent image dataset and without fine-

tuning. The resulting sequences of features are then fed to a

deep neural network consisting of three stacked long short

term memory units (LSTMs), a particular type of recurrent

neural network (RNN).

The main contribution of this paper is the presentation

of this neural network and its successful application to the

challenging THETIS dataset. We also provide interesting

insights from the results: first, we show that the algorithm

is sensitive to the level of player expertise. Second, we com-

pare the network’s performance for classifying different lev-

els of fine-grained actions (stroke type such as ‘serve’ vs

sub-type such as ‘flat-serve’) and how it can be best trained

for each task. Finally, we also show that our approach can

be extended to action recognition in general by the applica-

tion of our network to the HMDB dataset [16].

The rest of the paper is organized as follows. Section 2

revises previous work and state-of-the art techniques for ac-

tion recognition. Section 3 depicts the characteristics of

the two datasets used in our experiments and describes our

methodology. Section 4 shows the experimental results and

evaluation. Finally, section 5 concludes the paper and offers

directions for future work.

2. Related work

2.1. Techniques for action recognition

Research in action recognition encompasses problems

from a broad range of scenarios and their characteristics af-

fect dramatically the choice of technique that is best suited

to solve the problem. These are some of the variations that

may occur:

• Action type: coarse or fine-grained (e.g. ‘person play-

ing tennis’ vs ‘person doing flat service in tennis’).

• Scene setting: actions recorded in an experimental set-

ting or in-the-wild. The latter may contain changes in

illumination, occlusions or moving background.

• Video properties: monocular or multi-view, static or

moving camera, high or low definition .

Amongst the approaches to video-based action recognition,

two main categories can be be drawn: classifiers based on

hand-crafted features and deep neural networks.

2.1.1 Classifiers based on hand-crafted features

Classifiers based on hand-crafted features are the most clas-

sical approach. They generally involve two main steps:

feature extraction and classification. Extraction of hand-

crafted features is based on domain-knowledge and some of

the most popular techniques include Histogram of Oriented

Gradients (HOG) [4], Harris detector [17], Motion Bound-

ary Histograms (MBH) [5] or Cuboid detector [7]. Classi-

fiers built on top of these features have achieved impressive

results making their success undeniable but the major draw-

back in using them is that their selection can be problem

dependent and difficult to generalize.

2.1.2 Deep architectures for action recognition

Different from hand-crafted features which are engineered

and pre-defined, learned features are obtained through the

performance of a machine learning task. For example, a

neural network that learns to classify labeled images will

contain in its hidden layers a representation of the input data

that can be used as features to represent such data. These

learned features have the potential of detecting structures

that are more semantically meaningful and of being more

generalizable. In recent years, learned features have gained

popularity and they have been shown to be extremely pow-

erful in the field of still image understanding. In particular,

CNNs have exceeded any other state-of-the-art method in

the domain of image classification [25, 15].

Driven by these achievements, attention has been

brought to the application of deep neural networks to video

classification. Unfortunately, their application to video pro-

cessing has been proven to be more challenging and their

success cannot yet be compared to that in still images. This

can be attributed to two main limitations. First, video data

is more complex than still images because of the tempo-

ral dependencies, requiring models to learn more compli-

cated structures. Second, the availability of large datasets

is reduced in comparison to still images. For instance,

video classification benchmark datasets – such as KTH [20],

Weizmann [3, 9], UCF Sports Action Dataset [19, 23],

UCF-50 [18], HMDB-51 [16] – contain a smaller number

of classes.

Progress has been made in overcoming these issues and

applying deep networks to action recognition. In [2] the

authors extend a traditional 2D CNN to 3D, incorporating

the time domain, to learn features and then use an LSTM

for classification. Their results improve upon other deep

learning approaches and are competitive with hand-crafted

based classifiers. Their experiments also show the bene-

fits of using LSTMs in comparison to traditional RNNs. In

[13], an end-to-end CNN video classifier is presented and

evaluated in the Sports-1M dataset. They investigate differ-

ent approaches of incorporating the time dimension, by fus-

115



ing the information across the time domain earlier or later

in the network. Interestingly, their best model performs in

hand with their single-frame model, opening the question

of whether these features are capturing any motion informa-

tion for the classification task. In [22] a two-stream CNN is

presented, with a spatial stream that works on single frames

and a temporal stream that utilizes optical flow. Their re-

sults outperform these presented in [13] and are competi-

tive with state-of-the-art hand-crafted models. All of these

models bring insights to the application of deep learning to

videos but also highlight the difficulty of transferring their

potential from still images to video sequences.

3. Methods

3.1. Experimental datasets

3.1.1 THETIS

Most of our experiments were conducted on the THETIS

dataset [10]. It contains 1980 monocular RGB videos

of 12 tennis actions performed three times by 55 dif-

ferent players (31 amateurs and 24 experienced). Ac-

tions are performed using a tennis racket but there is

no tennis ball in the videos. The 12 actions are:

• backhand (with two hands)

• backhand

• backhand (slice)

• backhand (volley)

• forehand (flat)

• forehand (open stance)

• forehand (slice)

• forehand (volley)

• service (flat)

• service (kick)

• service (slice)

• smash

We used the RGB videos from the dataset but other data

such as depth, skeleton 2D and 3D and silhouettes are also

provided. Some challenges of this dataset are that videos

contain moving background and the video sequences vary in

length. Figure 1 shows a sample of frames from the dataset.

To our knowledge, only two publications make use of

THETIS in action recognition experiments and there are no

published results on the RGB videos alone. [10] presents

the dataset and experiments accompanying it. They perform

action recognition using state-of-the-art algorithms applied

to 2D and 3D skeleton data. They achieve an average ac-

curacy of 60.23% and 54.40% respectively, compared to

a 92.99% accuracy when applied to the well-known KTH

dataset [20], showing how challenging the THETIS dataset

is. In [27], experiments are performed using silhouette data

achieving an accuracy of 86%.

Figure 1. Samples from THETIS dataset.

Evaluation

As recommended by the authors, we performed a leave-

one-out cross-validation procedure. For each experiment,

all the videos from a specific subject are selected as the test

set, videos from five others subjects (randomly selected) are

kept as validation set and the rest are used to train the net-

work. This procedure is repeated three times for each ex-

periment. For the evaluation, we show a normalized con-

fusion matrix of the results averaged between all subjects

and across the three repetitions of the experiment and pro-

vide the accuracy and F1 scores, to assess the precision and

recall.

3.1.2 HMDB

To show the applicability of the proposed NN to general ac-

tion recognition tasks, we also show experiments performed

on the HMDB dataset [16]. It contains 6849 videos from

51 actions that range from facial actions like smiling to

body movements like climbing, horse riding or hand shak-

ing. Videos are extracted mostly from movies but also from

other datasets, and they can be considered in-the-wild.

Evaluation

In our experiments we use the three different splits of the

data (into training and testing sets) as provided by the au-

thors. For each split, the training set contain 3 570 exam-

ples, which we randomly divide into training and validation

sets with 70% and 30% of the data respectively. Results

are displayed as for THETIS with a normalized confusion

matrix, accuracy and F1 scores.

3.2. Action classification

Our action classification algorithm is composed of two

main steps: first feature extraction using the Inception neu-

ral network and second classification through a deep LSTM

network.
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Figure 2. Feature extraction pipeline diagram.

3.2.1 Feature extraction

Inception is the name of a well-known deep CNN archi-

tecture, from [25, 26]. It was first introduced in 2015, ob-

taining the best results in the ImageNet Large-Scale Visual

Recognition Challenge ’14 (ILSVRC) – an image classi-

fication challenge of 1000 categories containing about 1.2

million images for training. Inception is a network 22

layers deep consisting of traditional convolutional layers

stacked in the lower layers and ‘Inception modules’ stacked

at higher layers. Every Inception module concatenates the

output of the following operations preformed on its input

(which is the result from the previous layers): 1 × 1 con-

volution, 1× 1 convolution followed by 3× 3 convolution,

1× 1 convolution followed by 5× 5 convolution and 3× 3
max pooling followed by a 1× 1 convolution.

Motivated by its performance in the image classification

task, we chose Inception as our feature extraction algorithm.

In ILSVRC ’14, the network was able to attach coarse-

grained labels to still images such as ‘person playing ten-

nis’ but we wondered whether the features in the last layers

also carried information about a person’s posture or features

discriminative for the action recognition in videos. Interest-

ingly, the Inception architecture was designed to optimize

computational resources so that inference could be done in

settings such as mobile vision. We find this to be critically

important for many action recognition applications.

In our work, Inception is used for feature extraction as

shown in Figure 2. Each video clip, whose duration ranges

from 90 to 150 frames, is cropped to the first 100 frames

(alternate frames for HMDB, where videos are longer). At

each frame, the previously mentioned network is applied to

make predictions and the resulting 2048 features from the

previous-to-last layer are stacked into a 2048 × 100 repre-

sentation of the video. For videos shorter than 100 frames,

we employ zero-padding. These are presented to our classi-

fication network to learn to label them with the appropriate

tennis shot type.

Different from many applications in which the last layer

is retrained for the specific problem, we decided not to re-

train the network using THETIS. First, we wanted to see

how applicable the features learned from ImageNet were

in a different context. Second, given the small size of the

THETIS dataset compared to the datasets used in deep ar-

chitectures, we wanted to avoid as much as possible overfit-

ting by fine-tuning the network to this particular dataset.

3.2.2 Deep LSTM for action classification

LSTM cell architecture

RNNs are a type of neural network with the ability to learn

time dependencies, making them very suitable to process

sequences. At time t, the output of the RNN ht is calculated

by taking as inputs its previous output ht−1 and the current

element of the sequence xt as follows:

ht = f(Wxh × xt +Whh × ht−1 + b) (1)

where Wxh and Whh are weight matrices, b the bias and f

is the output activation function.

Although RNNs are suitable for learning time dependen-

cies, when applied to long sequences, the gradient is likely

to vanish. In 1997, a type of RNN called LSTMs were intro-

duced to overcome this issue [12]. LSTMs are particularly

suited to learn long-term dependencies in sequences, such

as in video classification or speech processing. They are

composed of memory cells, which contain a memory state

c that is updated with the new inputs but controlled by gates

determining which information to keep and what to forget.

The cell state ct is updated by forgetting some infor-

mation through the multiplication of the previous cell state

ct−1 and the forget gate ft and by adding new information,

controlled by the input gate it. Finally, the output gate ot,

controls the output of the cell ht. The LSTM implemen-

tation that we used is based on [11, 29] (Figure 3) and the

calculations of the activations are as follows:

Input gate

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (2)

Forget gate

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (3)

Memory cell state

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (4)

Output gate

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (5)

Hidden state

ht = ot tanh(ct) (6)
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Figure 3. LSTM cell architecture. The memory of the LSTM cell

is stored in c. Through time and as new inputs are fed in, the mem-

ory state is updated controlled by the forget and input gates. Both

have as input: (1) the previous memory state ct−1, (2) the previ-

ous output ht−1 and (3) the current input xt; their activation is

calculated as described in Equations (2) and (3). The cell state is

modified by multiplying the old memory ct−1 by the forget gate,

which will determine how much of the old memory to keep. Then,

new memories (input activation) are added, controlled by the in-

put gate. The output, which is then fed back to the network, is

calculated as in Equation (5). Diagram inspired by [11].

Deep LSTM implementation details

Video-based action recognition requires the modeling of

long-term time dependencies on highly complex data (im-

ages). We have seen that LSTMs are very suitable to learn

these long-term dependencies. By stacking LSTMs on top

of each other, it becomes possible to learn high level struc-

tures in high dimensional data such as images. Each layer

uses as input the output of the previous layer, creating a hier-

archical representation of the input data, where higher lay-

ers have more abstract and complex representations of the

data. In [11], the authors showed that deep LSTMs greatly

improved performance in speech recognition compared to

one-layer LSTMs. For these reasons we decided to use a

deep LSTM network.

The detailed architecture of our network is shown in Fig-

ure 4. It has 3 stacked LSTM layers, empirically found to

give best results. Each of these LSTMs layers have 90 hid-

den units and a softmax function is applied to the last layer

to obtain the predicted classification output. In learning, the

cost is calculated as the cross entropy and with L2 regular-

ization to reduce overfitting, the L2 is scaled by a λ value

of 0.003. Adam optimizer is used to perform gradient de-

scent [14] and optimize the network. We employ exponen-

tial decay of the learning rate, with a starting learning rate of

0.001 (0.005 for HMDB) and decaying with a base of 0.96

Figure 4. Architecture of our classification neural network. At the

bottom is the input to the network, a sequence of 2048 features per

frame for 100 frames. This is the unrolled version of the recurrent

network with time going from left to right, and input processed

in this direction. The input is also processed through 3 LSTMs

layers, upwards. At the end, input is processed through a softmax

layer to obtain the predicted label.

every 100 000 steps. During training, the accuracy of pre-

diction for the validation set is calculated every 10 steps to

select the best model and the parameters for the best results

stored. Parameters were found to be empirically effective

and we used Tensorflow for our implementation [1].

4. Results and evaluation

4.1. Action classification

The first experiment consists in classifying the videos

into the correct class, amongst the 12 actions from the

THETIS dataset. Figure 5 shows the confusion matrix of

this experiment. The average accuracy in prediction is of

47.22%, with an F1 score of 47.05%. Figure 5 shows that

for each of the 12 actions, most videos are labeled with

the correct shot type and some actions, such as backhand

with two hand and backhand have an accuracy of over 60%.

By looking at the results in more detail, one can realize

that most errors are interpretable. For instance, the net-

work makes mistakes in discriminating between the differ-

ent types of serve or smash. Videos in the THETIS dataset

do not contain the tennis ball, and this could explain why

smash and serve are often confused. Another source of con-

fusion are slices and volleys, both in backhand and fore-
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Figure 5. Confusion matrix of our model applied to the THETIS

dataset.

hand; these two actions are also quite similar for a human

observer. Again, one main difference between volley and

slice is that in the former the ball is hit before bouncing.

In [10], the authors perform similar experiments but use

depth videos and 3D skeletons rather than raw image and

obtain 60% and 54.4% accuracy, respectively. It is rea-

sonable to assume that classifying raw footage brings addi-

tional challenges and we consider that our results are com-

petitive.

4.2. Expertise detection

As described in Section 3.1.1, THETIS dataset contains

shots performed by 31 amateur and 24 experienced players.

To assess whether our network’s classification accuracy was

affected by the expertise of a player, we performed two dif-

ferent experiments. First, we calculated the prediction ac-

curacy for each group of players separately, when trained

on the entire dataset (with the same leave-one out cross

validation procedure). Interestingly, our model’s accuracy

is higher for professional players (54.09%) than amateurs

(41.90%). A more detailed representation of the results is

shown in Figures 6 and 7, for amateur and professional

players respectively. One possible explanation is that pro-

fessionals have a neater technique making their shots more

distinct and the biggest difference, as can be seen in the fig-

ures, is within the different types of serve.

To further investigate how the network was affected by

the players’ expertise, we compared the network’s perfor-

mance when trained using only amateur players, only pro-

fessionals and a mixed set of players. In order for the results

to be comparable, the number of examples used for training

Figure 6. Confusion matrix of our model applied to the THETIS

dataset, results on amateur players.

Figure 7. Confusion matrix of our model applied to the THETIS

dataset, results on professional players.

should be similar. For this reason, we couldn’t use previous

results for the mixed set of players since they are calculated

using double the amount of data compared to the data that

can be used when training on only amateurs or experts. To

solve the issue, we re-run the experiments selecting the test

and validation sets as before but randomly selecting only

25 examples for training. Taking into account that we used

videos from 5 players for validation and 1 for testing in all

experiments, the final training sets contain videos from 25
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Players Players Accuracy

in training set in test set

mixed mixed 39.65% (47.22%)

mixed amateur 37.02% (41.90%)

mixed professional 43.06% (54.09%)

amateur amateur 37.70%

professional professional 45.00%

Table 1. Accuracy of classification when training with amateurs,

professionals or a mixed population.

players for the amateurs and mixed groups and 18 for pro-

fessionals.

Results are summarized in Table 1. As expected, the

first observation is that when training with a mixed group of

players but using only 25 players for training, the classifi-

cation accuracy for all groups of players is lower than when

using the entire dataset (training with 49 players). When

training with a reduced number of examples the accuracy is

39.65%, 37.02% and 43.06% for mixed players, amateurs

and professionals respectively versus 47.22% , 41.90% and

54.09%. This results are consistent with previous experi-

ments since classification of videos of professional players

achieves the highest accuracy. Interestingly, this is further

increased when only professionals are used for training –

accuracy increases from 43.06% to 45.00%. Classification

of videos from amateur players also benefits from training

with only amateur players, increasing the classification ac-

curacy from 37.02% to 37.70%. These results suggest that

the network could be learning different features depending

on the level of expertise of the players. It may be that fea-

tures that help to best discriminate between different actions

in amateur players are different than those to identify differ-

ent shots played by professionals. Another interesting ob-

servation from these experiments is that the quality of the

training data is important, but in our particular example, size

of the training set is even more important as best results are

achieved when using the entire dataset.

4.3. From fine­grained actions to stroke types

Observing the results from Figure 5, we noticed that our

learning algorithm was not only able to identify the 12 fine-

grained actions from the THETIS dataset but, when doing

mistakes, these were generally between actions that can be

grouped into the same type of tennis stroke. For instance,

even though a slice service is confused with a flat or kick

service, the network is still recognizing that it is a serve.

For this reason, we looked at the accuracy of the prediction

when grouping classes into more general stroke types, as

shown in Table 2. We still consider these actions to be fine-

grained as they are within the domain of tennis actions and

fine-grained when compared to general action recognition

(e.g. detecting which sport is being played).

For this, we used the results from the first experiments of

action classification and grouped the labels into the 4 main

actions in Table 2: backhand, forehand, service and smash.

The result from this is shown in Figure 8. In this setting

the action detection accuracy reaches 76.92% with and F1

score of 76.90%. As can be seen from the Figure 5, the

mean accuracy is brought down by the smash detection. In

fact, most errors come from a confusion between smash and

serve. These are quite similar in terms of body movement

and the main differences are the state of the game (serve is

played at the beginning of a point), player position in the

court and ball trajectory before hitting the ball. THETIS

videos do not contain the tennis ball, which could help in

discriminating between the two actions. Also, in real-world

applications we might expect to know the players position

or state of the game, helping to further discriminate between

the two actions.

Having obtained these results, we wondered how predic-

tions would compare if we trained on the main strokes di-

rectly. For this, we grouped smash and serves into the same

category as they are very similar in terms of body move-

ment and it helps balancing the classes. Table 3 shows

the results by category, and we can see that training for

the specific task, which is detecting one of the three main

strokes in this case, produces better detection results than

training for finer-grained actions and then regrouping the

actions into their more general categories. The classifica-

tion accuracy improves from 84.10% to 88.16% for players

of mixed abilities, from 81.23% to 84.33% for amateurs and

from 87.82% to 89.42% for professionals, when trained us-

ing the entire dataset.

Two main observations can be derived from that. First,

the network performs best when trained for the specific task

in which it is evaluated and second the features relevant to

discriminate between stroke type and between finer-grained

actions might be different.

4.4. Applicability to general action recognition tasks

To investigate the ability of generalization of our net-

work, we evaluated it on the HMDB dataset. We achieved

an accuracy of 43.19% and F1 score of 42.48%. In Table 4,

our performance in HMDB is compared to existing models

that, as ourselves, use exclusively RGB data. For instance,

we do not include: the two-stream ConvNet of [22] (59.4%)

which uses optical flow information, models in [28] that use

Fisher Vectors (53.3%) and a combination of HOG, HOF

and MBH (60.1%). The results presented here show that

our network has the potential to be applied to other tasks,

further supporting that it could be applicable to other sports.
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Figure 8. Confusion matrix of our model on the THETIS dataset,

grouped classes.

Action group Actions

Backhand

backhand (with two hands)

backhand

backhand (slice)

backhand (volley)

Forehand

forehand (flat)

forehand (open stance)

forehand (slice)

forehand (volley)

Service

service (flat)

service (kick)

service (slice)

Smash smash

Table 2. Fine-grained actions grouped into stroke types.

5. Conclusions and future work

In this work we have presented a 3-layered LSTM net-

work able to classify fine-grained tennis actions and which

uncovered a number of interesting points.

First, our network achieved good results by using fea-

tures extracted through the application of the Inception neu-

ral network, trained on an independent dataset and without

the need of fine-tuning. This suggests that it is a robust

data representation with the potential to be transferable to

multiple tasks and domains. Second, the networks’ classi-

fication errors were interpretable, suggesting it was learn-

ing semantically meaningful information. Endorsing this

idea, the network performed better when trained with only

amateur or only professional players rather than a mixed

Players Trained Accuracy

tested actions

all all 84.10%

all 3 88.16%

amateur all 81.23%

amateur 3 84.33%

professional all 87.82%

professional 3 89.42%

Table 3. Accuracy of detection when training with fine-grained

actions and then re-grouping vs training directly with the three

main strokes classes.

Model HMDB-51 accuracy

Spatial stream ConvNet [22] 40.5%

Soft attention model [21] 41.3%

Our model 43.2%

Composite LSTM [24] 44.1%

Table 4. HMDB-51 classification accuracy by state-of-the-art

models from RGB data exclusively.

population. It is possible that it learned different features

when looking at amateurs and professional players and it

would be interesting to investigate this further. Third, the

network performed better for professional players than ama-

teurs, when trained on a mixed population. A possible cause

is that professionals have a better techniques that makes

their strokes more distinct. In the future, we would like to

consider whether this can be exploited to assess a player’s

expertise. Fourth, the same network architecture was able

to detect the three main strokes with an 88.16% accuracy,

and it performed better than when an indirect inference was

made from finer-grained actions. This further supports the

robustness and transferability of the Inception features. Fi-

nally, we also showed how the proposed approach can be

applied to general action recognition tasks, by evaluating it

with the HMDB dataset.

With this work we wish to motivate the exploration of

deep neural networks in the sports domain and the use and

production of benchmark datasets in sports action recogni-

tion. In the future, it would be interesting to investigate

how to incorporate spatio-temporal data to our network to

improve action detection and how to combine action recog-

nition with statistical data in order to push forward the field

of tennis analytics.
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