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ABSTRACT

RAID systems are fundamental components of modern stor-
age infrastructures. It is therefore important to model their
performance effectively. This paper describes a simulation
model which predicts the cumulative distribution function of
I/O request response time in a RAID 0 system consisting of
homogeneous zoned disk drives. The model is constructed
in a bottom-up manner, starting by abstracting a single disk
drive as an M/G/1 queue. This is then extended to model
a RAID 0 system using a split-merge queueing network.
Simulation results of I/O request response time for RAID 0
systems with various numbers of disks are computed and
compared against device measurements.
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INTRODUCTION

The Redundant Array of Inexpensive Disks (RAID) [8] is
a storage technology which can ease the widening perfor-
mance gap between the processor and I/O subsystem. By
spreading I/O operations over multiple disks, the bandwidths
of several hard disks can be utilised and overall I/O through-
put can be increased. Once designed for high-end servers
and mainframes, products with RAID functionality are in-
creasingly popular and today can even be found in chipsets
for desktop computers, for example the Intel 915P chipset for
Intel Pentium 4 processors [3]. Given the widespread adop-
tion of RAID systems and the fact that the I/O subsystem is
often a performance bottleneck, it is important to be able to
predict RAID system performance.
In this paper we present a simulator that predicts the perfor-
mance of a RAID level 0 (i.e. striping without redundancy)
system. We work in a bottom-up manner, basing our single
disk simulation on the analytical model for a zoned disk drive
presented in [7]. Since this model abstracts a disk drive as an
M/G/1 queue, we construct a validated M/G/1 queueing sim-
ulator to implement it. We further abstract a RAID system
as a split-merge queueing network [4], and develop a corre-
sponding simulator which outputs a cumulative distribution
function (cdf) of the I/O response time for a specified arrival
rate, size of request and request type (read or write). To val-
idate our simulator, we compare cdfs of the simulations and
measurements.

SINGLE DISK MODEL

Before we can model the performance of a RAID system, we
must be able to model the performance of its constituent disk
drives. We therefore begin with the construction of an effec-
tive single disk simulator, implementing an established ana-
lytical model for a zoned disk drive. Zoning arises on modern
hard drives because there are more sectors on cylinders on the
outside of the platter than those closer to the centre. A zone
is a contiguous collection of cylinders which have the same
number of sectors and thus the same storage capacity. Since
disks rotate with constant angular velocity, data throughput
is higher for outer zones than for inner ones [7].
We model a disk drive as an M/G/1 queue, in which the ser-
vice time is defined as the sum of seek time, S, rotational
latency, R, and k-block transfer time, Tk.

Seek Time

Seek time, S, is the time taken to move the actuator arm to the
track where the destination sector lies. This is a function of
D, the distance between the starting and target cylinders [2]:

S(D) =

{

0 if D = 0

a + b
√

D otherwise

where a and b are constants defined in terms of the disk ge-
ometry:

a =
minseek

√
Cyls − 1 − maxseek√
Cyls − 1 − 1

b =
maxseek − minseek√

Cyls − 1 − 1

Here Cyls is the total number of cylinders on the disk,
minseek is the track-to-track seek time and maxseek is the
full-stroke seek time. We note that minseek and maxseek

are potentially dependent on whether the I/O operation is a
read or a write.
Assuming I/O accesses are uniformly randomly distributed
across disk sectors, the seek time cdf, FS(t), can be defined
in terms of the seek distance cdf, FD(t) [2]:

FS(t) = FD

(

(

t − a

b

)2
)

The probability density function of D, fD(x) is calculated
in [10] as:

fD(x) = A + Gx + Ex3 (0 ≤ x ≤ C − 1)



The constants are defined as follows:

A =
V (Cyls − 1)

3γ2

G = −V + β2(Cyls − 1)2

3γ2

E =
β2

3γ2

V = 6α2 + 6αβ(Cyls − 1) + 2β2(Cyls − 1)2

α =
SEC [0]

spb

β =
SEC [Cyls − 1] − SEC [0]

(Cyls − 1) spb

γ = α(Cyls − 1) +
β

2
(Cyls − 1)2

SEC[0] and SEC[Cyls − 1] are the number of sectors on
the innermost and outermost tracks respectively, and spb is
the number of sectors per block.

Rotational Latency

Rotational latency, R, is the time taken for the disk to rotate
until the required sector is under the read/write head. It is
uniformly distributed between 0 and the time for a disk to
make a full rotation (Rmax) [2].

Data Transfer Time

Data transfer time, Tk, is the time taken to transfer k data
blocks to or from the read/write head. The function to calcu-
late Tk for cylinder x of a zoned disk is [10]:

Tk(x) =
k spb Rmax

α + βx

The cdf of the data transfer time, FTk
(t) can then be derived

as [7]:

FTk
(t) =















0 if t < k spb tmin

1
2(tmax−tmin )2γ

(

p + q
t

+ r
t2

)

if k spb tmin ≤ t

≤ k spb tmax

1 otherwise

with

p = (Cyls − 1)tmax (2(tmax − tmin)α

+(Cyls − 1)(tmax − 2tmin)β)

q = ((Cyls − 1)tmax (−2 k spb(tmax − tmin)tminα

+(Cyls − 1)k spb tmin tmaxβ

+(1 − Cyls)k spb(tmax − 2tmin)tminβ))

r = (1 − Cyls)(Cyls − 1)k2spb2t2
max

t2
min

β

tmin and tmax are the times to transfer to a single sector on
the outermost and innermost tracks respectively.

Table 1: Seagate ST3500630NS drive parameters

Capacity 500GB

Total number of cylinders 60 801

RPM 7 200

Sector size 512 bytes

Sectors per block 256

Time to write a single physical sector on the in-
nermost track (tmax)

0.012064 ms

Time to write a single physical sector on the
outermost track (tmin)

0.005976 ms

Track-to-track seek time (Read) 0.8 ms

Full-stroke seek time (Read) 17 ms

Track-to-track seek time (Write) 1 ms

Full-stroke seek time (Write) 18 ms

The Single Disk Simulator

Our single disk simulator is a simulation of an M/G/1 queue
and is implemented using the JINQS Java-based queueing
network library [5]. Interarrival times for I/O requests are
sampled from an exponential distribution with rate parameter
λ. The service time for each request is generated by summing
samples from the random variables S, R and Tk (for some
fixed k). The simulator processes a specified number of I/O
requests (usually 5 000) and outputs the response time for
each request. These are then used to generate the cumulative
distribution function of I/O request response time, as well as
other summary statistics such as the mean, sample standard
deviation and median.
The operation of the M/G/1 queue simulator was validated
for a simple Erlang service time distribution by comparing
the cdf generated by our simulator with a known analytical
result. In particular, the Laplace transform of the response
time density of an M/G/1 queue can be derived using the
Pollaczek-Khintchine transform equation [6], and then nu-
merically inverted using Euler inversion [1] to yield the re-
sponse time cdf. Agreement between simulated and numer-
ical cdfs was found to be excellent, giving us confidence in
the correct operation of our simulator.
To generate samples for disk service time, the simulator ex-
tracts samples from the analytical cdfs for FS(t) and FTk

(t).
Specifically, we sample from a cdf F (t) by computing the
value of t for which U = F (t), where U is a uniformly dis-
tributed random variable, 0 ≤ U ≤ 1. Since rotational la-
tency is uniformly distributed, a random sample is URmax.
The overall disk service time is the sum of the samples for
seek time, rotational latency and transfer time.

Comparing with Measurements

The output of our single disk simulator was compared
with the measurements from a Seagate ST3500630NS disk
drive [9]. Table 1 gives the model parameters for this drive.
Tests were conducted with an arrival rate of I/O requests (λ)
of 0.01 and 0.02 requests/ms with workloads consisting of



k = 1, 2, 5, 10, 20, 40 128KB blocks. For each value of k we
ran two tests – one for reads and one for writes. Our single
disk simulation matches device measurements very well, es-
pecially for workloads consisting of a lower arrival rate and
smaller request sizes. We note, however, that the simulated
write results do tend to slightly underestimate the measured
results – see for example Fig. 1.
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(a) 5-block read
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(b) 5-block write

Figure 1: Selected response time cdfs on a single disk for
λ = 0.01 requests/ms.

When λ = 0.02 requests/ms and k > 10 the simulation
results begin to underestimate the device measurements for
both reads and writes. For k ≥ 20 at both arrival rates,
the model fails to give accurate predictions of response time
because the requests are arriving faster than they are being
served, and the queueing theory upon which our simulator is
based requires a stable state to function properly.

RAID 0 MODEL

Split-Merge Queues

We now extend the single disk model to a RAID 0 model
using a split-merge queueing network [4]. In a split-merge
queue with N servers, a job splits into N subtasks which
are serviced in parallel. Only when all the subtasks finish
servicing and rejoin can the next job split into subtasks and
start servicing. Therefore, for each request, the response time
is defined as the maximum of the subtasks’ response times.

Figure 2: A split-merge queueing network

The split-merge queueing model fits well with the way in
which a RAID system operates, since disk drives in the RAID
system can be treated as servers in the queueing network.
Users issue I/O requests to the RAID controller which holds
arriving requests in a queue. The RAID controller repeatedly
dequeues requests and splits them into several sub-requests,
each to be serviced by one of the disk drives in parallel. Af-
ter all sub-requests of a request have been serviced, they are
merged and the I/O request completes.
We note that newer RAID 0 systems have buffering queues
before and after the disks, and so disks can serve the sub-
requests of new requests continuously without waiting for
earlier requests to complete. Our model will slightly overes-
timate I/O request response time for such systems.

Modifying the Single Disk Simulator

We constructed a RAID 0 simulator by building a split-merge
layer on top of our existing single disk simulator. When the
RAID 0 simulator receives an I/O request from its queue,
it splits the request into smaller sub-requests, and calls the
single disk models to calculate the service times of those sub-
requests. The RAID simulator selects the maximum service
time returned by the single disk models to be the service time
of that I/O request.

Figure 3: Calculating RAID 0 request service times

Upon receiving a k-block read or write request, the RAID
simulator (Raid0 hereafter) starts to allocate the blocks
to different instances of single disk models (SingleDisk
hereafter). The allocation scheme is illustrated in Fig. 3.
Each SingleDisk object, sd[i], will read or write a min-
imum of b k

n
c blocks. Additional blocks, X , will be added as

follows:

X =

{

1 if i < (k mod n)
0 otherwise

(1)

For example, if a 7-block write request,
write(A,B,C,D,E,F,G), is issued to a 3-disk RAID 0
system, then the 7 blocks will be written to the disks in the
following way:



sd[0] write(A, D, G) (k = 3)

sd[1] write(B, E) (k = 2)

sd[2] write(C, F) (k = 2)

Raid0will then pick the largest service time generated from
the array of SingleDisks and return it as the service time
of the I/O request. Adding time spent queueing yields the
overall I/O request response time.

RESULTS AND ANALYSIS

We now validate our simulator by comparing cdfs of gener-
ated response time with actual measurements from RAID 0
systems with 2, 3 and 4 disk drives. In all cases, we used an
Infortrend A16F-G2430 RAID system containing four Sea-
gate ST3500630NS disks. We set the stripe width on the ar-
ray to 128 KB and disabled the write caches of both the disk
drives and the RAID system. For each test, we read or wrote
k blocks (1 ≤ k ≤ 20) for arrival rate λ = 0.01 requests/ms.
The sample size for constructing a cdf is 5 000 requests.

2-Disk Results
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(a) 5-block read
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(b) 10-block read
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(c) 5-block write
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(d) 10-block write

Figure 4: Selected response time cdfs on a 2-disk RAID 0
system for λ = 0.01 requests/ms.

Fig. 4 shows a selection of read and write results (presented
in terms of the cdf of I/O request response time) for a number

of request sizes on a 2-disk RAID 0 system with λ = 0.01 re-
quests/ms. We observe close agreement between simulated
and measured results for reads at all block sizes, while for
writes we note that the simulation tends to slightly underes-
timate the measured results in all cases. This suggests that
there is an additional overhead inherent in writes for which
our model does not account. This discrepancy was also visi-
ble in the case of the single disk model, which suggests that
the source is likely to be at the level of the disk rather than
the RAID controller. Understanding the reason for this dif-
ference is a key area of our future work.

3-Disk Results
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(a) 5-block read
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(b) 10-block read
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(c) 5-block write
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(d) 10-block write

Figure 5: Selected response time cdfs on a 3-disk RAID 0
system for λ = 0.01 requests/ms.

Fig. 5 shows a selection of read and write results for a number
of request sizes on a 3-disk RAID 0 system with λ = 0.01
requests/ms. We observe close agreement between simulated
and measured results for reads at all block sizes except k =
10, while for writes we note again that the simulation tends
to slightly underestimate the measured results in all cases.

4-Disk Results

Fig. 6 shows a selection of read and write results for a number
of request sizes on a 4-disk RAID 0 system with λ = 0.01
requests/ms. We observe similar trends in the results as for
the 3-disk case.
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(a) 5-block read

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (ms)

P
ro

ba
bi

lit
y

Measurement
Simulation

(b) 10-block read
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(c) 5-block write
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(d) 10-block write

Figure 6: Selected response time cdfs on a 4-disk RAID 0
system for λ = 0.01 requests/ms

CONCLUSION

In this paper we have presented a simulation model which
predicts the cdf of I/O request response time in a RAID 0
system consisting of homogeneous zoned disk drives. We
first constructed an M/G/1 simulation model of a single disk
drive, which we validated against device measurement, and
then used a split-merge queueing network to model the RAID
system. We validated our resulting RAID 0 simulator against
device measurements and demonstrated its accuracy.

There are a number of avenues for future work. Firstly, we
need to account for the difference observed between our sim-
ulator and the measured results for write operations. Sec-
ondly, our simulator currently only models RAID 0 but there
are several other commonly-deployed RAID configurations,
particularly RAID 01 (mirrored stripes) and RAID 5 (dis-
tributed parity), which it could be extended to represent. Fi-
nally, our simulator is currently only capable of analysing
request streams composed entirely of reads or entirely of
writes. In the real world, streams of I/O requests will almost
always be composed of a mixture of both, and we need to
extend our simulator to be able to model this. Real I/O traffic
can also consist of variably-sized requests and typically ex-
hibits considerable burstiness, neither of which are supported
by our simulator. We will therefore work to add support for
these behaviours.
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