
Natural Language Specification of
Performance Trees

Lei Wang, Nicholas J. Dingle, and William J. Knottenbelt

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, United Kingdom.

Email: {lw205,njd200,wjk}@doc.ic.ac.uk

Abstract. The accessible specification of performance queries is a key
challenge in performance analysis. To this end, we seek to combine the
intuitive aspects of natural language query specification with the expres-
sive power and flexibility of the Performance Tree formalism. Specifi-
cally, we present a structured English grammar for Performance Trees,
and use it to implement a Natural Language Query Builder (NLQB) for
the Platform Independent Petri net Editor (PIPE). The NLQB guides
users in the construction of performance queries in an iterative fashion,
presenting at each step a range of natural language alternatives that are
appropriate in the query context. We demonstrate our technique in the
specification of performance queries on a model of a hospital’s Accident
and Emergency department.

Key words: Performance requirements specification; Natural language;
Performance Trees; Performance analysis

1 Introduction

Performance is a vital consideration for system designers and engineers. Indeed,
a system which fails to meet its performance requirements can be as ineffectual
as one which fails to meet its correctness requirements. Ideally, it should be
possible to determine whether or not this will be the case at design time. This
can be achieved through the construction and analysis of a performance model of
the system in question, using formalisms such as queueing networks, stochastic
Petri nets and stochastic process algebras.

One of the key challenges in performance analysis is to provide system de-
signers with an accessible yet expressive way to specify a range of performance-
related queries. These include performance measures, which are directed at nu-
merical performance metrics (e.g. “In a hospital, what is the utilisation of the
operating theatre?”), and performance requirements, which indicate conformity
to a QoS constraint (e.g. “In a mobile communications network, is the time taken
to send an SMS message between two handsets less than 5 seconds with more
than 95% probability?”).

2 Lei Wang, Nicholas J. Dingle, and William J. Knottenbelt

Formalisms such as Continuous Stochastic Logic (CSL) [3, 4] provide a con-
cise and rigorous way to pose performance questions and allow for the compo-
sition of simple queries into more complex ones. Such logics can be somewhat
daunting for non-expert users; indeed, a study by Grunkse [9] found that indus-
trial users attempting to specify requirements sometimes put forward formulae
that were syntactically incorrect. Even for those comfortable with their use,
there still remains the problem of correctly converting informally-specified re-
quirements into logical formulae. Further, CSL is limited in its expressiveness,
since it is unable to reason about certain concepts such as higher moments of
response time.

Performance Trees [14, 15] were recently proposed as a means to overcome
these problems. These are an intuitive graphical formalism for expressing per-
formance properties. The concepts expressible in Performance Tree queries are
intended to be familiar to engineers and include steady-state measures, passage
time distributions and densities, their moments, action frequencies, convolutions
and arithmetic operations. An important concern during the development of Per-
formance Trees was ease of use, resulting in a formalism that can be straightfor-
wardly visualised and manipulated as hierarchical tree structures.

Another approach for the accessible specification of performance queries is
the use of natural language, whereby users specify their queries textually before
they are automatically translated into logical formulae. This allows users to ex-
ploit the power of logical formalisms without requiring in-depth familiarity and
also minimises the chances of misspecification. Prior work has focused on both
unstructured [10] and structured [8, 9, 12, 13] natural language query specifica-
tion, albeit mostly in the context of correctness – rather than performance –
analysis.

Unstructured natural language specification allows a user to freely enter sen-
tences which must then be parsed and checked before being converted into a
corresponding performance property. Although this is perhaps the most intu-
itive query specification mechanism, it must incorporate strategies for resolving
ambiguities and context-specific expressions. The conversion process is there-
fore often iterative, with the user refining their natural language expression in
response to the checking until it can be successfully converted into a property.

By contrast, structured natural language specification presents users with a
set of expressions which can be composed together in accordance with a pre-
defined structured grammar. If the same grammar is also defined for the logic
into which the query will be converted (e.g. as in [9]), the conversion process is
relatively straightforward. The main advantage of such structured specification
is therefore that there is less “trial and error” involved in forming a query: the
user’s choices are limited to those provided by the grammar and so they can
only construct a natural language query which will always convert directly into
a logical formula.

In this paper, we present a structured natural language query specification
mechanism for Performance Trees to further improve their accessibility. The
grammar of this structured mechanism is provided by the syntax of Performance

Natural Language Specification of Performance Trees 3

Trees, which enables a structured natural language query to be converted into
a Performance Tree and then evaluated using the existing Performance Tree
evaluation architecture [6]. Furthermore, taken together, the natural language
and Performance Tree representations provide mutual validation, allowing the
user to ensure that their queries capture exactly the performance properties of
interest.

The rest of this paper is organised as follows. Section 2 provides a brief
overview of Performance Trees and the tool support for their evaluation. Sec-
tion 3 then presents our structured grammar for the natural language represen-
tation of Performance Trees and describes its implementation within the Natural
Language Query Builder (NLQB), a module for the Platform Independent Petri
net Editor (PIPE) [1, 5]. Section 4 demonstrates the use of the NLQB in a case
study of a hospital’s Accident and Emergency unit. Section 5 concludes and
discusses future work.

2 Performance Trees

Performance Trees [14, 15] are a formalism for the representation of performance-
related queries. They combine the ability to specify performance requirements –
i.e. queries aiming to determine whether particular properties hold on system
models – with the ability to extract performance measures – i.e. quantifiable
performance metrics of interest.

A Performance Tree query is represented as a tree structure consisting of
nodes and interconnecting arcs. Nodes can have two kinds of roles: operation
nodes represent performance-related functions, such as the calculation of a pas-
sage time density, while value nodes represent basic concepts such as a set of
states, an action, or simply numerical or Boolean constants.

Complex queries can be easily constructed by connecting operation and value
nodes together. The formalism also supports macros, which allow new concepts
to be created with the use of existing operators, and an abstract state-set spec-
ification mechanism to enable the user to specify groups of states relevant to a
performance measure in terms of the corresponding high-level model (whether
this be a stochastic Petri net, queueing network, stochastic process algebra etc.)

Performance Trees have been fully integrated into the Platform Independent
Petri net Editor (PIPE), thus allowing users to design Generalised Stochastic
Petri Net (GSPN) [2] models and to specify relevant performance queries within
a unified environment. PIPE communicates with an Analysis Server which em-
ploys a number of (potentially parallel and distributed) analysis tools [7, 11] to
calculate performance measures. These include steady-state measures, passage
time densities and quantiles, and transient state distributions.

4 Lei Wang, Nicholas J. Dingle, and William J. Knottenbelt

Performance Natural Language Arguments Output
Tree Node Representation

RESULT “is it true that” InInterval | Subset | ¬ | N/A
∧ / ∨ | ≥, >, ==, <, ≤

“what is the” PTD | Dist | N/A
Conv | Moment |
SS:P | SS:S | FR |
ProbInInterval | ProbInStates |
StatesAtTime | ⊕

PTD “the passage time density defined by states, states PTD
start states” states “and target states” states

Dist “the cumulative distribution function calculated PTD Dist
from” PTD

Conv “the convolution of” PTD “and” PTD PTD, PTD PTD

SS:P “the steady-state probability distribution of” statefunc, states num
statefunc “applied over” states

Perctl “the” num “percentile of” PTD | Dist num, PTD | num, Dist num

StatesAtTime “the set of states that the system can be in num, Range states
at the time instant” num “within
probability bound” Range

ProbInStates “the transient probability of the system states, states, num num
having started in” states “and being in”
states “at the time instant given by” num

Moment “the” num “ raw moment of” PTD | Dist num, PTD | num, Dist num

FR “the frequency of” action action num

ProbInInterval “the probability with which a value sampled from” PTD, Range num
PTD “lies within” Range

InInterval num “lies within” Range num, Range bool

Subset states “is a subset of” states states, states bool

∧ / ∨ bool “and/or” bool “holds” bool, bool bool

¬ “the negation of” bool “holds” bool bool

≥, >, ==, <, ≤ num “greater than or equal to/greater than/equal num, num bool
to/less than/less than or equal to” num

⊕ num “plus/minus/raised to the power of/ num, num num
multiplied by/divided by” num

Range “the range” num “to” num num, num num
Table 1. Structured grammar for Performance Trees.

Node Description

action The name of an action (transition in GSPN context)
bool True or False
num A real number
states A specification of a subset of reachable states
statefunc A function applied to a state that returns a real number

Table 2. Description of user-specified value nodes

Natural Language Specification of Performance Trees 5

3 Structured Grammar for Performance Tree
Specification

The current Performance Query Editor incorporated into PIPE requires users
to be familiar with Performance Tree nodes (including their graphical represen-
tations and semantics). Because of this, a “drag and drop” graphical approach
to building a Performance Tree query can be quite time-consuming. We have
therefore developed an alternative approach based on structured natural lan-
guage and implemented this in the Natural Language Query Builder (NLQB).
The NLQB enables users to build performance queries in an iterative manner
by selecting natural language fragments from a constantly-updated pull-down
menu.

As shown in Table 1, the foundation of the NLQB is a structured natural
language grammar derived from the syntax of Performance Trees. Following
the convention introduced in [9], non-terminals (operation nodes) are shown
in italics, literal terminals (the natural language representation) are given in
quotation marks (“ ”) and non-literal terminals are given in bold. These non-
literal terminals are user-supplied value nodes and can only be of type num,
bool, states, statefunc and action. A description of the permitted values for
these nodes is given in Table 2.

3.1 Using the Natural Language Query Builder

Fig. 1 shows the NLQB in use. The user selects the appropriate phrases from
the drop-down menu underneath the main graphical display and at the same
time the corresponding Performance Tree is automatically constructed. When a
selection has been made, the selected phrase is inserted in the natural language
query in the text area and, at the same time, a corresponding Performance Tree
node is plotted in an appropriate position. An automatic positioning mechanism
calculates the coordinates of the recently created node and its outgoing arcs
according to the position of its parent node and its level in the tree. The position
of nodes and arcs can be adjusted manually if the user is not satisfied with the
automatic positioning.

Each option in the drop-down menu consist of two elements – the natural
language representation and the expected arguments. The natural language rep-
resentation explains the operation that the node carries out, and the expected
arguments (displayed in square brackets) indicate the type of its child nodes. The
first expected argument is coloured in red, and all other expected arguments are
coloured in blue. The user then specifies arguments in turn via the drop-down
menu. As an argument is specified, its natural language representation is added
to the query. When a value node is required, a dialog is presented to allow the
user to make the required assignment.

For example, the InInterval node is expressed as “num lies within Range”.
When it is selected by the user, the first expected argument, num, indicates that
a numerical value is required as input, so the NLQB uses the structured natural

6 Lei Wang, Nicholas J. Dingle, and William J. Knottenbelt

Fig. 1. Screenshot of the Natural Language Query Builder, showing a natural language
query specification and the corresponding Performance Tree.

language grammar (given in Table 1) to find all nodes that produce numerical
output and inserts their natural language representation into the drop-down
menu. The other expected argument is a Range node; the NLQB only displays
the corresponding phrase “the range num to num” in the menu after the first
argument to the InInterval node has been supplied.

Each natural language phrase is presented in a different colour according to
the output type of the node it represents. For example, phrases representing
nodes with Boolean output are coloured black but phrases representing a set
of states are in cyan. This aids readability by helping users to easily categorise
each part of the natural language representation of their query. The NLQB also
provides an undo mechanism to allow users to correct their query.

Natural Language Specification of Performance Trees 7

4 Case Study

Fig. 2. GSPN model of a Hospital A&E Department [6]

We demonstrate how to design queries and calculate the relevant results
using the NLQB for two examples based on the Accident and Emergency (A&E)
department GSPN model of [6] shown in Fig. 2. There is an initial group of
healthy people who fall ill and go to a hospital – arriving either by walking
in or by ambulance. Walk-in patients wait in the waiting room for assessment
until a nurse becomes available, while ambulance patients wait on a trolley to
be assessed by a nurse. Patients are subsequently either seen by a doctor for
treatment, sent for lab tests or sent for surgery. The model is parameterised by
P , N and D, which denote the number of tokens on the places healthy (people),
nurses and doctors, respectively. In the following examples, we set P = 10,
N = 4 and D = 4, yielding an underlying Markov chain with 313 986 states.

Example 1 We wish to answer the performance query:

What is the cumulative distribution function of the time taken for all
patients in the system to fall ill, complete treatment and be discharged
from the hospital?

The first thing the NLQB needs to know is whether this query expects a truth
value or a quantitative measure as its result. Therefore, the only two available
options in the drop-down menu are “Is it true that [bool]?” and “What is the
[quantitative measure]?” In this case, we select the second option.

As we have selected the quantitative measure option, the NLQB interrogates
the structured grammar table, extracts all operations that produce quantita-
tive values and places their natural language representations into the drop-down

8 Lei Wang, Nicholas J. Dingle, and William J. Knottenbelt

menu. We are interested in computing a passage time distribution and so we
choose the “cumulative distribution function calculated from [PTD]” as our next
input. This is incorporated into the natural language representation of the query
and at the same time a Dist node is created in the Performance Tree and con-
nected to the RESULT node.

The next argument to be specified is “[PTD]”, which is displayed in red.
This requires two sets of states as arguments which are assigned manually when
“Assign States” is selected from the menu (using PIPE’s state assignment tool).
The specification of the start states in this query (in this case a single start
state) is given as:

all patients healthy := (#(healthy) = 10) ∧ (#(nurses) = 4) ∧ (#(doctors) = 4)

Similarly, the specification of the target states is:

all patients treated := (#(finished) = 10)

where #(p) returns the number of tokens on place p in the model.
The completed query is shown in Fig. 3. The resulting natural language

specification is:

What is the cumulative distribution function calculated from the passage
time density defined by the set of start states ‘all patients healthy’ and
the set of target states ‘all patients treated’?

Fig. 4 shows the result of evaluating the PTD (passage time density) node sub-
query, while Fig. 5 shows the cumulative distribution function resulting from the
evaluation of the overall query.

Example 2 We wish to answer the performance query:

What is the probability that all patients complete treatment and are
discharged from the hospital within 4 time units?

This is constructed in a similar way as Example 1 and, as shown in Fig. 6, the
NLQB produces the following natural language specification:

What is the probability with which a value sampled from the passage
time density defined by the set of start states ‘all patients healthy’ and
the set of target states ‘all patients treated’ lies within the range 0 to 4?

From the cumulative distribution function in Fig. 5, we can see that the prob-
ability that all patients complete their treatment within 4 time units is 0.933
(rounded to 3 decimal places).

Natural Language Specification of Performance Trees 9

Fig. 3. The expression of Example 1 in the NLQB.

5 Conclusion

In this paper, we have presented a structured natural language query specifica-
tion mechanism for Performance Trees. We have implemented this in PIPE as
the Natural Language Query Builder which can be used with existing analysis
tools to specify and calculate performance measures of interest.

There are a number of avenues for future work. Firstly, we are working to pro-
vide support for queries tailored to specific user models, i.e. support for model-
specific terminology that takes into account the semantic meaning of model
components. For example, in the context of the A&E model, we would like to be
able to input queries such as “Is the time from the first patient to fall ill to the
time of discharge from the hospital less than 4 hours at least 98% of the time?”
We intend to accomplish this by requiring the user to augment the system model
with information relating abstract model components to real world entities (e.g.
in the context of a Petri model, what do the tokens on particular places repre-

10 Lei Wang, Nicholas J. Dingle, and William J. Knottenbelt

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5 6 7

P
ro

ba
bi

lit
y

D
en

si
ty

Time

Passage time density: Hospital Model

Fig. 4. Probability density function of the time taken to process all patients in the
hospital model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

P
ro

ba
bi

lit
y

Time

Passage time distribution: Hospital Model

Fig. 5. Cumulative distribution function of the time taken to process all patients in
the hospital model. The probability at time t = 4 is also marked.

Natural Language Specification of Performance Trees 11

Fig. 6. The expression of Example 2 in the NLQB.

sent?) Secondly, we would like to augment the Performance Tree formalism with
an experimental framework so that we can pose questions such as “How many
doctors should be employed to ensure the 98th percentile of patient treatment
time is below 4 hours?” Finally, we would like to apply natural language tech-
niques for Performance Trees in the context of important domains outside of
modelling such as the specification of Service Level Agreements.

References

1. PIPE: Platform-Independent Petri net Editor – http://pipe2.sourceforge.net.
2. M. Ajmone-Marsan, G. Conte, and G. Balbo. A class of Generalised Stochastic

Petri Nets for the performance evaluation of multiprocessor systems. ACM Trans-
actions on Computer Systems, 2:93–122, 1984.

3. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous-time Markov
chains. In Lecture Notes in Computer Science 1102: Computer-Aided Verification,
pages 269–276. Springer-Verlag, 1996.

12 Lei Wang, Nicholas J. Dingle, and William J. Knottenbelt

4. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous-time
Markov chains. ACM Transactions on Computational Logic, 1(1):162–170, 2000.

5. P. Bonet, C.M. Llado, R. Puijaner, and W.J. Knottenbelt. PIPE v2.5: A Petri
net tool for performance modelling. In Proceedings of the 23rd Latin American
Conference on Informatics (CLEI 2007), San Jose, Costa Rica, October 2007.

6. D.K. Brien, N.J. Dingle, W.J. Knottenbelt, H. Kulatunga, and T. Suto. Per-
formance Trees: Implementation And Distributed Evaluation. In Proc. 7th Intl.
Workshop on Parallel and Distributed Methods in Verification (PDMC’08), Bu-
dapest, Hungary, March 2008. Elsevier.

7. N.J. Dingle. Parallel Computation of Response Time Densities and Quantiles in
Large Markov and Semi-Markov Models. PhD thesis, Imperial College, London,
United Kingdom, 2004.

8. S. Flake, W. Müller, and J. Ruf. Structured English for model checking specifica-
tion. In Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen, pages 99–108, Frankfurt, February 2000.

9. L. Grunske. Specification patterns for probabilistic quality properties. In Proc.
30th International Conference on Software Engineering (ICSE’08), pages 31–40,
Leipzig, Germany, 2008.

10. A. Holt and E. Klein. A semantically-derived subset of English for hardware
verification. In Proc. 37th Annual Meeting of the Association for Computational
Linguistics, pages 451–456, Maryland VA, USA, 1999.

11. W.J. Knottenbelt. Generalised Markovian analysis of timed transition systems.
Master’s thesis, University of Cape Town, Cape Town, South Africa, July 1996.

12. S. Konrad and B.H.C. Cheng. Real-time specification patterns. In Proc. 27th
International Conference on Software Engineering (ICSE’05), pages 372–381, St.
Louis MO, USA, 2005.

13. R.L. Smith, G.S. Avrunin, L.A. Clarke, and L.J. Osterweil. PROPEL: An ap-
proach supporting property elucidation. In Proc. 24th International Conference
on Software Engineering (ICSE’02), pages 11–21, Orlando FL, USA, 2002.

14. T. Suto, J.T. Bradley, and W.J. Knottenbelt. Performance Trees: A New Approach
to Quantitative Performance Specification. In Proc. 14th IEEE/ACM Intl. Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunications
Systems (MASCOTS 2006), pages 303–313, Monterey, CA, USA, September 2006.

15. T. Suto, J.T. Bradley, and W.J. Knottenbelt. Performance trees: Expressiveness
and quantitative semantics. In Proceedings of the 4th International Conference
on the Quantitave Evaluation of Systems (QEST’07), pages 41–50, Edinburgh,
September 2007. IEEE Computer Society.

