
Swimming with Fishes and Sharks: Beneath the
Surface of Queue-based Ethereum Mining Pools

A. Zamyatin∗,‡, K. Wolter†, S. Werner‡, C.E.A. Mulligan‡, P.G. Harrison ‡ and W.J. Knottenbelt‡
∗ SBA Research, Austria

† Freie Universität Berlin, Germany
‡ Imperial College London, United Kingdom

Email: azamyatin@sba-research.org, katinka.wolter@fu-berlin.de,
{sam.werner16, c.mulligan, pgh, wjk}@imperial.ac.uk

Abstract—Cryptocurrency mining can be said to be the modern
alchemy, involving as it does the transmutation of electricity
into digital gold. The goal of mining is to guess the solution
to a cryptographic puzzle, the difficulty of which is determined
by the network, and thence to win the block reward and
transaction fees. Because the return on solo mining has a very
high variance, miners band together to create so-called mining
pools. These aggregate the power of several individual miners,
and, by distributing the accumulated rewards according to some
scheme, ensure a more predictable return for participants.

In this paper we formulate a model of the dynamics of a queue-
based reward distribution scheme in a popular Ethereum mining
pool and develop a corresponding simulation. We show that the
underlying mechanism disadvantages miners with above-average
hash rates. We then consider two-miner scenarios and show how
large miners may perform attacks to increase their profits at the
expense of other participants of the mining pool. The outcomes of
our analysis show the queue-based reward scheme is vulnerable
to manipulation in its current implementation.

I. INTRODUCTION

The field of cryptocurrencies has experienced a rapid growth
in popularity since the introduction of Bitcoin [19] in 2008.
Today, over 750 alternative cryptocurrencies or altcoins1 exist.
Ethereum [6] is the most highly capitalised cryptocurrency
after Bitcoin. Its primary innovation is a Turing-complete
scripting language allowing the creation of programs govern-
ing the transfer of value, known as smart contracts.

A fundamental data structure underpinning many cryptocur-
rencies is the blockchain. This provides an append-only im-
mutable record of digitally-signed transactions. Transactions,
each of which represents the transfer of some token of value
from source wallets to recipient wallets, are consolidated into
blocks. Each block is identified by a unique hash over all
included transactions and the block header, which contains
(amongst other things) the hash of the previous block and
a nonce. The fact that the hash of the previous block is
referenced in the next block effectively chains the blocks
together, such that it is impossible to change the contents of
a block without also updating every subsequent block.

Participating nodes in a cryptocurrency network commu-
nicate in a peer-to-peer fashion using a gossip protocol,
broadcasting blocks so that each node stores a complete copy

1Source: http://coinmarketcap.com. Accessed: 2017-04-11

of the blockchain. Since there is no central point of control,
a key element of this system is the distributed consensus
mechanism used to agree on the content accepted into the
blockchain.

In Bitcoin and Ethereum, and most altcoins, the mechanism
used is referred to as Nakamoto consensus and involves nodes
competing to solve a challenging cryptographic puzzle, known
as Proof-of-Work (PoW)2. The latter is designed such that
there exists no better strategy than enumerating all possible
candidates, while the verification of a potential solution is
trivial. The process of attempting to solve this puzzle is
defined as mining and the participating nodes are referred to
as miners. Each attempt at a solution is known as a hash and
the computational power of a miner is given by its hash rate.

Miners collect all transactions they receive over the peer-to-
peer network and consequently try to generate a new block by
brute-forcing the solution to the required PoW puzzle. Each
time a miner succeeds in creating a new block, the latter is
appended to the public blockchain and propagated through
the network. As reward for investing computational effort, the
miner is granted a fixed amount of newly generated or minted
units of the underlying currency. Furthermore, transactions
include a small fee to incentivise the winning miner to include
them in the latest block.

In Ethereum, the PoW consists of finding a nonce input
to the Ethash [8] algorithm, such that the result is below a
certain threshold depending on the difficulty [10]. Since miners
can leave or join the race for generating the next block at
any time, Ethereum implements a mechanism to dynamically
adjust the difficulty of the PoW, such that a new block is found
on average approximately every fifteen seconds. At the time
of writing, the difficulty, i.e. the expected number of hashing
operations required to find a solution to the PoW, amounts to
approximately 740 trillion hashes [1].

To reduce the variance of the time between finding blocks
and hence stabilise revenue over time, miners cooperate to
create so-called mining pools. The hash rate of such mining
pools usually significantly exceeds that of single miners and, as
a result, the average interval between finding blocks is reduced.

2While other consensus mechanisms, such as Proof-of-Stake [14], [11], are
currently being researched and developed, PoW, as of this writing, remains
by far the most adopted consensus approach in permissionless blockchains.



Taken together with a scheme which ideally distributes block
rewards proportionally to the effort invested by miners, this
allows each participant to more accurately predict the overall
accumulated revenue over time and ensures a steadier pay-
ment stream. In return, miners are usually charged a small
proportion of their revenue by the pool. To measure the effort
invested by miners, the mining pool accepts solutions to a
cryptographic puzzle that has a considerably relaxed difficulty
threshold; these solutions are known as shares.

The schemes used for dividing rewards among miners can
differ substantially from pool to pool. Some pools split each
mined block into fractions and award each miner the part
of the block that corresponds to their mining investment in
terms of shares, while other pools rank miners according to the
invested work as evidenced by shares and award a mined block
always to the top-ranked miner. Previous research work by
Rosenfeld provided an overview of such reward schemes [20]
and introduced so-called pool-hopping attacks, where miners
dynamically switch between pools to increase their profit.
Lewenberg et al. pointed towards problems in preventing
pool-hopping [16], while Schrijvers et al. conducted a study
on incentive compatibility of common reward schemes [21].
Further research evaluated potential attack scenarios between
pools, including denial-of-service attacks [13], [15] and less
direct withholding attacks [12], [7], [17], where pools infiltrate
competitors and cause damage by withholding valid blocks.

In this paper we focus on a recently-introduced approach
for distributing block rewards among miners [4] which we
refer to as a queue-based reward payout scheme. Under this
scheme, the block reward is paid to the miner residing at the
first position of a priority queue sorted by credits received for
submitted shares over time. We evaluate the expectation and
variance of miners’ revenues under this scheme, comparing the
results to the PPLNS (Pay-Per-Last-N-Shares) reward payout
scheme. Thereby we aim to show which type of miners, in
terms of different hash rates, benefit the most from the queue-
based reward payout scheme as opposed to an alternative ‘fair’
reward scheme. To this end, we introduce a discrete event-
based simulation, which allows us to model the ecosystem of a
single mining pool including the dynamics of miner behaviour.
We make use of data extracted from Ethpool [2], a popular
Ethereum mining pool, which was the first to implement the
queue-based payout scheme. For comparative purposes we
use a conventional PPLNS scheme, as implemented by the
Ethermine Ethereum mining pool. Furthermore, we highlight
a potential vulnerability rooted in the uneven distribution of
credits in the queue-based approach, which can be exploited
in several ways by miners with above average hash rates to
increase their long-term revenue. A real-world scenario, in
which this vulnerability is being exploited to the benefit of
a small group of miners, has been observed in Ethpool.

The remainder of this paper is organised as follows. Sec-
tion II outlines useful background and notation. Section III
explains the mechanics of the queue-based reward payout
scheme, while Section IV discusses the numerical results
obtained from a simulation of this model, highlighting how

large miners are at a natural disadvantage in such a scheme
and comparing the economic benefit of different simulated
attack scenarios. Section V introduces three different attack
scenarios arising from the nature of the queue-based reward
scheme. Section VI concludes and outlines future work.

II. PRELIMINARIES

In this section we will provide an overview of different
mining approaches, more specifically solo and pooled mining,
as well as explain the structure of miner rewards and the most
common conventional reward payout schemes.

A. Notation

In the process of mining for a cryptocurrency a miner
mi will perform the necessary hashing operations at rate hi.
Commonly, the hash rate of a miner will range between a
few hundred megahashes3 per second (MH/s), and several
gigahashes per second (GH/s). The total hash rate of a group
of miners is the sum of the individual hash rates, denoted by
H . The difficulty D indicates the expected number of hashes
needed to find the next block. The pool difficulty d indicates
the expected number of hashes needed to find a share that is
submitted to the pool; such shares enable the mining pool to
objectively assess miner hash rate and may also be candidates
for a new block.

B. Miner rewards

The Ethereum mining protocol differentiates between full
and so-called uncle blocks. The latter represent valid blocks,
which did not become the new head of the blockchain [9].
This occurs if a block submitted by a competing miner is
propagated faster to the majority of all nodes in the network.
We denote the probability of a block being an uncle, which
depends on the miner’s network connectivity γ, as pu.

In contrast to Bitcoin, miners receive payouts not only
for full, but also for uncle blocks in Ethereum. As of this
writing, the reward for a full block Rb is 5 ETH4, while
the reward Ru for an uncle block is 3.75 ETH, excluding
transaction fees. On the Ethereum public blockchain, as in
most other cryptocurrencies, the revenue generated by finding
a block consists of the block reward and fees collected from
the included transactions. Since the transaction fees are hard
to model, while representing only a small share of the total
block reward, they are omitted in this paper for simplification.
Hence, we denote the expected revenue per block as:

Re = Rb(1− pu) +Rupu (1)

C. Solo mining

Miners participating in the consensus finding mechanism on
an individual basis, and thereby receiving the entire reward for
each found block, are referred to as solo miners. The number
of blocks found by a solo miner per time unit follows a Poisson
distribution with rate parameter λ = h/D, where D is the
current difficulty and h represents the solo miner’s hash rate.

3i.e. 108 hashes
4Ether – abbreviated ETH – is the underlying currency in Ethereum.



The expected revenue per performed hashing operation can
be hence formulated as

E[Rh] =
Re

D
(2)

The variance of the revenue per hashing operation is

Var[Rh] = R2
eλ =

R2
e

D
(3)

D. Mining pools

Mining pools are a way for solo miners to join their
resources (mining power) together in order to increase their
probability of finding a block. These pools are run by so-called
operators, whose main task, apart from maintaining the mining
software and scripts, is to estimate each participating miner’s
hash rate and their contribution to the generated blocks. To
this end, the mining pool operator sends to each miner a PoW
problem, identical to the network PoW puzzle, but with a lower
difficulty5.

Miners participate in the pool by continuously employing
computational power in solving the pool’s problem. Each
time a miner finds a solution, i.e. finds a nonce input to
the Ethash algorithm yielding a result below the required
threshold, she submits a share to the block to be found next
by the mining pool. Sometimes, the submitted solution to the
mining pool’s problem will also be a solution to the more
difficult network problem. As a result, the mining pool will
generate the next block and collect the block reward. The
latter is then distributed among the pool’s miners based on
each miner’s contribution and according to the reward payout
scheme.

The time between submitted shares is exponentially dis-
tributed with mean d/hi, where hi is the hash rate of miner
mi and d is the pool problem difficulty. Each share is the
solution to the current network PoW puzzle with probability
d/D. The time it takes the mining pool as a whole to find a
block can be modelled as an exponentially distributed random
variable with mean D/H , where H =

∑n
i=1 hi is the sum

of the hash rates of the n individual miners in the pool and
D is the network difficulty. The number of blocks found in a
specific time period in turn follows a Poisson distribution with
rate parameter λ = H/D.

Shares can be stale, i.e. valid but no longer applicable to
the current PoW puzzle of the network. In other words, if
a miner submits a share for block bj only after it has been
found and the pool is already mining on block bj+1, the share
is ignored. The rate of stale shares depends on each miner’s
network connectivity γ.

E. Conventional reward payout schemes

The first mining pools were created around 2011, mostly
implementing reward schemes that equally distribute each
block reward among all or a subset of miners, based on shares

5If the problem difficulty were equal to the network difficulty, each
submitted share would also be generating the next block. Hence, the mining
pool operator would know how much work the finder of the block has
performed, but would have no information on other miners’ contributions.

submitted during a specific time period. To compensate their
administrative effort, mining pools charge a fee f , which is
a small proportion of the revenue. Below, we briefly sum-
marize some well known reward payout schemes, as initially
described by Rosenfeld [20].

1) Proportional Payout: In a proportional scheme, also
referred to as Round-based Pay-Per-Share, miners receive
payouts each time the mining pool finds a block, according
to their contribution to this block, as measured by the number
of valid shares si submitted by miner mi since the last block.
Hence, the expected reward per block of a miner mi is

E[Ri] = (1− f)Re
si∑n
j=1 sj

(4)

where n is the size of the mining pool. The counted shares
of each miner are then reset to zero, as the mining pool starts
with computations for the next block.

The number of expected shares per block is

E[S] =
D

d
(5)

The expected revenue per hashing operation is the same as
in solo mining, decreased by the mining pool’s fee f :

E[Rh] =
(1− f)Re

D
(6)

The variance, however, is lower than in solo mining by
approximately a factor D/(lnD). Thereby, only small miners
effectively profit from the reduced variance: for large miners,
accounting for significant portions of the mining pool’s hash
rate, the variance can only be multiplied by factor hi/H ,
representing the miner’s portion of the pool’s hash rate [20].

2) Pay-Per-Last-N -Shares (PPLNS): The PPLNS payout
scheme is a modified version of the proportional scheme,
aiming at the prevention of pool hopping. This is achieved
by performing the calculation of the reward payout only after
the miners have submitted N > E[S] shares in total. Hence,
the expected revenue of miner mi per payout is

E[Ri] = (1− f)BRe
si
N

(7)

where B is the number of blocks found by the pool during
the last N shares and si the number of shares miner mi

contributed to N .
Due to the proportionality of the reward payouts, miners are

incentivised to employ their maximal mining capacity for as
long as possible in both of the above schemes.

III. MODELLING THE QUEUE-BASED PAYOUT SCHEME

This section provides a detailed overview of the queue-
based reward payout scheme. We showcase the structure of
the scheme, as implemented by Ethpool, as well as point out
the workings and problems of the underlying mechanisms for
credits accounting.



A. Structure of reward payouts

The queue-based reward payout scheme was first imple-
mented by Ethpool in late 2015 and introduces a new way of
handling payouts, while relying on a mechanism to account
for each miner’s contribution similar to that of conventional
payout schemes. By submitting valid shares, miners earn so-
called credits. Each valid share increments the miner’s credits
by d, the expected number of hashes required to solve the
mining pool’s PoW problem.

The mining pool maintains a ranking in form of a priority
queue, where the priority of each miner is defined by her
earned credits. A miner’s priority increases with each of
her submitted shares. Based on their hash rate and network
connectivity, miners race for the top position in the queue. As
a result, the ordering of the priority changes dynamically after
each submitted share.

Each time the mining pool finds a block, the complete6

reward is allocated to the miner m(1) currently positioned at
the top of the queue. Consequently, the winning miner’s credits
are reset to the difference between her and the second placed
miner’s credits:

c(m(1)) := c(m(1))− c(m(2)) (8)

Uncle blocks are considered differently, in the sense that
they do not lead to a re-calculation of the winner’s credit
balance. Hence, the winner of an uncle block will receive uncle
reward Ru and continue to reside on top of the queue, until
being overtaken or winning a full block.

While in theory, the possible range of miners’ credits is
[0,+∞), Ethpool states each miner is expected to collect
approximately D credits, before winning a block [4]. However,
due to the special treatment of uncles, the expected amount of
credits of the miner at the top of the priority queue is:

E[c(m(1))] = (1 + pu)D (9)

B. Discussion of potential problems

We now move on to highlight two potential problems of the
queue-based payout scheme.

1) Unequal variance impacts: As we can see, this scheme
only takes into account the credits and hence the work
performed by the second placed miner, instead of looking at
the amount of shares submitted/credits earned by all miners,
for the credit resetting policy. This particularly impacts the
revenue of large miners, which account for significant portions
of the mining pool’s hash rate. Since these miners produce
significantly more shares than the average miner, they reach
the top of the queue more frequently. Thereby, large miners
also end up absorbing more of the mining pool’s variance
caused by lucky/unlucky streaks7. Small miners, on the other
hand, reach the top of the queue less frequently. Thus, the
probability of a small miner reaching the top at a time when
the pool is having an unlucky streak is comparatively low to

6Less pool fees.
7Given some time interval, pool luck is the ratio of blocks actually mined

by a pool to the mathematical expectation of the number of mined blocks.

TABLE I: Priority queue showing a gap between large and
medium/small miners.

(a) Before Block i

Position Miner Credits

1 Alice 110
2 Bob 105
3 Eve 60
4 Dave 30

(b) After Block i

Position Miner Credits

1 Bob 105
2 Eve 60
3 Dave 30
4 Alice 5

(c) Before Block i+1

Position Miner Credits

1 Bob 115
2 Eve 65
3 Dave 35
4 Alice 15

(d) After Block i+1

Position Miner Credits

1 Eve 65
2 Bob 50
3 Dave 35
4 Alice 15

that of a large miner. As a result, small miners will be earning
over-proportional revenue shares with regards to their invested
computational effort.

2) Non-uniform credits redistribution: In a scenario where
two or more miners maintain significantly high hash rates
compared to the rest of the miners in the pool, the large miners
will be rapidly moving up the queue and overtaking slower
miners. Consequently, there is a high probability of at least
two large miners being positioned at the top of the queue with
far more credits than smaller miners, when the pool finds the
next block. Such a scenario is illustrated in Table I. Here the
two large miners, Alice and Bob, consistently earn 10 credits
per round, while the small miners, Eve and Dave, earn 5.

The calculation of the new credits for the winner of the
block, in our case Alice, takes into account only the credits
earned by Bob, placed second (cf. Table Ia). Since Bob too
collected a high amount of credits, Alice will find herself re-
positioned at the end of the queue (cf. Table Ib). In the next
round, Bob will win the block reward. However, due to the
significant gap between Bob’s and Eve’s credits, Bob will be
re-positioned both in front of Dave and Alice, thus receiving
an advantage (cf. Table Id).

We see the redistribution of credits is only fair if the credits
difference between each two consecutive miners is constant.
However, since real world observations show the logarithm of
mining power in Ethpool resembles a Gaussian distribution
(cf. Section IV-B), we argue that this is very unlikely to be
the case in reality.

IV. SIMULATING THE QUEUE-BASED PAYOUT SCHEME

In this section we present simulation results for our model
of the queue-based reward payout scheme and show how large
miners are disadvantaged in Ethpool’s current implementation.
In Subsection IV-A, we provide simulation results for a pool
containing only two miners, one with large hash rate and one
with small hash rate, while simulation results for a realistic
population of miners (as sampled from Ethpool) are given in
Subsection IV-B.



Fig. 1: The evolution of Ethpool credits in a two-miner
scenario.

Our event-based simulator constructs the time between
shares submitted by miners as a random number8 following
an exponential distribution with rate parameter λ = h/d. All
simulations run for 500 000 blocks and are performed under
constant network difficulty D = 200TH (trillion hashes),
network connectivity γ = 1 (no uncle blocks), pool problem
difficulty d = 3.6b and proportional pool fee f = 0.01. We
further assume an uptime of 100% for all miners (with no
stale or invalid shares).

A. Simulating a two-miner pool

First, we simulate the simple model of a mining pool
containing only two miners, one large miner ml with a hash
rate of 10 GH/s and a miner ms with a significantly lower hash
rate of 1 GH/s. Although arguably such a scenario will not be
observed in reality, we use this set-up to better understand the
benefits and disadvantages of large and small miners in the
queue-based reward payout scheme.

The development of earned credits is visualised in Figure 1.
We can see the credits of the small miner c(ms) lie only
slightly above the network difficulty when winning a block.
The credits of the 10 GH/s miner c(ml), on the other hand,
by far exceed the credits expected according to the network
difficulty and are subject to high variance.

Closer observations of the credits development in Figure 1
show a repeating pattern. The large miner remains on top
of the queue with significantly high credits for prolonged
periods. However, this trend changes once the small miner has
accumulated more credits than the large miner earns between
winning two blocks. We can see that the credits of the large
miner start to decrease quickly, while those of the small miner
continue to grow. At some point, the small miner takes over
the lead and wins a block. Consequently, c(ms) is reset to
c(ms)− c(ml) and the small miner is overtaken by the large,
whose credits then start increasing significantly.

8The generation of random numbers is accomplished by the Mersenne
Twister [18] algorithm.

Fig. 2: Performed work per block (top) in comparison to pool
luck in the two-miner scenario (bottom). Each peak in pool
luck correlates with a drop in required work per block and
vice versa.

As mentioned in Section II, it has been found in earlier work
that miners responsible for significant portions of the total hash
rate H of a mining pool can adjust their revenue variance by a
maximum factor hi/H . Hence, the revenue variance of ml can
be improved only by 9%, while the small miner profits from
a variance reduction of over 90%. This is also evident from
the top graph in Figure 2, which shows the development of
performed work per block and its correlation with pool luck.
As we can see, the variance of performed work is significantly
higher for the large miner: 35 872.5 compared to 21 137.0
for the small miner. Furthermore, the large miner on average
has to invest more computational effort per block than the
small miner: 201.52TH in contrast to 186.82TH, which is
surprisingly less than the network difficulty.

These observations are also mirrored in the miner’s gen-
erated revenues: the small miner received rewards for 3 442
blocks more than she mined, as shown in Table II.

TABLE II: Blocks mined and rewarded in the queue-based
scheme in the two-miner scenario.

Miner Blocks Average performed work
(trillion hashes)

Rewarded Mined Ratio

Large (10 GH/s) 451,316 454,758 0.9924 201.52
Small (1 GH/s) 48,684 45,242 1.0761 186.82



B. Simulating Ethpool

Next, we use a large data set of miners as input for our
simulation to generate realistic results. In particular, the data
set consists of 729 miners extracted from Ethpool’s public
API [3] in the period between 2017-02-21 and 2017-04-09,
accumulating a total hash rate of 699.18 GH/s. Figure 3 shows
the distribution of hash rates in the extracted data set on a
logarithmic scale, which resembles a Gaussian curve.

Figure 4 shows the number of credits necessary to win a
block. While it is not clear from visual inspection whether the
credits form a stationary random process with normal varia-
tion, Figure 5 very clearly illustrates the high autocorrelation
in the number of credits necessary to win a block.

Fig. 3: Distribution of mining power in Ethpool (logarithmic
scale). The largest miner controls 18.07 GH/s, the smallest 22
MH/s. The average mining power is approximately 960 MH/s,
while the median amounts to 380 MH/s. Standard deviation is
1.74 GH/s.

Figure 6 visualizes the development of performed work for
small, medium and large miners in Ethpool. As already seen
in the two-miner scenario, the variance of the necessary work
per block decreases with the respective miner’s hash rate, i.e.,
miners accounting for significant portions of the overall hash
rate are most affected by lucky/unlucky streaks.

Since the list of credits for Ethpool is public the interested
miner is advised to study pool luck and the current level of
credits when deciding which pool to join. Given the strong
autocorrelation, the observed credit levels when the pool wins
a block may also serve as a decision criterion whether or not
to leave a pool.

Furthermore, the large miners must invest more computa-
tional power on average to win a block than small miners, as
is evident in Figure 7. While miners with hash rates of more
than 10 GH/s perform slightly more work than required by
the network difficulty, miners in the 10th percentile of mining
power evade approximately 5–7 trillion hashes (2.5–3.5% of

Fig. 4: Development of credits when winning a block in the
multi-miner scenario.

Fig. 5: Autocorrelation of credits when winning a block for
lags 1:40.

total) of work per block. When put in relation to the average
computational effort, the relative difference between of the
smallest and largest miner amounts to nearly 5%. The results
yielded by the simulation of Ethpool confirm the observations
made in the two-miner scenario.

As in the two-miner scenario, the disadvantage of large
miners is reflected in their economic performance, since small
miners are rewarded for more blocks than they are entitled to.
To better express the deviation of economic output between
small and large miners, we compare the performance of
miners in the queue-based scheme implemented by Ethpool,
to the PPLNS scheme implemented by Ethermine, where N
is equal to the shares submitted in the last 60 minutes [5]. We
introduce return per computed MH as a performance metric
and illustrate our results in Figure 8. It can be seen that there
is a clear bias towards small and medium-sized miners with
regards to profitability in Ethpool, while large miners have
higher return on investment in Ethermine.

Figure 9 sorts the return on invested work by the hash
rate and clearly shows that in a queue-based scheme like
Ethpool miners with low hash rate receive above average
return on investment, while miners with large hash rate are
at a disadvantage.

We note that while the numerical difference between Eth-
pool and Ethermine is very small in this performance metric,
the absolute bias scales up quickly over time. For example, a
miner with a hash rate of 18.07 GH/s loses 1.406×10−10 ETH
every million hashes, when choosing Ethpool over Ethermine.



Fig. 6: Performed work per block in comparison to pool luck
for small, medium and large miners. The large miner absorbs
most of the variance.

Fig. 7: Ratio of performed work per block by miners in
Ethpool, relative to the work performed on average. Miners
are grouped according to their hash rate.

Consequently, her loss per day will amount to 0.2187 ETH9

and approximately 79 ETH per year. We observe that small
fish have a happier life in Ethpool than in Ethermine and are
better off than the large sharks, at least if the latter do not
attack in some way.

A summary of the simulation results with regards to
economic performance of miners in Ethpool is provided in
Table III. We find that miners with low hash rate benefit

9At the time of writing this amounts to approximately US$ 78.

Fig. 8: Return per computed MH in a multi-miner scenario
(logarithmic x-axis).

Fig. 9: Ratio of return per computed MH for miners in Ethpool,
relative to the average return per computed MH. Miners are
grouped according to their hash rate.

considerably from joining a queue-based mining pool. They
can reduce the variance in their gained revenue and even
receive better return on investment than the average miner.
This must come at the expense of miners with large hash rate,
who are at disadvantage with respect to both criteria.

C. Exponential Difficulty

The presented simulations were conducted under the as-
sumption of a constant difficulty of Ethereum’s PoW. However,
in practice the difficulty is adjusted after every block and has



TABLE III: Miner performance in the multi-miner scenario.

Hash rate Miners Blocks
Average

performed work
(trillion hashes)

Average revenue per
computed MH (10−8 ETH)

Rewarded Mined Ratio Ethpool Ethermine Ratio

23.0 MH/s 5 16 12 1.3387 193.42 2.5540 2.5228 1.0124
29.84 MH/s 4 21 18 1.1944 193.08 2.5475 2.5112 1.0145
42.27 MH/s 15 30 31 0.9640 194.74 2.5338 2.5032 1.0122
57.75 MH/s 21 41 41 0.9965 195.77 2.5217 2.5022 1.0078
78.97 MH/s 33 56 54 1.0309 196.64 2.5140 2.4902 1.0096
107.79 MH/s 48 77 76 1.0148 197.19 2.5073 2.4873 1.0080
152.11 MH/s 75 108 106 1.0211 197.75 2.5011 2.4854 1.0063
203.06 MH/s 44 144 142 1.0169 198.25 2.4952 2.4803 1.0060
284.16 MH/s 78 202 200 1.0096 198.48 2.4927 2.4789 1.0056
384.63 MH/s 74 273 266 1.0258 198.76 2.4896 2.4782 1.0046
538.74 MH/s 73 383 379 1.0095 199.06 2.4861 2.4771 1.0036
729.49 MH/s 54 518 509 1.0186 199.27 2.4837 2.4760 1.0031
988.34 MH/s 55 703 694 1.0127 199.43 2.4818 2.4758 1.0024
1.39 GH/s 48 987 977 1.0107 199.67 2.4788 2.4754 1.0014
1.84 GH/s 24 1 305 1 294 1.0088 199.83 2.4769 2.4751 1.0007
2.54 GH/s 27 1 802 1 779 1.0125 200.01 2.4748 2.4749 1.0000
3.59 GH/s 18 2546 2519 1.0107 200.27 2.4716 2.4747 0.9987
4.99 GH/s 15 3 531 3 483 1.0140 200.46 2.4692 2.4745 0.9979
6.72 GH/s 8 4 744 4 739 1.0010 200.66 2.4668 2.4745 0.9969
9.91 GH/s 6 7 046 7 044 1.0002 200.92 2.4637 2.4745 0.9956
13.47 GH/s 3 9 457 9 436 1.0023 201.07 2.4618 2.4744 0.9949
18.07 GH/s 1 12 844 12 864 0.9984 201.22 2.4602 2.4742 0.9943

been observed to increase at a high rate. In fact, between
March and June 2017 the difficulty has increased from 200
to 740 trillion hashes, resembling exponential growth at ap-
proximate rate k = 2.726× 10−6.

We simulate both the two-miner and multi-miner scenarios
under exponentially increasing PoW difficulty, using an initial
difficulty d = 200 trillion hashes and the measured growth
rate k. Apart from an expected increase in performed work,
the results in the two-miner scenario remain approximately
the same as described in Section IV-A. In the multi-miner
case, large miners remain disadvantaged, however at a slightly
smaller scale. The relative difference between the average
computational effort of the smallest and largest miner de-
creases from to 5% to approximately 3%, while the effects
on the return per computed MH are negligible. Detailed
simulation results are provided in Appendix VII-A.

V. MODELLING ATTACKS

In observations of the Ethpool mining pool we have noticed
behavioural artefacts, such as occasional donations of hashing
power by one miner to another or sudden drop of hash rate
of a top ranked miner. In this section we want to explore the
motivations behind such behaviour. To this end, we extend our
model by allowing miners to withhold valid shares, donate
their mining power in a tactical manner and maintain multiple
wallets in a pool. We further provide simulations for the
introduced attacks in a scenario with two miners and discuss
their effectiveness in Subsection V-D.

A. Share withholding

We assume that the queue-based reward scheme introduces
a new attack scenario, allowing malicious miners to increase
their profits at the expense of other miners in the pool.

Looking at other schemes, it may seem that reaching the
top of the miner ranking as often as possible appears to be the
highest rewarding strategy. However, since the credits resetting
policy and hence the new credits of a miner winning a block
depend solely on the credits of the miner ranked second, the

TABLE IV: Profit improvement by exploiting a non-uniform
credits dispersion. Alice stops submitting shares (a), allows
Bob to pass (b) and profits from the new queue constellation
(c)–(f).

(a) Before block i

Position Miner Credits

1 Alice 110
2 Bob 105
3 Dave 55

(b) Block i found

Position Miner Credits

1 Bob 115
2 Alice 110
3 Dave 60

(c) After block i

Position Miner Credits

1 Alice 110
2 Dave 60
3 Bob 5

(d) Block i+2 found

Position Miner Credits

1 Alice 120
2 Dave 65
3 Bob 15

(e) After block i+2

Position Miner Credits

1 Dave 65
2 Alice 55
3 Bob 15

(f) After block i+3

Position Miner Credits

1 Alice 65
2 Bob 25
3 Dave 10

optimal strategy is different. Instead of simply trying to win
the next block, a miner can increase her long term revenue by
winning the next block when there is a large gap between her
and the second placed miner’s credits. We describe a possible
attack strategy in the example below.

We make use of a simplified version of our example from
Section III-B. The modified setup is shown in Table IVa: Alice,
in our case the attacker, is ranked first, only a few credits ahead
of Bob. We observe a significant gap between the credits of
the second and third placed miners. Again, we assume the
two large miners, Alice and Bob, constantly earn 10 credits
per round, while the small miner, Dave, earns 5. Furthermore,
we assume the ranking is visible to all miners, as in the case
of Ethpool [4].

By comparing the differences in credits between the first
and second (Alice vs Bob) and second and third (Bob vs
Dave) ranked miners, it can be seen that Bob will benefit
a lot more from the credit-resetting mechanism than Alice,
should this order sustain, namely 50 in contrast to 5 credits.
Therefore, Alice is incentivized to stop submitting shares, this
way allowing Bob to win the next block (cf. Table IVb). In
the next round, Alice will be ranked first and now profits
from the large difference between her and the next miner’s
credits (cf. Table IVc). As a result, Alice will be re-positioned
in the ranking ahead of both Dave and Bob, gaining a
significant advantage for the next few rounds (cf. Table IVe).
This theoretical example shows that although the underlying
motivation for such a credit resetting policy is to reward large
miners for their above average work, Bob finds himself in a
situation of having been cheated out of a significant amount
of credits, which negatively impacts his long-term revenue.



B. Tactical donation of mining power

In order to further improve the chances of Bob overtaking
her, Alice can dedicate her mining power to Bob, by spoofing
the payout address she uses when submitting shares. Accord-
ing to the current implementation of the mining protocol, the
mining pool operator will believe Bob has increased his mining
power, hence rewarding him with more credits. Assuming Bob
does not respond to this “forced-donation”, Alice will end up
even more likely in the same favourable position as discussed
in the previous sub-section. An observed real-world occurrence
of such a donation strategy is shown in Figure 10, where
a miner in Ethpool receives an unexpected boost of mining
power when they are about to win the next block.

Fig. 10: Screenshot: A miner in Ethpool receives an unex-
pected donation of computing power at around the time at
which they win a block – generosity or self-interest on behalf
of the donor?

C. Using multiple payout addresses

Due to the pseudo-anonymity constraints in permissionless
blockchains such as Ethereum, the mining pool operator
cannot prevent miners from using multiple payout addresses
in parallel. While miners gain no advantage from this in
conventional schemes such as PPLNS, maintaining multiple
accounts can be used to optimize revenues in the queue-based
scheme.

Since in the current implementations, miners are not fairly
rewarded for hash rate overhead, a potential solution is to start
mining for other payout addresses, once reaching the top of
the queue. This strategy be can be applied as an improvement
to the exploitation of the non-uniform credits distribution:
instead of ceasing to submit shares or investing mining power
in another miner, an attacker can dedicate overhead mining
capacity to her other addresses.

D. Simulating attack scenarios

In order to model the three different attack scenarios in-
troduced in Section V, we use the same initial simulation
setup as for the two-miner case from Subsection IV-A. For

TABLE V: Attack simulation results in a two-miner scenario.

Attack strategy Miner
Average

performed work
(trillion hashes)

Blocks

Rewarded Mined Ratio

Share
withholding

Attacker 194.398 456 433 443 476 1.0292
Victim 260.105 43 567 56 524 0.7707

Tactical donation
of mining power

Attacker 189.85 468 678 445 227 1.0527
Victim 349.775 31 322 54 773 0.5719

Using a
second wallet

Attacker 220.61 457 161 445 668 1.0258
Victim 253.53 42 839 54 332 0.7885

each of the three different scenarios, the following attacking
condition prevails: the 10 GH/s miner attacks as soon as
the 1 GH/s miner’s credits reach the 90% threshold of the
attacker’s credits10.

Recall that the first attack described was share withholding,
whereby the attacker stops the submission of shares with the
aim to significantly increase the probability of the victim
surpassing her before the next block is found. Once the
small miner wins the block, the large miner would continue
her work. After 500 000 blocks, following this strategy the
attacker was rewarded an additional 12 957 blocks more than
the number of blocks she actually mined (Table V).

The second attacking scenario simulated is the tactical
donation of mining power, whereby the large miner directs
his submitted shares to the smaller miner’s payout address.
This has the effect of temporarily increasing the hash rate
and thereby the credits of the small miner. Following such a
behaviour, the attacker received an extra 23 451 blocks.

The third attacking strategy discussed was the systematic
use of multiple payout addresses. For simplicity, we simulated
only one additional payout address, or a second wallet, for
the 10 GH/s miner. Each time the attacking condition was
met, the large miner redirected her hash rate/mining power
to her second wallet. Thereby the attacker did not have to
give away any of her credits to the victim. For applying this
attack strategy, the 10 GH/s miner received rewards for 11 493
additional blocks.

The reason why this last attack performs worse in terms
of extra blocks rewarded than the first two attack scenarios
is due to the second wallet itself. By including the attacker’s
second wallet we are essentially adding a third miner to the
simulation. However, this can lead to the scenario in which the
attacker’s own wallet eats into her first wallet’s credits. The
attacker therefore requires a strategy explicitly for protecting
herself against such unfortunate queue constellations in order
to increase her profits. However, we do not provide detailed
suggestions for an optimal solution in this paper.

10After having tested and compared results using multiple thresholds, 90%
proved to be the most rewarding.



E. Other attack vectors

Two other attack vectors include pool-hopping and the
withholding of blocks from the mining pool. As described
by Rosenfeld [20], pool-hopping refers to a miner’s practice
of dynamically switching between different pools in order
to increase profits. In such scenarios, miners join a mining
pool only when the expectation of earning rewards is high
and leave as soon as the expectation drops, thereby increasing
the variance of the mining pool’s total hash rate. As a con-
sequence, the expected revenues of non-pool-hopping miners
decrease, making the mining pool less attractive compared to
pool-hopping resistant pools.

In the current implementation of the Ethereum PoW pro-
tocol, miners are able to determine whether a found solution
to the mining pool’s problem also represents a solution to the
network’s PoW puzzle. Consequently, a miner can decide to
withhold such blocks from the mining pool, which is generally
referred to as block withholding. Depending on the pursued
goal, an attacker can either simply damage the mining pool as
a whole [20], or gamble to increase their own revenue at the
cost of other miners or the mining pool operator [7].

We note these two attack strategies are not specific to
the queue-based reward distribution scheme. Rather, they are
applicable to mining pools regardless of the underlying payout
mechanism. We therefore leave the evaluation of these attack
scenarios to future work.

VI. CONCLUSION AND FUTURE WORK

We have conducted what we believe to be the first academic
study of the queue-based reward payout approach implemented
by Ethpool, and compared it to the Pay-Per-Last-N -Shares
approach implemented in Ethermine. We have created a dis-
crete event-based simulation model to analyse whether the
queue-based scheme offers a fair return on investment, both
for miners with large hash rates (the sharks) and those with
small hash rates (the fish). From our simulation results we have
seen that in a two-miner scenario and, more significantly, in the
case of Ethpool, a large miner is at a disadvantage compared
to the small miner(s). When compared to Ethermine’s PPLNS
scheme it could be seen that a large miner in Ethpool had
to perform significantly more hashing operations per block
won than a small miner. Obviously, miners find strategies to
optimise their revenue. Real-world data from Ethpool indicates
that some miners with high mining power have noticed this
disadvantage and attempt to compensate for it through the
exploitation of the credit resetting policy. We highlighted three
different potential attacking scenarios stemming from this non-
uniformity: the stalling of mining power, a tactical donation
of mining power, and the use of multiple payout addresses.
From our attack simulation it could be seen that attackers can
indeed strategically manipulate queue constellations, receive
a substantial number of additional blocks and thereby offset
their initially skewed work per block ratio.

It should be noted that we have demonstrated the existence
of attacks specific to the current implementation of the queue-
based reward payout scheme. We modelled these attack sce-

narios assuming the victim miners do not defensively respond
and have ignored possible pool-hopping scenarios as part of
a second wallet strategy. A thorough game-theoretic analysis
of such behaviour entailing multiple attackers in a multi-
miner scenario, as well as an investigation into protective
mechanisms to resist such exploitation attempts, could thus
prove to be a fruitful avenue of future research.

VII. APPENDIX

A. Results under Exponential Difficulty Growth

TABLE VI: Miner performance in the multi-miner scenario
under exponential difficulty increase with growth rate k =
2.726× 10−6.

Hash rate Miners Blocks
Average

performed work
(trillion hashes)

Average revenue per
computed MH (10−8 ETH)

Rewarded Mined Ratio Ethpool Ethermine Ratio

22.99 MH/s 5 15 13 1.1449 414.30 1.1919 1.2350 0.9651
29.9 MH/s 4 20 21 0.9765 414.63 1.1914 1.2148 0.9807
42.29 MH/s 15 29 29 1.0091 417.87 1.1804 1.1956 0.9873
57.75 MH/s 21 40 40 0.9907 417.34 1.1838 1.1932 0.9921
78.96 MH/s 33 55 55 1.0165 420.02 1.1769 1.1798 0.9975
107.81 MH/s 48 76 74 1.0234 420.80 1.1749 1.1745 1.0003
152.1 MH/s 75 107 106 1.0161 422.06 1.1719 1.1702 1.0015
203.07 MH/s 44 144 143 1.0073 422.53 1.1707 1.1677 1.0026
284.15 MH/s 78 202 200 1.0101 423.14 1.1693 1.1661 1.0027
384.66 MH/s 74 273 272 1.0023 423.22 1.1692 1.1656 1.0031
538.73 MH/s 73 383 382 1.0020 423.74 1.1679 1.1643 1.0031
729.49 MH/s 54 518 519 0.9996 423.98 1.1673 1.1638 1.0030
988.35 MH/s 55 703 702 1.0018 424.39 1.1662 1.1634 1.0024
1.39 GH/s 48 987 982 1.0054 424.78 1.1652 1.1631 1.0018
1.84 GH/s 24 1306 1302 1.0031 425.15 1.1642 1.1629 1.0011
2.54 GH/s 27 1802 1808 0.9969 425.60 1.1630 1.1626 1.0003
3.59 GH/s 18 2548 2551 0.9987 426.05 1.1618 1.1623 0.9996
4.99 GH/s 15 3534 3529 1.0013 426.52 1.1605 1.1622 0.9985
6.72 GH/s 8 4748 4772 0.9949 426.88 1.1596 1.1621 0.9978
9.91 GH/s 6 7053 7119 0.9908 427.37 1.1582 1.1621 0.9966
13.47 GH/s 3 9464 9510 0.9952 427.81 1.1570 1.1620 0.9957
18.07 GH/s 1 12858 12960 0.9921 428.05 1.1564 1.1620 0.9952

Fig. 11: Ratio of return per computed MH for miners in
Ethpool, relative to the average return per computed MH
under exponentially increasing difficulty with growth rate
k = 2.726× 10−6. Miners are grouped by hash rate.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Iain Stewart for helpful
discussions and insightful observations. Katinka Wolter con-
tributed to this work while on sabbatical leave at Imperial.



REFERENCES

[1] Ethereum statistics. https://ethstats.net/. Accessed: 2017-06-18.
[2] Ethpool mining pool. http://ethpool.org/. Accessed: 2017-06-18.
[3] Ethpool public API. http://ethpool.org/api/credits. Accessed: 2017-06-

18.
[4] Ethpool reward payout scheme. http://ethpool.org/credits. Accessed:

2017-06-18.
[5] bitfly e.U. Terms of service. http://bitfly.at/GTS v1.0.pdf. Accessed:

2017-06-18.
[6] V. Buterin. Ethereum: A next-generation smart contract and decen-

tralized application platform. https://github.com/ethereum/wiki/wiki/
White-Paper, 2014. Accessed: 2017-06-18.

[7] N. T. Courtois and L. Bahack. On subversive miner strategies and
block withholding attack in bitcoin digital currency. arXiv preprint
arXiv:1402.1718, 2014.

[8] Ethereum community. Ethash. https://github.com/ethereum/wiki/wiki/
Ethash. Accessed: 2017-06-18.

[9] Ethereum community. Ethereum mining rewards. https://github.com/
ethereum/wiki/wiki/Mining#mining-rewards. Accessed: 2017-06-18.

[10] Ethereum community. Mining. https://github.com/ethereum/wiki/wiki/
Mining. Accessed: 2017-06-18.

[11] Ethereum community. Proof of stake FAQ. https://github.com/ethereum/
wiki/wiki/Proof-of-Stake-FAQ. Accessed: 2017-06-18.

[12] I. Eyal. The miner’s dilemma. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 89–103. IEEE, 2015.

[13] B. Johnson, A. Laszka, J. Grossklags, M. Vasek, and T. Moore. Game-
theoretic analysis of DDoS attacks against Bitcoin mining pools. In
International Conference on Financial Cryptography and Data Security,
pages 72–86. Springer, 2014.

[14] S. King and S. Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake. self-published paper, August, 19, 2012.

[15] A. Laszka, B. Johnson, and J. Grossklags. When bitcoin mining pools
run dry. In International Conference on Financial Cryptography and
Data Security, pages 63–77. Springer, 2015.

[16] Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. S.
Rosenschein. Bitcoin mining pools: A cooperative game theoretic
analysis. In Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, pages 919–927. International
Foundation for Autonomous Agents and Multiagent Systems, 2015.

[17] L. Luu, R. Saha, I. Parameshwaran, P. Saxena, and A. Hobor. On power
splitting games in distributed computation: The case of bitcoin pooled
mining. In Computer Security Foundations Symposium (CSF), 2015
IEEE 28th, pages 397–411. IEEE, 2015.

[18] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS), 8(1):3–30,
1998.

[19] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf, Dec 2008. Accessed: 2017-06-18.

[20] M. Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv
preprint arXiv:1112.4980, 2011.

[21] O. Schrijvers, J. Bonneau, D. Boneh, and T. Roughgarden. Incentive
compatibility of bitcoin mining pool reward functions. Financial
Cryptography and Data Security, 2016.


