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Abstract. Placement information is useful in producing efficient circuit
layout, especially for hardware libraries or for run-time reconfigurable
designs. Relative placement information enables control of circuit layout
at a higher level of abstraction than placement information in the form of
explicit coordinates. We present a functional specification of a procedure
for compiling programs with relative placement information in Pebble, a
simple language based on Structural VHDL, into programs with explicit
placement coordinate information. This procedure includes source-level
transformation for compiling into descriptions that support conditional
compilation based on symbolic placement constraints, a feature essential
for parametrised library elements. Partial evaluation is used to optimise
a description using relative placement to improve its size and speed. We
illustrate our approach using a DES encryption design, which results in
a 60% reduction in area and a 6% improvement in speed.

1 Introduction

Placement information is useful for guiding design tools to produce an efficient
design. Such information is particularly effective for regular circuits, where con-
ventional placement algorithms may not be able to fully exploit the circuit struc-
ture to achieve an optimised implementation. Precise control of layout is espe-
cially rewarding in two situations. First, optimal resource usage is paramount
for hardware libraries, since inefficiency will affect all the designs that use them.
It has been shown that, despite advance in automatic placement methods, user-
supplied placement information can often significantly improve FPGA perfor-
mance and resource utilisation for common applications [18]. Second, control-
ling placement is desirable for reconfigurable circuits to minimise reconfiguration
time, since components at identical locations common to two successive config-
urations do not need to be reconfigured. Such optimisation has been included in
recent design tools for reconfigurable applications [16].

While hardware library developers often have good reasons to control circuit
placement, it is, however, tedious to provide explicit coordinate information for
every component in a large circuit. The use of relative placement information,
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such as placing components beside or below one another, has been proposed for
producing designs. Languages and systems that support this technique include
µFP [8], Ruby [5],[17], T-Ruby [15], Lava [1], and Rebecca [3]. All these systems
produce, from declarative descriptions, circuit layouts in the form of VHDL or
EDIF descriptions with explicit coordinates which can be mapped efficiently into
hardware. However, the compiled circuit descriptions are no longer parametrised.
Our aim is to support instantiation of parameters at the compiled VHDL level,
in addition to instantiation at the declarative description level.

This paper describes an approach capable of producing parametric descrip-
tions in VHDL with symbolic placement information, which can be instantiated
and further processed by industry-standard VHDL tools. Our approach is sup-
ported by Pebble [9],[13], a simple hardware description language based on Struc-
tural VHDL which has been used in a framework for verifying the correctness of
design tools [12]. The novel aspects of our work include:

– functional specification of a compilation procedure mapping designs with
relative placement to the corresponding descriptions with explicit placement
coordinates;

– source-level transformations for compiling composite designs containing con-
ditional statements into parametric descriptions;

– illustration of circuit compaction based on partial evaluation for optimising
resource usage and performance;

– evaluation of the proposed approach using an FPGA implementation of the
DES encryption algorithm.

Our work unites two recent themes which seem to have growing importance.
The first theme concerns the combination of architectural and physical design,
since physical constraints are becoming relevant earlier in the design process.
The second theme concerns the use of standard programming language tech-
niques, such as partial evaluation, for analysis and transformation of hardware
descriptions. While partial evaluation has been used for dynamic specialisation
of reconfigurable circuits [11] and automated design of field-programmable com-
pute accelerators [20], our use of partial evaluation for parametric hardware
compaction appears to be novel.

The rest of the paper is organised as follows. Section 2 provides an overview of
Pebble, a variant of VHDL that we use. Section 3 introduces the DES encryption
example, showing how it can be captured in Pebble. Section 4 presents the func-
tional specification of a compiler mapping descriptions with relative placement
to the corresponding descriptions with explicit placement coordinates. Section 5
explains how this compiler can be extended to support conditional compilation,
which is critical for supporting parametric descriptions in hardware libraries.
Section 6 describes automatic compaction based on partial evaluation, and illus-
trates the application of the proposed approach to the DES example. Section 7
contains concluding remarks.
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Fig. 1. An array of multiplexors described by the Pebble program in Figure 2.

BLOCK muxarray (n)
[c:WIRE, x,y:VECTOR (n-1..0) OF WIRE]
[z:VECTOR (n-1..0) OF WIRE]

VAR i;
BEGIN
GENERATE FOR i = 0..(n-1)
BEGIN
mux [c,x(i),y(i)] [z(i)] AT (i,0)

END
END

Fig. 2. A description of an array of multiplexors (Figure 1) in Pebble with explicit
placement coordinates. The external input c is used to provide a common control
input for each multiplexor.

2 Pebble

Pebble can be regarded as a simple variant of Structural VHDL. It provides
a means of representing block diagrams hierarchically and parametrically [9].
Pebble has a simple, block-structured syntax. As an example, Figure 2 describes
the multiplexor array in Figure 1, provided that the size parameter n is 4.

The syntax of Pebble is shown in Figure 3. A Pebble program is a block,
defined by its name, parameters, interfaces, local definitions, and its body. The
block interfaces are given by two lists, usually interpreted as the inputs and
outputs. An input or an output can be of type WIRE, or it can be a multi-
dimensional vector of wires. A wire can carry integer, boolean or other primitive
data values. Wires w1, w2, . . . that are connected together are denoted by the
expression connect [w1,w2, . . . ].

A primitive block has an empty body; a composite block has a body con-
taining the instantiation of composite or primitive blocks in any order. Blocks
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connected to each other share the same wire in the interface instantiation. For
hardware designs, the primitive blocks can be bit-level logic gates and registers,
or they can, like an adder, process word-level data such as integers or fixed-point
numbers; the set of primitives depends on the availability of the corresponding
components in the domain targeted by the Pebble compiler.

The GENERATE IF statement enables conditional compilation and recursive
definition, while the GENERATE FOR statement allows the concise description of
regular circuits. To support generic description of designs, the parameters in a
Pebble program can include the number of pipeline stages or the pitch between
neighbouring interface connections [9]. Different network structures, such as tree-
or butterfly-shaped circuits, can be described parametrically by indexing the
components and wires.

The semantics of Pebble depends on the behaviour of the primitive blocks
and their composition in the target technology. Currently a synchronous circuit
model is used in our tools, and special control components for modelling run-
time reconfiguration are also supported [9]. However, other models can be used
if desired. Indeed Pebble can be used in modelling any block-structured systems,
not just electronic circuits.

Pebble adopts the convention “AT (x,y)” to denote the placement of a block
at a location with coordinates (x,y) as shown in Figure 3. While such placement
information helps to optimise the layout, it is usually tedious and error-prone to
specify. We have therefore developed high-level descriptions for placement con-
straints, abstracting away the low-level details. These descriptions are compile-
time directives for the Pebble compiler to project coordinates onto designs, gen-
erating a tree representing placement possibilities.

The two main descriptions, shown in Figure 4, are BESIDE, which places two
or more blocks beside each other, and BELOW, which places blocks vertically.
These descriptions allow blocks to be placed relatively to each other, without
the user providing the coordinates of their locations.

As a simple example, an alternative description to Figure 2 using relative
placement can be obtained by replacing the keyword GENERATE by BESIDE; the
placement specification “AT (i,0)” is no longer necessary. A more complex ex-
ample involving DES encryption will be given next in Section 3.

3 Case Study: DES Cryptographic Algorithm

The Data Encryption Standard (DES) is a cryptographic algorithm that is ide-
ally suited to implementation in hardware. It features a regular datapath con-
sisting of 16 identical iterations. It is provided as a standard component in
many hardware libraries [7]. To improve performance and area efficiency, it can
be placed as a hierarchy of adjacent tiles. The BESIDE and BELOW descriptions
provide a simple way of capturing this placement.

The algorithm takes as inputs a 56-bit key, a mode indicator (encrypt or
decrypt), and a 64-bit block of data (either plain text or cipher text). The
design can be specialised to particular values of the key and mode [14]. In this
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blk ::= BLOCK id (id1, . . . , idj) [idin1: tin1 , . . . , idinn: tinn]
[idout1: tout1 , . . . , idoutm: toutm]

VAR id1, . . . , idq;
VAR id1: t1, . . . , idp: tp;

BEGIN
stmts

END

stmts ::= stmt | stmt ; stmts
stmt ::= connect [le1, . . . , lep]

| pid [le1, . . . , len] [le1, . . . , lem] AT (e1,e2)
| id (e1, . . . , ej) [le1, . . . , len] [le1, . . . , lem]
| GENERATE FOR id = e1..e2 BEGIN stmts END

t ::= WIRE | VECTOR (e1..e2) OF t
pid ::= AND | OR | · · ·
le ::= id | id (e)
e ::= id | n | e1 + e2 | · · ·

Fig. 3. Syntax of core Pebble langauge with explicit placement information for prim-
itive blocks to be placed at Cartesian coordinates given by expressions e1 and e2.
Identifiers pid are the names for Pebble primitive blocks.

besblk ::= BLOCK id (id1, . . . , idj) [id1, . . . , idn] [id1, . . . , idm]
VAR id1, . . . , idq;
VAR id1:t1, . . . , idp:tp;

BEGIN
bes

END

bes ::= connect [le1, . . . , lep]
| pid [le1, . . . , len] [le1, . . . , lem]
| id (e1, . . . , ej) [le1, . . . , len] [le1, . . . , lem]
| BESIDE (bes1; . . . ;besn)
| BELOW (bes1; . . . ;besn)
| BESIDE FOR id = e1..e2 BEGIN bes END
| BELOW FOR id = e1..e2 BEGIN bes END

Fig. 4. Syntax of Pebble with relative placement.

situation, performance and resource usage can be improved by applying boolean
optimisation to remove unused logic. The layout of a specialised design can be
compacted to eliminate the gaps created by this removal of logic.
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We present a description for the DES case study that can be parametrised
to implement either a full design or a specialised design. These two design al-
ternatives are selected by a design parameter and have two different layouts;
the specialised design has a compacted layout. In order to describe the two al-
ternative layouts using coordinates, the compaction would have to be described
using symbolic arithmetic expressions given in terms of the design parameters.
Using the BESIDE and BELOW operators, this compaction is provided for free,
hence removing the need to provide an otherwise tedious and error-prone layout
description.

Each iteration of the DES algorithm contains a number of permutations, sub-
stitutions and exclusive-OR operations. The structure of the iteration is shown
in Figure 5. The design shown is fully-pipelined, the pipeline registers are rep-
resented by triangles. The c, e and p operators are permutations and the �
and � operators are shifts, all of which can be implemented in hardware simply
as wires. The s operator (the s-box) performs a series of substitutions and is
implemented by a lookup-table. The key generator combines its result with the
main datapath through the XOR block labelled xors.

e s p

c

xors

mode

key

text

Fig. 5. A single iteration of the DES algorithm. Pipeline registers are represented by
triangles. The c, e and p operators are permutations. The s operator performs a series
of substitutions. The � and � operators are shifts.

When the design is specialised by its key and mode, it can be optimised
by constant propagation which removes the need for the key generator, and
which replaces the xors operator by a series of wires or inverters. The invert-
ers can be removed by including the appropriate entries of the lookup-table.
The Pebble description of this design is shown in Figure 6. Note that condi-
tional compilation is supported by the GENERATE IF statement: depending on
the value of specialise, the description produces either a composite circuit
involving keygen and xors, or just the wiring circuit connect [xortext(i),
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Fig. 6. Pebble description of the top level of the DES design with placement given
by BESIDE operator. A specialised implementation is generated when the parameter
specialise=1, otherwise a full implementation is generated. In the full implementation,
the keygen and xors blocks are sandwiched between the round blocks; the description
with explicit coordinates is shown in Figure 14. When specialised, the use of the BESIDE
inside the FOR loop ensures that the design is compacted (Figure 15).

exptext(i)]. The syntax of Pebble supporting the GENERATE IF statement will
be given in Figure 10.

Figure 7 shows block diagrams of the Pebble description in Figure 6 when
a) the full design is implemented (specialise=0) and b) when the specialised
design is implemented (specialise=1). The block labelled keygen implements
the key generator and the block labelled round implements the main datapath.
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round
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round

keygen
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round round round

a)

b)

Fig. 7. Block diagram of the DES implementations: a) the full DES design with
specialise=0 and b) the specialised DES design with specialise=1.

4 Compiling Pebble: Functional Specification

In order to project a coordinate scheme onto a Beside-Below Pebble statement,
we use an environment µ mapping block names to their syntactical definitions, an
environment φ mapping block names to their sizes, and a placement function P
(Figure 8). Block sizes are functions that take the symbolic arguments of a block
and return its symbolic width and height. The placement function P is used to
position blocks within their immediate context; it maps an abstract coordinate
scheme onto a statement. It returns a tuple of three components: a sequence of
statements unfolded by the rules of BESIDE and BELOW, the dimensions of the
statement, and an updated block size environment φ. A default identity function
is used for placing single blocks, while one that derives repeated positions is used
for loops.

The placement of blocks is achieved locally. The symbolic addresses are calcu-
lated using the given (x, y) expressions and the function ‘f ’ or ‘g’. They provide
all that is required to derive suitable symbolic locations. For BESIDE and BELOW
loops, we create the new local placement function ‘g’ that does not depend on
the nesting level of the statement, but only on the given start position of the
loop. Our model does not include space for wiring: it is assumed that wiring
resources are orthogonal to the network of logic blocks and have no effects on
them, or that the effects of routing between logic blocks are captured within the
blocks themselves.

A coordinate scheme is projected onto a Beside-Below statement in the fol-
lowing manner. A primitive block of width wdpid and height htpid is positioned
according to its placement function and dimension. The size expression of com-
posite blocks is calculated by applying the generic expressions to the block’s
size stored in φ. If the size expression is unknown, then it is derived using PB.
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P :: SizeEnv → BlockEnv → BesBelStmt → (Exp × Exp) → FuncPos
→ ([Stmt] × (Exp × Exp) × BlockEnv)

Pφ µ[[ connect [le1, . . . , lep] ]] (x, y) f = ([connect [le1, . . . , lep]], (0, 0), φ)
Pφ µ[[ pid [le1, . . . , len] [le′

1, . . . , le′
m] ]] (x, y) f

= let (xpos, ypos) = f (x, y)
in ([pid [le1, . . . , len] [le′

1, . . . , le′
m] AT (xpos, ypos)], (wdpid, htpid), φ)

Pφ µ[[ id (e1, . . . , ej) [le1, . . . , len] [le′
1, . . . , le′

m] ]] (x, y) f
= if (id ∈ (dom φ))
then

let (acc, up) = (φ id) (e1, . . . , ej)
(xpos, ypos) = f (x, y)

in ( [id (xpos, ypos, e1, . . . , ej) [le1, . . . , len] [le′
1, . . . , le′

m]],
(acc, up), φ)

else
let φ′ = PBφ µ(µ id)

(acc, up) = (φ′ id) (e1, . . . , ej)
(xpos, ypos) = f (x, y)

in ( [id (xpos, ypos, e1, . . . , ej) [le1, . . . , len] [le′
1, . . . , le′

m]],
(acc, up), φ′)

Pφ µ[[ BESIDE(bes1; . . . ;besn) ]] (x, y) f
= let (stmts1, (acc1, up1), φ1) = Pφ µ[[ bes1 ]] (x, y) f

(stmts2, (acc2, up2), φ2) = Pφ1 µ[[ bes2 ]] (x+ acc1, y) f
...

(stmtsn, (accn, upn), φn) = Pφn−1 µ[[ besn ]] (x+ acc1 + · · ·+ accn−1, y) f
in (stmts1 ++ · · ·++ stmtsn, (acc1 + · · ·+ accn,max (up1, . . . , upn)), φn)

Pφ µ[[ BELOW(bes1; . . . ;besn) ]] (x, y) f
= let (stmts1, (acc1, up1), φ1) = Pφ µ[[ bes1 ]] (x, y) f

(stmts2, (acc2, up2), φ2) = Pφ1 µ[[ bes2 ]] (x, y + up1) f
...

(stmtsn, (accn, upn), φn) = Pφn−1 µ[[ besn ]] (x, y + up1 + · · ·+ upn−1) f
in (stmts1 ++ · · ·++ stmtsn, (max (acc1, . . . , accn), up1 + · · ·+ upn), φn)

Pφ µ[[ BESIDE FOR id = e1..e2 BEGIN bes END ]] (x, y) f
= let xoffset = NV ()

g (x, y) = (x+ (id− e1)× xoffset , y)
(stmts, (acc, up), φ′) = Pφ µ[[ bes ]] (x, y) g
stmts′ = (λ xoffset · stmts) acc

in ( [FOR id = e1..e2 BEGIN stmts′ END],
(acc × (e2 − e1 + 1), up), φ′)

Pφ µ[[ BELOW FOR id = e1..e2 BEGIN bes END ]] (x, y) f
= let yoffset = NV ()

g (x, y) = (x, y + (id− e1)× yoffset)
(stmts, (acc, up), φ′) = Pφ µ[[ bes ]] (x, y) g
stmts′ = (λ yoffset · stmts) up

in ( [FOR id = e1..e2 BEGIN stmts′ END],
(acc, up × (e2 − e1 + 1)), φ′)

Fig. 8. Mapping descriptions with relative placement to descriptions with explicit
placement coordinates constructed symbolically.
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PB :: SizeEnv → BlockEnv → BesBelBlock → SizeEnv
PBφ µ[[BLOCK id (gid1, . . . , gidj) [id1:t1, . . . , idn:tn] [id′

1:t′1, . . . , id′
m:t′m]

VAR lid1, . . . , lidq;
VAR id′′

1:t′′1 , . . . , id′′
p:t′′p;

BEGIN
bes

END ]] = let f (x, y) = (x, y)
(stmts, (acc, up), φ′) = Pφ µ[[ bes ]] (x, y) f

in φ′ ⊕ { id �→ λ(gid1, . . . , gidj) · (acc, up) }

Fig. 9. An algorithm for calculating the size of a block. The identifiers lidi and wires
id′′

j are local to this block.

Coordinates are projected onto a row of beside terms by adding previous widths
together. The final size of the BESIDE statement is the sum of each width and
the maximum height of all subterms. Similarly for the BELOW statement.

For loops, the position of each loop body depends on the iteration index and
the size of the body. Initially, we do not know the size of the loop body so we
create a new identifier using the function NV, and replace it with the value
once it is known. The concealed function NV creates a distinct new identifier
each time it is called. This method works because the place holder variables will
not be required until after the size of the block is known. The position of each
repeated subterm is calculated using a new placement function.

The size of a Beside-Below block is calculated from the size of its statement
body using P and the default identity placement function f . The resulting dimen-
sions (acc, up) are parametrised by the block’s generic variables (gid1, . . . , gidj),
as shown in the lambda expression of Figure 9. This expression denotes the size
of the block when applied to a list of values; it is bound to the block’s name and
added to the updated size environment φ′.

We can use the above definitions to prove the correctness of various source to
source transformations. As an example, consider the composition of two BESIDE
statements:

Pφ µ[[BESIDE(a;BESIDE(b;c))]] (x, y) f = Pφ µ[[BESIDE(a;b;c)]] (x, y) f

A proof can be obtained by unfolding the LHS twice using P, rearranging the
resulting expression, and then folding on P to arrive at the RHS.

5 Dealing with Conditionals

The syntax of our conditional command is essentially the same as that in VHDL,
namely a guarded command as shown in Figure 10. From a placement perspective
this creates a problem, as we have to consider both what happens when the
guard succeeds and fails. We need to deal with this issue in order to support the
generation of VHDL descriptions with symbolic placement constraints.
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An observation is that primitive block calls which occur after a conditional
call will be placed differently depending on whether the boolean condition is true
or not. Consider the following example:

BESIDE (a;
GENERATE IF x=2 THEN b;
c)

This description covers two situations. If x is 2 then we can rewrite the above as
BESIDE (a;b;c), otherwise it becomes BESIDE (a;c). Applying P to each case
will result in differing layouts. A simple solution to this problem is to assume
that the guard will always succeed for the placement of subsequent gate calls
but this leads to many cells being left unused at run time.

Our solution is to develop an intermediate syntax in which all conditionals
occur at the end of a BESIDE or BELOW list as shown in Figure 11. We pre-
process conditional descriptions so that all calls that occur after a GENERATE IF
statement are removed. These calls are nested within either a conditional that
succeeds or one that fails for the particular guard. Considering our example
above we would arrive at the following description:

BESIDE (a;
GENERATE IF x=2 THEN BESIDE (b;c);
GENERATE IF NOT (x=2) THEN c)

In effect we create a tree of possible placement paths so that each conditional
branch will contain all possible subsequent gate calls. The recursive descent
algorithm that undertakes this conversion is presented in Figure 12.

We include two new cases for the P function as shown in Figure 13. For
a BESIDE call, the length of the statement list will be the length of all the
primitive calls plus the maximum of the length of the conditionals. In other
words, we assume that the length of the BESIDE call will be that of the largest
possible configuration. As before, the height will be the maximum of all possible
primitive calls. This scheme integrates smoothly with the placement function for
loops.

Let us apply T S (Figure 12) to the DES example shown in Figure 6 to
produce a description with explicit coordinates (Figure 14). The application
results in lifting the two calls xors and round into both conditional branches.
We then apply P with the following block size environment:

φ = {keygen 
→ (2, 15), xors 
→ (1, 12), round 
→ (2, 24)}

to create a version with explicit coordinates. The length of each loop iteration is
calculated as the maximum size of both conditionals. Therefore the width and
height of the DES block is given by

((2 + 1 + 2) × 16, 24) = (5 × 16, 24) = (80, 24).
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besblk ::= BLOCK id (id1, . . . , idj) [id1, . . . , idn] [id1, . . . , idm]
VAR id1, . . . , idq;
VAR id1:t1, . . . , idp:tp;

BEGIN
bes

END

bes ::= connect [le1, . . . , lep]
| pid [le1, . . . , len] [le1, . . . , lem]
| id (e1, . . . , ej) [le1, . . . , len] [le1, . . . , lem]
| BESIDE (cstmt1; . . . ;cstmtn)
| BELOW (cstmt1; . . . ;cstmtn)
| BESIDE FOR id = e1..e2 BEGIN bes END
| BELOW FOR id = e1..e2 BEGIN bes END

cstmt ::= GENERATE IF e THEN bes
| bes

Fig. 10. Syntax of Beside and Below Pebble with conditionals.

tbesblk ::= BLOCK id (id1, . . . , idj) [id1, . . . , idn] [id1, . . . , idm]
VAR id1, . . . , idq;
VAR id1:t1, . . . , idp:tp;

BEGIN
tbes

END

tbes ::= connect [le1, . . . , lep]
| pid [le1, . . . , len] [le1, . . . , lem]
| id (e1, . . . , ej) [le1, . . . , len] [le1, . . . , lem]
| BESIDE (tbes1; . . . ;tbesn;tcstmt)
| BELOW (tbes1; . . . ;tbesn;tcstmt)
| BESIDE FOR id = e1..e2 BEGIN tbes END
| BELOW FOR id = e1..e2 BEGIN tbes END

tcstmt ::= GENERATE IF e1 THEN tbes1 ;
GENERATE IF e2 THEN tbes2

| tbes

Fig. 11. Syntax of Beside and Below Pebble, with all conditionals appearing at the
end of a BESIDE or BELOW list.

6 Compaction by Partial Evaluation

A partial evaluator is an algorithm which, when given a program and some of
its input data, produces a residual or specialized program. Running the residual
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T B :: CondBesBelBlk → TransBesBelBlk
T B [[BLOCK id (gid1, . . . , gidj) [id1:t1, . . . , idn:tn] [id′

1:t′1, . . . , id′
m:t′m]

VAR lid1, . . . , lidq;
VAR id′′

1:t′′1 , . . . , id′′
p:t′′p;

BEGIN
bes

END ]] = BLOCK id (gid1, . . . , gidj) [id1:t1, . . . , idn:tn] [id′
1:t′1, . . . , id′

m:t′m]
VAR lid1, . . . , lidq;
VAR id′′

1:t′′1 , . . . , id′′
p:t′′p;

BEGIN
T S [[ bes ]]

END

T S :: CondBesBelStmt → TransBesBelStmt
T S [[ connect [le1, . . . , lep] ]] = connect [le1, . . . , lep]
T S [[ pid [le1, . . . , len] [le1, . . . , lem] ]] = pid [le1, . . . , len] [le1, . . . , lem]
T S [[ id (e1, . . . , ej) [le1, . . . , len] [le1, . . . , lem] ]]

= id (e1, . . . , ej) [le1, . . . , len] [le1, . . . , lem]
T S [[ BESIDE (bes1; . . . ;besn) ]] = BESIDE (T S [[ bes1 ]]; . . . ;T S [[ besn ]])
T S [[ BESIDE (bes1; . . . ;besj;

GENERATE IF e THEN cstmttt;
cstmtk; . . . ;cstmtm) ]]

= let tcase = T S [[ BESIDE (cstmttt;cstmtk; . . . ;cstmtm) ]]
fcase = T S [[ BESIDE (cstmtk; . . . ;cstmtm) ]]

in BESIDE (T S [[ bes1 ]]; . . . ;T S [[ besj ]];
GENERATE IF e THEN tcase;
GENERATE IF NOT e THEN fcase)

T S [[ BELOW (bes1; . . . ;besn) ]] = BELOW (T S [[ bes1 ]]; . . . ;T S [[ besn ]])
T S [[ BELOW (bes1; . . . ;besj;

GENERATE IF e THEN cstmttt;
cstmtk; . . . ;cstmtm) ]]

= let tcase = T S [[ BELOW (cstmttt;cstmtk; . . . ;cstmtm) ]]
fcase = T S [[ BELOW (cstmtk; . . . ;cstmtm) ]]

in BELOW (T S [[ bes1 ]]; . . . ;T S [[ besj ]];
GENERATE IF e THEN tcase;
GENERATE IF NOT e THEN fcase)

T S [[ BESIDE FOR id = e1..e2 BEGIN bes END ]]
= BESIDE FOR id = e1..e2 BEGIN T S [[ bes ]] END

T S [[ BELOW FOR id = e1..e2 BEGIN bes END ]]
= BELOW FOR id = e1..e2 BEGIN T S [[ bes ]] END

Fig. 12. A recursive descent algorithm for creating a tree of possible placement paths
so that each conditional branch will contain all possible subsequent gate calls.

program on the remaining data will yield the same result as running the original
program on all of its input data [4].

Our use of the Pebble language is to enable a parametrised style of hardware
design [6]. Partial evaluation, even with no static data at all, can often opti-
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Fig. 13. Extending the placement function to deal with conditional compilation.

mize such descriptions. This is because it can propagate constants from blocks
where they are defined to those where they are used, and precomputing wherever
possible.

However, in the case of our placement descriptions, we seek to exploit the
inefficiency introduced when assigning locations to primitive blocks within con-
ditionals. As discussed in Section 5, we assume that the size of a conditional
statement is the maximum of both the true and false cases. If we know in ad-
vance which branch of the conditional will be chosen, then we can not only
eliminate the dead code from our circuit description, but also re-apply the P
function to create a more precise layout.

We demonstrate this process by partially evaluating our DES example when
the value of specialise is 1. As we can see in Figure 15, the size of the loop
body is smaller, reducing the width and height of the DES block to:

(2 × 16, 24) = (32, 24).
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BLOCK des (x,y,specialise) [textin:VECTOR (63..0) OF WIRE;clk:WIRE;
keyin:VECTOR (55..0) OF WIRE;modein:WIRE]
[textout:VECTOR (63..0) OF WIRE]

VAR i;
VAR text : VECTOR (16..0) OF VECTOR (63..0) OF WIRE;
VAR xortext: VECTOR (16..0) OF VECTOR (47..0) OF WIRE;
VAR exptext: VECTOR (16..0) OF VECTOR (47..0) OF WIRE;
VAR key : VECTOR (16..0) OF VECTOR (55..0) OF WIRE;
VAR mode : VECTOR (16..0) OF WIRE;
VAR rkey : VECTOR (16..0) OF VECTOR (47..0) OF WIRE;
BEGIN

connect [text(0), textin];
connect [ key(0), keyin ];
connect [mode(0), modein];
GENERATE FOR i=0..15
BEGIN

GENERATE IF specialise=0
THEN keygen (x+(4*i),y) [key(i), mode(i), clk]

[rkey(i), key(i+1), mode(i+1)];
xors (x+1+(4*i),y) [exptext(i), rkey(i)] [xortext(i)];
round (x+2+(4*i),y) [text(i), xortext(i), clk]

[exptext(i), text(i+1)]
END;
GENERATE IF specialise=1
THEN connect [xortext(i), exptext(i)];

round (x+1+(4*i),y) [text(i), xortext(i), clk]
[exptext(i), text(i+1)]

END
END;
connect [textout, text(16)]

END

Fig. 14. Pebble description of the DES design (Figure 6) with placement given by
coordinates. Since our method involves putting a conditional statement at the end of
a BESIDE or BELOW list, the round block is replicated to appear in both GENERATE IF
statements, each with different coordinates.

When implemented on a Xilinx Virtex FPGA, the bounding box of the floor-
plan of the specialised design is 40% of that of the non-specialised design – in
other words, the compaction reduces its size by 60%. A similar specialised de-
sign with floorplanning [14] runs at 10.7 Gbits per second, which is 600 Mbits
per second faster than a comparable non-specialised implementation without
floorplanning [19].
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BLOCK des (x,y) [textin:VECTOR (63..0) OF WIRE; clk:WIRE]
[textout:VECTOR (63..0) OF WIRE]

VAR i;
VAR text : VECTOR (16..0) OF VECTOR (63..0) OF WIRE;
VAR xortext: VECTOR (16..0) OF VECTOR (63..0) OF WIRE;
VAR exptext: VECTOR (16..0) OF VECTOR (47..0) OF WIRE;
BEGIN

connect [text(0), textin];
GENERATE FOR i=0..15
BEGIN

connect [xortext(i), exptext(i)];
round (x+1+(4*i),y) [text(i), xortext(i), clk]

[exptext(i), text(i+1)]
END;
connect [textout, text(16)]

END

Fig. 15. Pebble description of the DES compacted design when specialise=1.

7 Summary

We have provided a functional specification for a procedure that compiles a
description with relative placement information into a version where symbolic
information is specified using coordinates. We have also shown how a descrip-
tion using relative placement can be optimised using partial evaluation, so that
compaction is achieved for free. Such compaction can benefit designs in which
parameters are used for block selection in the floorplan. Our approach applies to
these designs and is supported by Pebble, a simple language based on Structural
VHDL.

Prototype tools have also been developed to support experiments with place-
ment constraints expressed as polynomial expressions [2]. Such placement con-
straint expressions can be solved automatically by a hierarchical resolution en-
gine. This approach allows for greater placement accuracy.

The target applications for our methodology include hardware libraries and
run-time reconfigurable designs. Hardware libraries can be optimised for differ-
ent parameters and instantiated before or after compaction without increasing
complexity or inefficiency. Run-time reconfigurable designs enable the synthesis
of smaller circuits which can operate at higher speeds and consume less power
than non-reconfigurable designs [10]. The RECONFIGURE IF statement [9] enables
circuit descriptions where two components can occupy the same location at dif-
ferent instants. Our methodology extends naturally to include this paradigm.
Current work involves verifying the correctness of our transformations, develop-
ing an efficient partial evaluator which exploits source to source optimisations,
and extending our approach to cover descriptions with optional placement con-
straints [9] and polymorphic and higher-order features [13].
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