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Abstract. This paper explores run-time adaptation of Flexible Instruc-
tion Processors (FIPs), a method for parametrising descriptions and
development of instruction processors. The run-time adaptability of a
FIP system allows it to evolve to suit the requirements of the user, by
requesting automatic refinement based on instruction usage patterns.
The techniques and tools that we have developed include: (a) a run-
time environment that manages the reconfiguration of the FIP so that
it can execute a given application as efficiently as possible; (b) mech-
anisms to accumulate run-time metrics, and analysis of the metrics to
allow the run-time environment to request for automatic refinements; (c)
techniques to automatically customise a FIP to an application.

1 Introduction

This paper explores adapting Flexible Instruction Processors (FIPs) [7] at run
time. Previously we concentrated on compile-time issues and described the use
of FIPs for the systematic customisation of instruction processor design and
implementation. The features of our approach include: a modular framework
based on “processor templates” that capture various instruction processor styles,
such as stack-based or register-based styles; enhancements of this framework to
improve functionality and performance, such as hybrid processor templates and
superscalar operation; compilation strategies involving standard compilers and
FIP-specific compilers, and the associated design flow; technology-independent
and technology-specific optimisations, such as techniques for efficient resource
sharing in FPGA implementations.

Our research helps designers to tune hardware implementations to the run-
time characteristics of a system over a period of time. Factors such as keeping
to power consumption or area constraints have to be traded-off with better
performance and the ability to perform a wider range of functions. For instance,
in an embedded communications device, we might wish to encrypt, compress
and compute a checksum before transmission. A fast solution involves chaining
three pieces of hardware that perform these functions together. However, it is
likely that further control hardware will be required, for instance to negotiate
the transmission protocols or control other peripherals. A flexible and small
design is to utilise an instruction processor, and in order to achieve acceptable
performance, we may have to run the processor at a high clock speed.
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The FIP approach enables incorporation, at design time, of instructions that
will accelerate encryption, compression and checksum generation, thereby im-
proving performance by doing more per cycle, instead of increasing the clock
speed. Our design-time system allows easy customisation of various styles of pro-
cessors and executable code to be compiled for application-specific processors.
A FIP can be further improved based on run-time characteristics. For example,
an embedded device might be used in an area with high interference, requiring
frequent retransmission of the data. In this case, the FIP could evolve to incor-
porate a more robust error correction code capable of detecting and correcting
more error bits, while maintaining similar performance and size, by trading off
general functionality for more targeted functionality.

Run-time reconfiguration is often used to gain either functionality or
performance. Unfortunately, the time taken for reconfiguration often incurs per-
formance penalty. The increasing density of FPGAs further exacerbate this
penalty. The FIP approach provides a way to tune the frequency of reconfig-
uration. If long reconfiguration time is unacceptable, the application can be exe-
cuted less efficiently with the instruction processor; otherwise we can reconfigure
to a different FIP to run more efficiently.

To summarise, the main contributions of our approach include: (a) a run-time
environment that manages the reconfiguration of the FIP so that it can execute
a given application as efficiently as possible; (b) mechanisms to accumulate run-
time metrics and analysis of the metrics to allow the run-time environment to
request for automatic refinements; (c) techniques to automatically customise a
FIP to an application.

The rest of the paper is organised as follows. Section 2 describes FIPs and
motivates their run-time adaptation. Section 3 addresses point (a) and outlines
our design and run-time flow. Section 4 deals with run-time optimisations and
addresses (b). Section 5 introduces ideas for custom instruction generation which
covers (c). We then use the AES algorithm as an example in Section 6.

2 FIPs and Run-Time Adaptation

Flexible Instruction Processors, or FIPs, consist of a processor template and a
set of parameters [7]. Different processor implementations can be produced by
varying the template parameters. FIP templates provide a general structure for
creating processors of different styles: e.g. stack- or register-based processors.
The processor templates can be further enhanced with features found in high
performance processors, such as superscalar architectures and pipelining. Various
Java Virtual Machines and MIPS style processors have been implemented.

Our FIP generation tool allows us to explore FIP designs with different speed,
area and functionality trade-offs. FIPs provide a well-defined control structure
that facilitates varying the degree of sharing of resources. FIPs also provide
a systematic method for supporting customisation by allowing user-designed
hardware to be accommodated as new instructions. By adding customisations
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or eliminating unused resources, we can tune an instruction processor to make
use of available area efficiently and provide a good range of functionality.

Run-time adaptation allows us to further fine tune our FIPs to run-time
changes by exploiting the upgradability of FPGAs. Our framework simplifies
the process by providing a means of adapting a FIP and creating its executable
code at compile and run time.

Hand-crafted implementations provide fast performance but once it has been
manufactured and deployed, there is little scope for improvement. Instruction
processors, on the other hand, provide a solution that is easily upgradable and
flexible. However this flexibility is often provided at the expense of performance.
FIPs provide a way to explore the design space between these two extremes. For
instance, custom instructions can be included into a design to speed up their
operation at the expense of increasing area and power consumption.

The ability for a FIP system to adapt to changing behaviour of applications
is a powerful feature, but there are significant challenges involved. Such chal-
lenges include: (a) creating a collection of FIP designs at compile time or at
run time, (b) managing these FIPs and (c) ensuring that performance of the
system is not degraded by its flexibility. To meet these challenges, we develop an
approach that contains the following components: (1) a design tool to facilitate
the creation of customised FIPs at compile time, (2) a scheme to keep track
of available FIP designs and machine code, (3) a run-time system to manage
FIP state and configuration, (4) a metric used to decide if reconfiguration is a
suitable option at a given time, (5) a specification of what run-time statistics are
needed for refinement analysis, (6) a monitor to accumulate run-time statistics,
(7) techniques for generating custom instructions.

Component (1) is outlined in [7]. Components (2) and (3) will be described
in Section 3, while components (4), (5),(6) and (7) will be discussed in Section
4 and 5.

3 Design and Run-Time Flow

This section describes our proposed framework. Figure 1 shows the design flow
and the run-time flow. The flow diagram is essentially divided into two parts:
the design environment and the run-time environment.

Details of the design environment is covered in a previous paper [7]. During
design time, source code is profiled to extract information that can help in cus-
tomising the FIP. FIP generation includes producing domain-specific FIPs and
the corresponding FIP-specific compiler to generate executable code. The design
environment also produces the run-time environment. Users can determine the
capability of the run-time environment at compile time. For example, the user
can decide whether reconfiguration or automatic adaptation is required. This
will affect the complexity of the run-time environment.

The run-time environment is responsible for the execution and management
of the system and maintains a database of available FIPs, their associated exe-
cutable code and a decision condition library, which contains information about
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Fig. 1. Design flow and run-time flow. Optimisation analysis and automatic
refinement steps are optional and are included when their overheads can be
tolerated. The run-time environment is generated by the FIP generator. The
run-time manager within the run-time environment can be run locally or on an
external server.

when certain FIPs should be loaded. When an application is required, the FIP
loader loads the appropriate executable from the code library and if necessary,
a new FIP configuration. During execution, a FIP can keep track of run-time
statistics, such as the number of times functions are called or the most frequently
used opcodes. These run-time statistics can be sent to the run-time manager.

The run-time manager does not have to be local to the run-time environ-
ment. Run-time statistics can be uploaded to a central server where a run-time
manager may reside. Based on run-time statistics, the optimisation determiner
(Figure 1) can decide to dedicate more resources to functions that are used most
frequently, by creating custom instructions for these functions. It can also suggest
various optimisations, such as using faster operations for more frequently-used
instructions, or changing instruction cache size or stack depth. Further issues
regarding the optimisation determiner will be discussed in Section 4.2.

The FIP adapter creates a new FIP, executable code and decision condition
information. The run-time environment’s databases are updated and the new
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FIP can be used next time the application is executed. Sections 4.3 and 5 will
detail more of the reconfiguration analysis and automatic refinement process.

4 Run-Time Optimisation of FIPs

Several issues have to be addressed in order for a system to be able to dynamically
optimise implementations for performance, and to request and perform upgrades
via reconfiguration. We need to: (1) decide what statistics to collect, (2) set how
frequently to sample the statistics collected, (3) collect the statistics from the
application, (4) analyse the collected statistics and decide what to optimise, (5)
perform the optimisation, (6) decide when to reconfigure the implementation.

Should data collection and analysis take place during run time, their impact
on performance can be reduced if they run concurrently with the FIP. Such
activities can be implemented in software, on a PC or on a programmable system-
on-chip device.

4.1 Collection and Analysis of Data

There has been research addressing issue (1) and (2) above [8]. The frequency
with which such statistics is collected, is pertinent. If statistics are recorded
frequently, the available data will more accurately describe run-time character-
istics, although this is at the expense of design area. If statistics are analysed
frequently, the area required for the storage of these statistics can be reduced.
However, frequent analysis may affect the performance of the FIP by either tak-
ing processing cycles to analyse the data, or consuming bandwidth involved in
downloading the data off-line to be analysed. Furthermore, a short sampling of
data before analysis may yield results that do not accurately reflect the run-time
characteristics. A full analysis of these issues is beyond the scope of this paper.

Our FIP templates allow users to easily incorporate statistic monitors into
their FIP designs. In our implementation, we collect information on the frequency
of procedure calls, sampled over an application’s run time.

Analysis of the data will depend on the statistics collected. The user could
choose to monitor the frequency of use, for certain native or custom instructions.
Based on this information we can, for example, increase the performance of
a frequently-used multiplier circuit, while reducing the area and performance
of the less frequently-used operations. We provide a level of flexibility in the
optimisation analysis because of the domain specificity.

Custom instructions are created according to the results of the above anal-
ysis. The techniques used in creating custom instructions will be discussed in
Section 4.2. Once custom instructions have been generated, the optimisation
analyser (Figure 1) performs analysis similar to that done in the design environ-
ment. Optimisations based on analysis of congestion and constraints satisfaction
of speed, area and latency can also be carried out.

This analysis is necessary because the original request for customisations may
contain too many new custom instructions, and may not satisfy area or latency
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constraints. In that case, the optimisation analyser can decide to remove custom
instructions, reduce the number of native opcodes supported, or downgrade the
performance of opcodes that are not used frequently.

4.2 Reconfiguration

If configuration occurs too frequently, the overall performance of the system can
suffer. The FIP approach provides a way to fine tune the frequency of recon-
figuration by allowing an application to run less efficiently with the instruction
processor if the reconfiguration time is unacceptable. A metric can be used to
decide if it is beneficial to reconfigure. For instance, if we aim to improve per-
formance, then a new, faster FIP should only be adopted if the reduction in run
time is greater than the reconfiguration time involved in replacing the old FIP
by the new one.

Consider a software function f() which takes Csw clock cycles with time for
each cycle Tsw. As a custom instruction, it takes Cci cycles with cycle time Tci.
The function f() is called F times over the time period we are investigating,
in this case one execution of the application. The reconfiguration time for the
device is Tr, which includes time for collecting and analysing data. The time
spent executing the software function (tsw) can be shown to be CswTswF and
the time spent executing the custom instruction (tci) to be CciTciF . We define
the reconfiguration ratio R as follows:

R =
tsw

tci + Tr
=

CswTswF

CciTciF + Tr
(1)

More generally, with n custom instructions, R becomes:

R =


Tsw

n∑
j=1

Csw,jFj


 /


Tci

n∑
j=1

(Cci,jFj) + Tr


 (2)

The point where R = 1 is the threshold: if R > 1, reconfiguration will be
beneficial. Figure 2 demonstrates the effect of varying different parameters R on
our designs. The horizontal axis measures the number of times an application
is executed. The vertical axis shows R values. The curve with the circular disks
corresponds to the base FIP, the R values of which is calculated by making
CciTci = CswTsw. The value of R for the base FIP will never reach 1, unless
reconfiguration time is less than or equal to zero. The following discusses the
effects of various FIP features on R.
Number of Custom Instructions. The general form of R, as shown in equa-
tion 2, shows that as we include more custom instructions, the reconfiguration
threshold can be reached with fewer execution of the application. This is demon-
strated by the two dashed curves in Figure 2. As more custom instructions are
added and generic instructions are removed, the shape of the reconfiguration
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Fig. 2. This graph shows the effects of varying different parameters in the gen-
eral reconfiguration ratio equation. When R > 1 reconfiguration should be at-
tempted. Here we see the effects of increasing the number of custom instructions,
reducing the cycle time of the custom instruction FIP and the reconfiguration
time.

curve will tend towards that of a direct hardware implementation. The rate of
this improvement is expected to decrease as more custom instructions are added.
Changing FIP cycle time. FIPs with custom instructions often require fewer
clock cycles to complete an operation, but they may operate at a lower clock
speed. The curve with crosses shows the reconfiguration ratio of a FIP with two
custom instructions operating at half the clock speed of the base FIP. Although
the performance is still better than the design with one custom instruction, the
gain is not as much as one would expect.
Changing reconfiguration time. Changing the value of Tr may also affect
R. The topmost curve shows a FIP with two custom instructions and half the
reconfiguration time of the base FIP. Halving the reconfiguration time increases
the initial gradient of the curve and reduces the number of application execution
required to reach the threshold.

We have assumed the use of full reconfiguration until now. The reconfigura-
tion time, Tr, can be rewritten as the product of tr and nr, the reconfiguration
cycle time and the number of cycles needed to reconfigure the design. By util-
ising partial reconfiguration we can reduce nr [8], and hence reduce the total
impact reconfiguration has on R. nr may also be reduced through improvements
in technology and architectures that support fast reconfiguration through caches
or context switches [10].

5 Generation of Custom Instruction

Compared to direct hardware implementations, instruction processors have the
added overhead of instruction fetch and decode [7]. VLIW and EPIC architec-
tures are attempts to reduce the ratio of fetches to execution. Customising in-
structions is also a technique for reducing the fetch and execute ratio to increase
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the performance of the instruction processor. The idea of incorporating custom
instructions in an instruction processor has been reported [6]. Custom instruc-
tions are typically hand-crafted and incorporated at the processor instancing
stage. While hand-crafted custom instructions provides the best performance,
they are difficult to create, and require a skilled engineer with good knowledge
of the system.

Opcode chaining can be used to reduce the ratio of the time spent on the
control path and the data path of a FIP. Directly connecting up the data path
of the sequence of opcodes that make up a procedure reduces the time spent on
fetching and decoding instructions. Further, by converting a procedure call to
a single instruction, the overhead of calling a procedure can be avoided; such
overheads include preamble and postamble housekeeping routines, like storing
program counters and shared registers, and refilling prefetch buffers.

Custom instructions have their own dedicated data path, making them suit-
able to exploit parallelism that may exist in opcodes; such as in instruction
folding, up to four Java opcodes can be processed concurrently [3].

When creating custom instructions, we allow the available resources to grow
as is needed to exploit as much data-level parallelism as possible. The introduc-
tion of a new custom instruction could introduce new possibilities for instruction-
level parallelism in the FIP.

Other optimisations include device-specific optimisations such as using look-
up table implementations. This exploits the high on-chip RAM capacity found
in devices like Xilinx Virtex-E chips. Generalised look-up table based custom
instructions can also be created, for instance; the same instruction can be used
for cosine, sine and tangent operations, by reconfiguring the block RAM.

Streaming style instructions can also be incorporated. For example, an IP
core that encrypts or decrypts a stream of data can be added as a custom in-
struction. Before a streaming instruction can be executed, it has to be initialised
with relevant data such as the start position, length of the data stream and
the location to write back to. The IP core is then activated via control chan-
nels that can be controlled by executing the custom instruction associated with
the IP core. The IP core may be on a different clock domain from the FIP, in
which case the relevant handshake protocols are used to communicate. Once the
streaming instruction is activated, the FIP can then proceed to process other
instructions. Buffers can also be used to store intermediate data if the core is not
fully pipelined. This will allow the memory resources to be multiplexed between
the core and FIP.

There are also optimisations related to reducing the overheads of run-time
reconfiguration by reducing the amount of configuration storage required to store
multiple designs and the time taken to reconfigure between these designs [9]. The
following section will exemplify the process of creating a custom instruction.
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Java opcodes Chained opcodes in custom instruction

a iload 1 paramreg=TOS();

iconst 1
b

ishl
tempreg1=paramreg�1;

iload 1
c sipush 0x80 tempreg2=param & 0x80

iand

d ifeq 0x9 if (tempreg2==0) jump 3;

e getstatic 0x4f tempreg2=0x1b;

f goto 0x4 jump 2;

g iconst 0 tempreg2=0;

h ixor tempreg2=tempreg2 t̂empreg;

i int2byte int2byte

j ireturn ireturn

Table 1. Sequential implementation of FFmulx in Java opcodes and chained
opcodes. The Java opcode version takes 26.5 clock cycles on average plus another
4 cycles for the procedure preamble and post amble. The chained opcode version
takes 8.5 clock cycles on average.

6 AES Example

We illustrate our approach by the AES (Rijndael) algorithm which is an iterated
block cipher with variable block and key length. We have implementations of
the cipher in two forms, a straight implementation (i) where we write code
for the different component transformations of the cipher and a more efficient
implementation (ii) where the component transformations are optimised into
look-up tables.

In the first approach, the most frequently executed function, FFmulx, is a
Galois matrix multiplication. The second column of Table 1 shows the Java
opcodes required to implement the function. Depending on the outcome of the
conditional branch ifeq opcode, this implementation takes between 25 to 28
clock cycles to execute.

The rightmost column of Table 1 shows the result of both opcode chaining
and instruction folding. Opcode chaining involves storing intermediate results
in temporary registers. By removing the need to push and pop values from the
stack, the sequential structure imposed by the stack is eliminated. Next, instruc-
tion folding is applied. This allows several opcodes to be combined or folded into
one instruction. In other words, several stack-based instructions are converted
into one register-based instruction. Furthermore, since FFmulx is replaced by a
single instruction, there is no longer a need to perform the preamble and postam-
ble routines necessary for procedural calls. These techniques reduce the number
of clock cycles in each application execution from 30 to 8.5 cycles.

Table 1 can be further optimised by identifying instructions that can execute
in parallel, instruction b and c for instance. By introducing predicate registers,
instructions d,e,g and h can be executed in parallel. Using this implementation,
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the original software FFmulx function has been optimised from 30 to 6 cycles,
producing a 5-fold speedup. Similarly, the FIP (i) implementation is augmented
by a single custom instruction involving direct connection of the data paths
for the individual component transformations. This achieves an encryption of
128 bits of data with a 128 bit key in 99 cycles. Another implementation, FIP
(ii), utilises lookup tables and achieves an encryption of 128 bits of data with a
128-bit key in 32 cycles.

Implementations Cycles/Block Hardware resources Mbps/MHz Flexible

Software[1] (C/C++) 340 0.4 Yes

FIP (i) 99 1770 Slices 2 BRAMs 1.3 Yes

FIP (ii) 32 1393 Slices 10 BRAMs 4 Yes

Hardware[5]
(Spartan II 100-6)

11 460 Slices 10 BRAMs 11.5 No

Hardware[4]
(Virtex-E 812-8)

1 2679 Slices 82 BRAMs 129.6 No

Table 2. Various AES implementations. Blocks are 128 bits with 128 bit keys.
The C/C++ implementation runs on a 933MHz Pentium III. FIP implemen-
tations are written in Java and run on a sequential JVM implemented on a
Spartan II 300E-6. The Spartan design is latency optimised and runs at 0.52
Gbps (45MHz). The Virtex-E design runs at a data rate of 7 Gbps (54MHz).

Table 2 compares different implementations of the AES algorithm. The fast-
est reported C/C++ implementation, by Gladman [1], achieves an encryption
speed of about 350Mbps on a 933MHz Pentium 3. Running at 40MHz, FIP(i)
encrypts at 51.7Mbps and FIP(ii) at 160 Mbps. FIP(ii) performs ten times better
than software, in a Mbps per MHz comparison. Hand-placed hardware implemen-
tations provide good performance, but cannot be used for general computations.
This flexibility has been compromised to improve performance. However these
hardware implementations can be incorporated into FIPs as custom instructions,
as outlined in Section 5.

The FIP approach provides a convenient compromise of trading off speed,
flexibility and area. It provides the flexibility afforded by instruction processors
and can be augmented with custom hardware to improve performance. Our pro-
posed design-time and run-time system provides a means of customising these
processors. It also provides a mechanism for these processors to adapt to envi-
ronmental conditions, depending on usage patterns.

7 Concluding Remarks

We have described our work on run-time adaptive Flexible Instruction Proces-
sors, and the associated design and run-time environment. Run-time adaptability
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allows our system to automatically evolve and automatically refine the imple-
mentation to suit run-time conditions.Current and future work includes refining
run-time statistics collection and reconfiguration strategies. The quality of the
statistics gathered should allow the system to produce more optimal refinements.
However the complexity of the monitoring hardware could affect FIP perfor-
mance. We intend to obtain a better understanding of this trade-off between the
quality of statistics and performance. We also continue to investigate strategies
for reconfiguration, and to improve scalability [2] of our approach.
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