
Exploiting Program Branch Probabilities
in Hardware Compilation

Henry Styles and Wayne Luk

Abstract—This paper explores using information about program branch probabilities to optimize the results of hardware compilation.

The basic premise is to promote utilization by dedicating more resources to branches which execute more frequently. A new hardware

compilation and flow control scheme are presented which enable the computation rate of different branches to be matched to the

observed branch probabilities. We propose an analytical queuing network performance model to determine the optimal settings for

basic block computation rates given a set of observed branch probabilities. An experimental hardware compilation system has been

developed to evaluate this approach. The branch optimization design space is characterized in an experimental study for Xilinx Virtex

FPGAs of two complex applications: video feature extraction and progressive refinement radiosity. For designs of equal performance,

branch-optimized designs require 24 percent and 27.5 percent less area. For designs of equal area, branch optimized designs run up

to three times faster. Our analytical performance model is shown to be highly accurate with relative error between 0.12 and 1:1� 10�4.

Index Terms—Automatic synthesis, dataflow architectures, queuing theory.

�

1 INTRODUCTION

RECONFIGURABLE architectures such as Field Programma-
ble Gate Arrays exhibit two properties. First, reconfi-

gurable architectures permit rapid specialization through
the mechanism of runtime reconfiguration. A popular
modern FPGA such as the Xilinx Virtex-II can be reconfi-
gured in approximately 20-50ms and other coarse-grain
architectures [1], [3] can be partially reconfigured in tens of
cycles. Second, reconfigurable architectures present a
massively extended design space and permit a higher
degree of specialization when compared to software. These
properties point toward reconfigurable systems which
exploit information on program behavior and specialize
operations both before and during execution.

Such systems differ from conventional fixed designs in
two ways.

1. First, design tools must be capable of generating
multiple designs, ideally from a single high level
source, which are specialized for different program
behavior patterns.

2. Second, a management system must be devised
which monitors program behavior and initiates
appropriate actions to maintain design specialization
over time.

This paper contributes to tackling both of these chal-
lenges. The primary contribution of the work is toward
meeting challenge 1. A suitable basis for specialization is
identified in program branch probabilities. A consequence
of the property of program phase [7] is that branch
probabilities can be predicted from historical measurement.
In computer programs which include flow control, the

execution frequency of each basic block is controlled by the
probabilities of the interconnecting conditional branches.
Branch probability information can therefore be used to
specialize operations by guiding the allocation of resources
between different basic blocks. This principle is used to
specialize operations in several aspects of existing computer
systems. Software profilers collect accurate execution
profiles. This information is used by software engineers to
target optimization efforts toward computational bottle-
necks. Embedded systems engineering tools use execution
profiles to adjust hardware allocation to program behavior
[18]. High-level synthesis tools make use of profiling
information to optimize the partitioning and optimization
of multiprocess hardware systems [36]. Multiconfiguration
microprocessors [9] collect branch probability information
at runtime. The information is used to aid dynamic resource
allocation by specializing aspects of the architecture such as
cache line size.

This paper explores the analogous use of branch
probability information to optimize resource allocation in
hardware compilation. The scheme proposed in this paper
differs from the systems mentioned above in that it
optimizes a fundamental building block of complex
reconfigurable computing systems: hardware pipelines. A
compilation scheme is proposed that automatically maps
programs written in a subset of C to a set of hardware
designs which are optimized for different branching
probabilities. Our compilation scheme employs a tag-token
and is closely related to dataflow machine architectures.
This control flow mechanism confers a suitable mechanism
for design specialization by allowing different basic blocks
to operate at different rates. Resource allocation is specia-
lized on the basis of branch probability information by
slowing down underutilized blocks and using the saved
resources to speed up blocks which are bottlenecks. The
effectiveness of the proposed compilation path is explored
in experiments involving two large case study applications:
video feature extraction and radiosity.

1408 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

. The authors are with the Department of Computing, Imperial College
London, 180 Queen’s Gate, South Kensington Campus, London SW7 2AZ,
UK. E-mail: {hes2, wl}@doc.ic.ac.uk.

Manuscript received 1 Dec. 2003; revised 28 June 2004; accepted 1 July 2004.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0250-1203.

0018-9340/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

A property of our tag-token scheme is the ability to
parallelize and pipeline nested loop carry dependencies. A
loop carry dependency is a loop variable which is carried
across loop iterations. Loop carry dependencies are currently
a barrier to both the quality and applicability of reconfigur-
able systems—to the authors’ knowledge, no existing hard-
ware compilation system is able to parallelize and pipeline
this class of operations. The benefits of our new approach are
illustrated through the examples of fractal set generation and
Newton-Raphson equation root finder.

A further contribution of this work is in management of
specialization (challenge 2). A system to manage and
control specialization over time would consist of 1) collect-
ing program behavior patterns, 2) predicting future
program behavior patterns, and 3) scheduling a series of
optimal reconfigurations to preserve specialization. The
problem of collecting and predicting branch probability
information (subtasks 1 and 2) in hardware has been
considered by other authors [9] and is beyond the scope of
this paper. This paper contributes to the problem of
determining an optimal reconfiguration schedule given
information on future program behavior (subtask 3). For
this optimization task to be completed successfully, the
performance of the different possible configurations must
be compared for the period of predicted program behavior.
This paper introduces an analytical method, based on
queuing networks, for elucidating the properties of the
proposed compilation procedure. The modeling system is
capable of delivering fast and accurate performance
estimates for the different designs and is suitable for
runtime operations in such a management system.

The rest of the paper is organized as follows: Section 3
describes our basic framework for hardware compilation,
consisting of two compilation phases: dependency analysis
and circuit synthesis. Section 4 then describes the branch-
optimized compilation path and explains how designs are
specialized for different branch probabilities. Section 5
describes how our compilation path copes with feedback
systems. Section 6 deals with the models for studying the
analytical properties of this compilation procedure and is
followed by Section 7 which describes three experiments to
test the three central contributions of the paper. The first
experiment assesses the effectiveness of the branch-opti-
mized compilation path against an existing system and
control experiment which do not consider branch probabil-
ities. The second experiment illustrates the effectiveness of
the proposed scheme inpipelining andparallelizing a class of
loop carry dependencies. The third experiment evaluates the
effectiveness of the proposed analytical model in deriving
accurate performance predictions for compiled designs.
Section 8 examines the results of these experiments. Finally,
Section 9 summarizes our current and future research.

2 RELATED WORK

Hardware compilers are increasingly recognized as the key
to raising the productivity of hardware designers. Many
hardware compilers have been reported recently and they
cover various source descriptions including C [4], Handel-C
[2], Streams-C [35], Matlab [12], StReAm [23], Cantata [26],

and Java [13]. These systems compile a single design which
is optimized for all runtime conditions.

A second class of related design tools and methods is
devoted to specialization of reconfigurable circuits at
runtime. These tools focus on enabling large fixed designs
to be accommodated in small devices [19], [30] and can also
permit improved performance by constant folding [5]. A
more general structural model for dynamic reconfiguration
is presented in [5]. Structural design environments have
been extended to generate partially reconfigurable cores
[21], [31], however, there has been limited work into
synthesizing and controlling reconfigurable design sets
from behavioral descriptions [20].

Section 4 describes our tag-token flow control scheme.
The mechanism for flow control and synchronization in
related hardware compilers ranges from nonblocking
scheduling [23], [26] to blocking protocol [4], [2], [12], [13].
Our flow control scheme uses blocking as in [4], [2], [12],
[13], but also employs a tag-token as seen in dataflow
machines architectures [33] and rate-smoothing FIFOs from
queuing network literature [24].

Thequeuingnetworkmodelproposed inSection 6 is based
on simple, analytically solvable Markovian queuing net-
works [24], [15]. In the past, queuing theory has been applied
in the modeling of various aspects of computer systems,
including computer networks [16], and in performance
models of time-sharing and multiaccess systems [16], [24].
The closest related application to that described in this paper
is in processor-memory performance modeling, for unipro-
cessor [11] and multiprocessor [10] systems. Research into
performance modeling in the context of hardware compila-
tion has concentrated on static models of execution time
withoutbranchprobability information. In [6] and [14],Cottet
et al. propose a static method for area and performance
estimation of regular and data-intensive FPGA circuits used
for applications such as multimedia, telecommunications,
and cryptography. Park et al. [29] propose an analogous set of
static performance estimates for reconfigurable designs
under optimizing loop transformations.

3 COMPILATION

Our compilation procedure consists of two phases: depen-
dency analysis and circuit synthesis.

The input language for the compiler is a streaming
subset of the C language in which access to memory by
arbitrary pointers is not supported. Each input program
specifies the body of a single loop, with flow control
specified by if..then..else and do..while nested loop constructs.

A simple example program, shown on the left of Fig. 1,
will be used to illustrate our compilation procedure in the
following sections.

The dependency analysis phase constructs a two-level
data flow graph from the input program. The data flow
graph for our simple example program is shown on the
right of Fig. 1. It includes a numbered direct acyclic graph
(DAG) for each basic block. Flow control between DAGs is
represented by BRANCH and MERGE nodes with firing
rule semantics as described in the data flow computing
literature [33]. Reads and writes to vector variables at the
start and end of the data flow graph are mapped to READ
and WRITE nodes.

STYLES AND LUK: EXPLOITING PROGRAM BRANCH PROBABILITIES IN HARDWARE COMPILATION 1409

The circuit synthesis phase transforms the dependency
graph into a unidirectional pipeline captured in structural
VHDL. It consists of module selection, scheduling, binding,
and instantiation of appropriate flow control circuits.
Common facilities are provided for circuit synthesis. The
initiation interval or period of a library block is equal to the
number of cycles between each successive output. The term
initiation interval is commonly used in literature on software
pipelining [34]. An XML library block database specifies the
initiation interval, latency in cycles, and area of available
library blocks. A static pipelined list scheduler [8] is
provided for basic block scheduling.

Circuit synthesis is specialized to form two compilation

paths: the control study compilation path and the branch-

optimized compilation path. The control study compilation

path is inspired by the StReAm [23] compiler. It creates

pipelines which perform equally well under all branching
conditions. Designs are parameterized with a global
initiation interval parameter bpipeline, which sets a uniform
rate of processing for all basic blocks in the pipeline. The
control study compilation path circuit with bpipeline ¼ 1 for
our simple example program is shown on the left of Fig. 2.
Under the control study compilation scheme, the BRANCH
node simply fans data out to both branch target basic
blocks. The true and false branch target DAGs, labeled “2”
and “3” in Fig. 2, are scheduled independently with the
initiation interval set at bpipeline.

In Fig. 2 after scheduling, the true branch target basic
block, containing the multiplier, has a latency of three cycles
and the false basic block, containing the adder, has a latency
of one cycle. A second scheduling pass adds register chains
to the false basic block so that processed data and the
conditional result arrive simultaneously at the MERGE
node. As a result of this scheduling pass, all paths through
the pipeline have equal latency. An extra register chain is
created to propagate the conditional result across the
branch target computation. The MERGE node then simply
multiplexes the correct processed data to their outputs
based on the propagated conditional result.

Recall that our current prototype compiler does not
support access to memory by arbitary pointers. The aim of
this restriction is to preclude programs which manipulate
large amounts of internal state. Our hardware compilation
scheme generates pipelines. As such, and like Dataflow
Machines [33] and all pipeline hardware compilation
systems, our compilation scheme suffers from limitations in
executingprogramswith large internal state. Eachstage in the
hardware pipelinemust have access to the live variables of its

1410 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

Fig. 1. A simple example program and its two-level data flow graph. The

four basic blocks map to four numbered DAG subgraphs. The

if..then..else maps to BRANCH and MERGE nodes. Array accesses

map to READ and WRITE nodes.

Fig. 2. Uniform (left) and multiple (right) rate circuits for the simple program of Fig. 1. For the control study compilation path, additional flip-flops (D)
are inserted to synchronize data flow. For the branch-optimized compilation path, rate-smoothing queues (Q) and sequencing token (dotted line) are
inserted to synchronize data flow. The add and multiply modules are pipelined and the flow can be halted by the ready control signal (dashed line)
shown as an additional input to these components. The uniform rate circuit is annotated with the global initiation interval parameter bpipeline. For this
example, the parameter is set to run at one result per cycle. The multiple rate circuit is annotated with initiation interval parameter bi and FIFO length
parameter li for each basic block. This example is a multiple rate system in which resources are weighted to optimize the left path through the
branch, with resources saved on the right path through the branch. All basic blocks, except block three, are set at a initiation interval (bi) of one result
a cycle. FIFO length parameter li is set manually to deliver maximum tolerance to burstyness at the branch target basic blocks (l2 ¼ 16 and l3 ¼ 16).

operations, hence, for concurrent operation of all pipeline
stages, the complete set of live variables must be present at
each pipeline. If a program has excessive internal state, the
total cost of storing the live variables at each pipeline stage
becomes prohibitive. Currently, we do not provide a locking
and arbitration system for sharing state between pipeline
stages and, therefore, in this instance, an alternative sequen-
tial system would be more appropriate.

Our prototype compilation system does not currently
include a system of automatic source to source optimizing
transformations. Optimizations involving code motion [18],
[27] such as speculation [8], software pipelining, vectoriza-
tion [34], strip mining, and loop factorization must be
manually applied to the input program. In the future, we
intend to augment our compilation system with an SUIF
[17] front end to automate these tasks.

4 BRANCH-OPTIMIZED COMPILATION PATH

In this section, we introduce a new compilation scheme
which promotes efficiency in the presence of branch
probability information. A branch-optimized circuit for
the simple example program is shown on the right of
Fig. 2. The branch-optimized compilation scheme trans-
forms the data flow graph into a set of hardware
configurations in which different basic blocks run at
different initiation intervals. From this set, a configuration
can be chosen in which the resources assigned to different
branches match the observed computational load. The
branch-optimized compilation scheme creates designs with
the following characteristics.

1. Basic blocks can run at independent rates, with
different degrees of sequentialization. The scalable
rate of computation is the basis for performance
gains and area savings throughout this work. A
basic block with an initiation interval of one result a
cycle is fully pipelined. A basic block with an
initiation interval of one result every two, four, or
eight cycles contains sequential library blocks which
consume less area than the fully pipelined versions.
For example, a simple 32-bit array multiplier,
running at an initiation interval of one result per
cycle, requires 32 adder blocks. A sequential multi-
plier, running at an initiation interval of one result
every two cycles, can be constructed using 16 adder
blocks. The rate of basic block i is controlled by the
initiation interval parameter bi.

2. Each basic block propagates a sequencing token
downward, shown as a dotted line in Fig. 2.
Different paths through the pipeline run at different
rates and, so, computations may retire out of order.
The sequencing token identifies the loop index
associated with a set of results at the pipeline
outputs, enabling the original ordering to be
recovered. Typically, this is accomplished by writing
the results to a memory. When a result exits the
pipeline, the token value is used to control the
address of a write to memory in which the result
data are written to a memory bank. Over the course
of execution, the memory bank is filled out of order.

At the end of execution, the full set of results is
available in order as defined by the memory
addresses. The width of the sequencing token is
determined from the upper loop bound and max-
imum length path through the compiled design. The
sequencing token implemented in the branch-opti-
mized compilation scheme is inspired by tagged-
token [33] flow control in the dataflow architectures
of the 1980s and 1990s. The implication on depen-
dencies, principally concerning pointer memory
access, of the out-of-order scheme is discussed in
detail in Dataflow Machine literature [33] and is a
motivating factor in the design of our restricted
language syntax. It is used to recover the original
ordering of computation, given that computations
may retire out of order having traveled different rate
paths through the pipeline.

3. Basic blocks have rate smoothing FIFOs, labeled Q in
Fig. 2, for the sequencing token and data inputs. The
FIFO length for basic block i is given by parameter li.
The purpose of these FIFOs is to smooth out
variations in arrival rate and bursty arrivals caused
by periods of biased branching.

4. Each basic block propagates a ready signal back up
through the pipeline, shown as a dashed line in Fig. 2.
The ready signal allows basic blocks to stall incoming
computation when input queues are full. For each
basic block, the incoming ready signal fans out to the
clock-enable input of all registers in the datapath. The
ready signal is pipelined on entry to each basic block
by oversizing the basic block rate smoothing FIFOs.
This has the effect of localizing the ready signal to each
basic block, minimizing the delay in combinatorial
feedback. Our experiences in compiling circuits with
this control method, presented in Section 8, confirm
that theproposed controlmethodhas a limited impact
on overall clock rate. In our current implementation,
we adopt a fully synchronous design style. However,
a globally asynchronous locally synchronous (GALS)
design style could potentially be adopted in which
each basic block operates in a separate clock domain
and the ready signal is replaced with true asynchro-
nous handshaking.

5. The BRANCH node routes sequencing token and
data to the branch target specified by the branch
condition. It receives ready signals from the two
branch targets and blocks computation if the branch
target set by the branch condition is not ready.

6. The MERGE node forwards data and sequencing
tokens from true and false branch targets. If
sequencing tokens arrive from both branch targets
simultaneously, the MERGE node blocks the branch
targets alternately in a round-robin fashion.

7. Resource sharing can occur between two mutually
exclusive nodes, guarded by a BRANCH and
MERGE pair, and with the same initiation interval
parameter bi and FIFO length li.

The experimental system generates a spectrum of hard-

ware configurations which are specialized for different

branch probabilities. The FIFO length parameter li for each

STYLES AND LUK: EXPLOITING PROGRAM BRANCH PROBABILITIES IN HARDWARE COMPILATION 1411

basic block in the design spectrum is set manually after

compilation. FIFO lengthparameter l canbemanually shaped

to minimize the possible impact of burstyness on perfor-

mance; however, automatic control of the FIFO queue length

is beyond the scope of this paper. The basis of specialization

between different configurations is the processing rate, or

initiation interval bi, of the individual basic blocks. The set of

initiation interval parameterizations b in the spectrum of

designs is determined through the following three steps:

1. Determine a set of valid initiation interval para-
meterizations bi for each basic block. This is achieved
by enumerating the initiation interval range of the
contained library blocks, as specified in the library
block database.

2. Enumerate valid initiation interval combinations.
The set of initiation interval parameterizations for
the complete design is formed from the combina-
tions of the valid initiation intervals for each basic
block.

3. Cull inefficient initiation interval combinations by
applying static flow heuristics. Certain initiation
interval combinations can be statically shown to be
suboptimal. A design is eliminated if a BRANCH
node exists where either output is of greater rate
(lower initiation interval) than the input or a MERGE
node exists where either input is of greater rate
(lower initiation interval) than the output.

5 PIPELINING NESTED LOOP CARRY

DEPENDENCIES

A loop carry dependency is defined as a true data

dependency which crosses loop iterations. In programs

containing for and while loops, loop carry dependencies are

introducedwhendata are carried across loop iterations. Loop

carry dependencies restrict the degree of parallelism which
can be expressed through hardware compilation. The key
difficulty is that loop carry dependencies force sequential
execution of successive loop iterations. In a loop carry
dependent loop, iterations n and n-1 cannot be executed by
successive issues to a long pipeline as loop iteration andmust
retire from computation before loop iteration n. In existing
hardware compilers, these restrictions preclude parallel
execution and pipelining, which are central to achieving
speedup over software in reconfigurable hardware. Instead,
all existing hardware compilation tools create circuits in
which loop iterations are run sequentially.

The tag-token control flow scheme described in Section 4
enables a subset of loop carry dependencies, nested loop
carry dependencies, to be parallelized and pipelined in
hardware. Compilation of nested loop carry dependencies
will be illustrated by two simple examples: Mandelbrot
fractal generation and repeatedNewton-Raphsonmethod. A
fractal is an object or quantity which displays self-similarity
on all scales. The Mandelbrot set is a fractal formed by the
sequence of complex numbers. TheMandelbrot set is a fractal
formed by the sequence of complex numbers

zð0Þ ¼ c; zðnþ 1Þ ¼ zðnÞ � zðnÞ þ c; n ¼ 0; 1; 2; . . . ;

where c is an initial coordinate in the complex plane. This
can be displayed in graphical form by plotting the number
of iterations required to “escape” an absolute bound (or
circle about the origin) in the complex plane. The source
code and top level dataflow graph for Mandelbrot fractal
generation are shown in Fig. 3. The outer loop passes over
different pixels, corresponding to different initial values of
c. The inner loop-carry loop calculates the Mandelbrot
sequence for a given pixel. The repeated Newton-Raphson
example refines estimates on the roots of a fifth degree
polynomial. It consists of a single nested loop with loop

1412 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

Fig. 3. Compiling nested loop carry dependencies in the Mandelbrot fractal generator. (a) Input program. (b) Top-level data flow graph. The loop

carry inner loop in (a) corresponds to the feedback path in the data flow graph.

carry dependencies that contains 16 multiplies, one divide,

and 10 add/subs.
The proposed solution to parallelizing and pipelining

recognizes that different iterations of the outer loop can be

computed in parallel. In the fractal example, this corre-

sponds to different pixels being calculated in parallel. A

single pipelined implementation of the nested loop carry

dependent loop is created (basic block 2). Fig. 4 illustrates

the progress of tokens over time through the loop carry

construct. Successive issues to inner loop pipeline are made

until the MERGE block desserts the “ready” counterflow

control signal, allowing different iterations of the outer loop

(pixels) to be introduced over successive cycles. When an

inner loop-carry loop iteration completes, one of two actions

occurs. If the escape condition occurs, the result is

propagated to one output of the BRANCH node and the

output of the loop-carry loop construct. If the escape

condition fails, the BRANCH and MERGE nodes recirculate

the data to the input of the inner loop pipeline while

blocking inputs from a successive outer loop iteration. The

utilization pattern shown in Fig. 4 demonstrates that, after

the pipeline is filled, all pipeline stages are kept active in

processing valid data.
Table 1 shows the results of compilation for Xilinx Virtex

series FPGAs, comparing area and speed against traditional

sequential execution. For Mandelbrot, when cycle-count

and clock period results are combined into total execution

time, pipelining and parallelization in the tag token fractal

generator accounts for 6.5 times speedup over sequential

execution at a cost of 52 percent area. For Newton-Raphson,

pipelining and parallelization in the tag token fractal

generator accounts for 55 times speedup over sequential

execution at a cost of 56 percent area.

6 ANALYTICAL MODELING

In this section, we describe analytical models of the area-
throughput design space for the control study and branch-
optimized compilation paths. These models are used to
determine the best compilation path and parameterization
from observed branch probability information. In the
experimental study presented in Section 7, branch prob-
ability information is collected at compile time by profiling.
In a future system, branch probability information could be
collected and acted upon at runtime. Analytical techniques
are of increasing importance, as severe time constraints on
the optimization process would almost certainly preclude
more complex modeling.

We model the cycle count throughput of branch-
optimized designs using a queuing network model.
Branch-optimized designs introduce finite queue lengths,
blocking, and the possibility of correlated arrival rates.
Queuing networks which model these properties are
generally solved by simulation [28]. We adopt a simple
analytical model based on an M=M=1=1=FCFS queuing
network with saturating external arrivals to node one [24].
This formulation models the behavior at steady state. The
formulation does not model the effects of burstyness,
instability, and intermittent blocking. In Section 7, we
experimentally demonstrate that these limitations do not
excessively compromise accuracy.

The model assumes knowledge of steady state branching
probabilities. Given information about steady state branch
probabilities, known variables in the model are:

1. The node initiation intervals vector ~bb 2 <N . In the
model, element bi is the exponentially distributed
mean initiation interval of node i. bi is set to the
initiation interval of the ith basic block.

2. The “routing matrix” Q 2 <N�N . In the model,
element Qij is the steady state probability that a

STYLES AND LUK: EXPLOITING PROGRAM BRANCH PROBABILITIES IN HARDWARE COMPILATION 1413

Fig. 4. Internal operations of Reconfigurable Dataflow Mandelbrot fractal generator over time. The dataflow graph for Mandelbrot is shown in Fig. 3a.

In the above figure, each column of circles represents the Mandelbrot design at a given time period. Each circle represents a pipeline stage in the

Mandelbrot design. Numbered pipeline stages indicate the outer loop iteration number (pixel number) for which calculations are in progress. This

utilization pattern shows that, after the pipeline is filled, all pipeline stages are kept active in processing valid data.

job, completing node i, routes to node j. A
BRANCH after node x to select between branch
targets y and z is modeled with Qxy þQxz ¼ 1. The
summation of probabilities is qi ¼

PN
j¼1 Qij � 1,

where i ¼ 1; 2; ::; N . If qi < 1, then a job, on complet-
ing node i, exits the queuing network with prob-
ability 1� qi. Q is filled with the known branch
probability information.

To estimate performance, we determine the maximum

sustainable external arrival rate to node one. In the model,

the external arrival rates of the different basic blocks are

captured in ~�� 2 <N where the ith element is the Poisson

process mean external arrival rate for node i. In our

compiled designs, input data from the outside environment

arrive at basic block one only. All other blocks have no

direct inputs from the outside environment. Hence, the

vector � is of the form ~�� ¼ ½�1; 0; 0; ::�, where we name the

unknown external arrival rate to the system as �1. The

procedure to determine the maximum sustainable value of

�1 is as follows:

1. Solve the traffic equations (1) to determine the net
arrival rate at each node in terms of the external
arrival rate at node one. The mean net arrival at each
node is an element in ~�� 2 <N . An equation is formed
for each element �i in terms of �1.

~��ðI �QÞ ¼ ~��: ð1Þ

2. Determine the maximum arrival rate at node one
given that the utilization of each node is less than or
equal to one. In the model, the utilization of each
node is an element in ~�� 2 <N . We maximize �1
subject to the utilization constraint (3).

�i ¼ �ibi ð2Þ

�i � 1 i ¼ 1; 2; ::; N: ð3Þ

Any design with �i ¼ 1, i 6¼ 1 for maximum �1 will

exhibit steady state blocking.

The control study compilation path is parameterized with

the global initiation interval bpipeline. Designs sustain

throughput 1=bpipeline for all branching probabilities.

Given observed stable state branch probabilities and a
target pipeline throughput, this model allows us to
determine a constraint on the minimum service rate
required at each node which will preserve a state of no
persistent blocking. In effect, the constraint states which
basic blocks can be slowed down and by how much these
blocks can be slowed down without affecting the overall
performance of the circuit. To minimize circuit area while
meeting a circuit speed specification, we lengthen the
initiation interval of different basic blocks subject to the
minimum service rate constraint. Area savings are made
possible as a slow, long initiation interval basic block circuit
can be implemented in less logic than a fast, short initiation
interval circuit.

7 CASE STUDIES

In this section, we compare the performance of both
compilation paths and evaluate the accuracy of analytical
models for two case study applications. The input programs
and their corresponding top-level data flow graphs for the
case study applications are shown in Fig. 6 and Fig. 7. The
test scenes are shown in Fig. 5.

Video feature extraction. The algorithm consists of edge
detection, thresholding, and 3� 3 sum-squared difference.
A detailed description can be found in [378], where a
multiple-FPGA implementation is reported. There are four
basic blocks and one branch.

Progressive refinement radiosity. Radiosity algorithms
simulate radiation of energy between surfaces. A full
description of the system can be found in [32]. Up to
90 percent of processing time in software radiosity is spent
in determining occlusion between surfaces in the environ-
ment. We consider hardware occlusion calculations using
stochastic ray casting and the Moller-Trumbore ray-triangle
intersection [25] test. Each intersection test consists of
several vector cross product and vector dot products. There
are 10 basic blocks guarded by three branches.

8 RESULTS

For the purposes of the experiments, all designs have a
uniform word length of 32 bits. All results use the Xilinx
XCV3200E-8 device. Arithmetic library blocks are gener-
ated using Xilinx Core GENERATOR 5.1.02i, with bi ¼ 1,

1414 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

TABLE 1
Comparative Area-Throughput Results for Sequential and Branch Optimized Compilation Paths

with Mandelbrot and Newton-Raphson Examples

2, 4, or 8 for multipliers and dividers. Other library
blocks do not scale for initiation interval. VHDL output
by the compiler is synthesized with Synplify Pro 7.1. Area
and clock rate are collected from Xilinx 5.1i. Runtime
basic block utilization and queue length behavior are
observed by simulation using ModelSim SE Plus. A
wrapper was constructed in Handel-C [2] to demonstrate
designs on the RC1000-PP FPGA platform. The relative
accuracy of the analytical model is calculated with the
formula ðanalytical �1 � observed �1Þ=observed �1.

Branch probability information is collected by profiling.
The software implementation of the video feature extraction
case study is profiled with the test sequence VQEG for 100
frames. Routing table entries relating to Fig. 6 are
Q12 ¼ 0:0891. The software implementation of the radiosity
case study is profiled for four refinements, involving
approximately 800K ray-triangle intersection tests. Routing
table entries relating to Fig. 7 are Q12 ¼ 0:520, Q23 ¼ 0:164,
and Q34 ¼ 0:367.

To illustrate the analytical model, the working for the
radiosity case study application is given below. The
routing matrix entries which relate to computation, as
shown in Fig. 7, are

Q12 ¼ 0:520

Q23 ¼ 0:164

Q34 ¼ 0:367:

The solutions to the traffic equations (1) are therefore

�1 ¼ 1=�1

�2 ¼ 0:520 � ð1=�1Þ
�3 ¼ 0:08528 � ð1=�1Þ
�4 ¼ 0:03129 � ð1=�1Þ:

The throughput-utilization constraint on each node (3) in
terms of the network performance measure �1 is therefore

b1 � �1

b2 � 1:923 � �1
b3 � 11:73 � �1
b4 � 31:96 � �1:

Maximizing �1 for design EB1 in Table 5 with
b ¼ ½1; 2; 8; 8�, we find that the second utilization constraint
is limiting and �1, the performance of the design, can be
estimated at 0.962 inputs processed per cycle.

The analytical and experimental results for both compi-
lation paths and case studies are shown in Fig. 8 and
Tables 2, 3, 4, and 5. Fig. 9 illustrates the effects of different
probabilities on the performance of both compilation paths
for the video feature extraction case study. The key results
of the experimental study are as follows:

1. The branch-optimized compilation path automati-
cally identifies the basic blocks that can benefit from

STYLES AND LUK: EXPLOITING PROGRAM BRANCH PROBABILITIES IN HARDWARE COMPILATION 1415

Fig. 5. Left and center panes show Video Quality Expert Group test sequence 10 (VQEG10) before and after video feature extraction. Right pane

shows the radiosity test scene.

Fig. 6. Input program and the corresponding top-level data flow graph for video feature extraction.

branch probability information and produces de-

signs with different parameterizations of b, the

initiation interval vector. For the video feature

extraction application, the compiler identifies basic

block 2 and produces 10 different designs; for the

progressive refinement radiosity application, the

compiler identifies basic blocks 1, 2, 3, and 4 and

produces 35 designs.

1416 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

Fig. 7. Input program and the corresponding top-level data flow graph for radiosity Moller-Trumbore ray-triangle intersection. Empty boxes are used

to denote basic blocks which contain no computation.

Fig. 8. Combined area-performance design space for video feature extraction (left) and radiosity (right) case study applications. The lines on the

graph represent the control study compilation path designs, with bpipeline varying from 1 to 8. The clusters of points are different branch-optimized

designs with different parameterizations of b. EC1, EC2, EC4, EB1, EB2, RC1, RC2, RC4, RB1, and RB2 correspond to the optimal designs for each

compilation path under different performance constraints as shown in Tables 2, 3, 4, and 5.

2. For a given area, branch-optimized designs can often
run significantly faster than non-branch-optimized
designs. In Fig. 8, for instance, EB1 (7,411 slices) is
slightly smaller than EC4 (7,514 slices) and, at
15.61 ns/pixel, is more than 3.2 times faster than
EC4 at 49.86 ns/pixel. Similarly, while RB1 and RB2
are, respectively, 22.6 percent and 13.5 percent larger
than RC4, they run 222 percent and 62 percent faster
than RC4.

3. For a given performance, branch-optimized designs
often require smaller areas than non-branch-opti-
mized designs. In Fig. 8, for instance, at 64 Mpixels/
sec, EB1 is 24 percent smaller than EC1 and, at
32 Mpixels/sec, EB2 is 18 percent smaller than EC2.
Similarly, at 70 Mray-triangle intersections per
second, RB1 is 27.5 percent smaller than RC1, while,
at 35 Mray-triangle intersections per second, RB2 is
27.5 percent smaller than RC2.

4. The analytical performance model is shown to be
accurate. For video feature extraction, the relative
error varies between 0.12 and 2:4� 10�5; for pro-
gressive refinement radiosity, the worst-case relative
error is smaller than 1:1� 10�4.

5. As the probability of a branch tends towards zero
or one, the branch becomes more biased and

branch-optimized compilation becomes more at-
tractive. Fig. 9 shows that, for video feature
extraction, branch-optimized compilation is favor-
able if branch probability Q12 is below a threshold of
Q12 < 0:41. As Q12 tends toward zero, the perfor-
mance gap between branch-optimized and non-
branch-optimized designs increases.

A second control experiment is the unbiased branch-
optimized design with equal resource allocation. For each of
the case study applications, this is the design generated by
the branch-optimized compilation path in which all basic
blocks run at an equal initiation interval. These designs are
marked as ENB and RNB in Tables 3 and 5. These results
enable us to quantify the overheads in terms of area and
clock rate of the branch-optimized control scheme over the
non-branch-optimized control scheme. Tables 2 and 3 show
that, for video feature extraction, a branch-optimized design
with uniform initiation interval one result a cycle (ENB)
requires 7.3 percent more area and runs at a 6.3 percent
slower clock rate than the non-branch-optimized design of
initiation interval one result a cycle (EC1). Tables 4 and 5
show that, for radiosity, a branch-optimized design with
uniform initiation interval one result a cycle (RNB) requires

STYLES AND LUK: EXPLOITING PROGRAM BRANCH PROBABILITIES IN HARDWARE COMPILATION 1417

TABLE 2
Complete Area-Throughput Design Space with Control Study
Compilation Path for Video Feature Extraction Case Study,

with Input Scenes Shown in Fig. 5

Designs EC1, EC2, and EC4 are the smallest control study compilation
path designs which meet performance constraings 64Mpixel/set,
32Mpixel/sec, and 16Mpixel/sec. These designs are labeled in Fig. 8.

TABLE 3
Selected Area-Throughput Resuts for Branch-Optimized Compilation Path in the Video Feature Extraction Case Study

with Input Scene Shown in Fig. 5

Ten designs are automatically generated. Designs EB1 and EB2 are wth smallest branch-optimized designs which meet performance constraint
64Mpixel/sec and 32Mpixel/sec. Clock period for both designs is 13.96ns. �1 can be calculated as �1 � b1. EB1 and EB2 are labeled in Fig. 8. Design
ENB is branch-optimized with nonbiased resourse allocation.

TABLE 4
Complete Area-Throughput Design Space with Control Study

Compilation Paths for Radiosity Case Study
with Input Scene Shown in Fig. 5

Designs RC1, RC2, and RC4 are the smallest branch-optimized designs
which meet performance constraing 70Mray-triangle intersections/sec,
33Mray-traingles intersections/sec, and 17.5Mray-triangle intersections/
sec. RC1, RC2, and RC4 are labeled in Fig. 8.

5.3 percent more area than the non-branch-optimized
design of initiation interval one result a cycle (RC1). These
results show that the more complex control scheme adopted
in the branch-optimized compilation scheme has limited
overhead in terms of resource usage and clock rate.

Our performance gains are supported by three char-
acteristics in the case study applications.

First, the branch probabilities for these applications are
biased. Fig. 9 shows that, asbranchprobabilitiesbecomemore
biased, an uneven weighting of resources between branched
becomes favorable. In the video feature extraction case study
application, the branch has a probability ofQ12 ¼ 0:0891 and,
so, execution is heavily weighted against basic block two. In
the radiosity case study application, the combined branch
probabilities of Q12 ¼ 0:520, Q23 ¼ 0:164, and Q34 ¼ 0:367
mean that execution is increasingly weighted against execu-
tion of basic blocks two, three, and four.

Second, significant computational resources are guarded
by branches and those branches are biased against
computationally expensive paths. In the video feature
extraction case study, the branch is biased against the
computationally expensive Sobel filter in basic block two.
This enables significant resources to be saved in slowing
down this basic block while preserving performance. In the
radiosity case study, branches are biased against the
computation in basic blocks two, three, and four. These
blocks contain the majority of the computation involved in
the Moller-Trumbore ray-triangle intersection and signifi-
cant resources are saved by slowing down these blocks
while preserving performance. This effect is boosted by the
absence of conditions, as defined in Section 4 for resource
sharing between basic blocks guarded by branches.

Third, basic blocks allow scalable performance. Where it
is identified that particular basic blocks can be slowed
without hindering performance, significant area savings are
possible in doing so. In the case study applications, this is
principally achieved by changing the degree of sequentia-
lization and pipelining in multiplier circuits.

Clearly, any program which does not exhibit these
properties will not stand to gain from branch-optimized
compilation. Indeed, Fig. 9 shows that, if branch probabil-
ities are unfavorable, a non-branch-optimized design is
more competitive.

9 CONCLUSION

This paper explores using branch probability information to
optimize hardware compilation. We demonstrate that this
technique can result in significant improvements in area
and performance. Future work will focus on extending the
analytical model and compilation system. The analytical
model will be extended to estimate the interaction of
burstyness with finite buffer lengths. The compilation
system will be extended to support array dependency
analysis and global dependency analysis techniques. In
addition, we wish to investigate compiling programs which
exhibit large amounts of mutable state and have inter-
spersed READ and WRITE memory operations. This will
require an extension of the flow control scheme, which may

1418 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004

TABLE 5
Selected Area-Throughput Results for Branch-Optimized Compilation Path, Radiosity Case Study with Input Scene in Fig. 5

Thirty-five designs are automatically generated. Designs RB1 and RB2 are the smallest branch-optimized designs with approximate performance
70Mray-triangle intersections/sec and 35Mray-triangle intersections/sec. �1 can be calculated as �1 � b1. Processing rate can be calculated as 1/
Itime(ns). RB1 and RB2 are labeled in Fig. 8. Design RNB is branch-optimized with nonbiased resource allocation.

Fig. 9. Minimal area-time versus probability of branch Q12 for branch-
optimized and control study compilation paths. Video feature extraction
case study application is shown with performance constraint of
64Mpixels/sec. The observed probability for Q12 of 0.0891 is indicated
with a vertical line through the graph. EC1 and EB1 correspond to the
optimal designs for each compilation path as shown in Table 2 and
Table 3. The trend line for branch-optimized compilation path with
different probabilities is produced using our analytical model. The
intersection of trend lines for the branch-optimized compilation path and
control study compilation path shows that branch-optimized compilation
is favorable when Q12 < 0:41. As the probability Q12 decreases, branch-
optimized compilation becomes increasingly attractive. EB1 performs
worse than the analytical model trend line due to intermittent blocking.

entail a separate memory unit with blocking or an

implementation of I-structures [33]. We are currently

evaluating the performance of our approach for tasks such

as OpenGL rendering, which combine loop carry depen-

dencies and biased branches. In the long term, we intend to

develop a dynamically reconfigurable system in which

branch optimization techniques are applied at runtime.

ACKNOWLEDGMENTS

The authors would like to thank Danny Lee, David Thomas,

Gabriele Figueiredo, Tim Todman, and Shay Seng for their

comments and suggestions. The support of Celoxica

Limited, Xilinx, Inc., and the UK Engineering and Physical

Sciences Research Council (Grant number GR/N 66599 and

GR/R 31409) is gratefully acknowledged.

REFERENCES

[1] Elixent d-fabrix and rap, http://www.elixent.com/products/
white_papers.htm, 2003

[2] Celoxica Limited, Handel-C Language Reference Manual, version 3.1,
document number RM-1003-3.0, 2002.

[3] “A Look into Quicksilver’s Acm Architecture,” http://
www.qstech.com/pdfs/a_look_into_quicksilver.pdf, 2002

[4] M. Budiu and S.C. Goldstein, “Compiling Application-Specific
Hardware,” Field-Programmable Logic and Applications, pp. 853-863,
Springer, 2002.

[5] W. Luk, N. Shirazi, and P.Y.K. Cheung, “Modelling and
Optimising Run-Time Reconfigurable Systems,” Proc. IEEE Symp.
Field-Programmable Custom Computing Machines, 1996.

[6] D. Cottet, R. Enzler, T. Jeger, and G. Tröster, “High-Level Area
and Performance Estimation of Hardware Building Blocks on
FPGAs,” Field Programmable Logic and Applications, pp. 525-534,
Springer, 2000.

[7] P.J. Denning, “The Working Set Model for Program Behavior,”
Proc. ACM Symp. Operating System Principles, pp. 15.1-15.12, 1967.

[8] G. De Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[9] A.S. Dhodapkar and J.E. Smith, “Managing Multi-Configuration
Hardware via Dynamic Working Set Analysis,” Proc. 29th IEEE/
ACM Int’l Symp. Computer Architecture, pp. 233-244, 2002.

[10] A.J. Field and P.G. Harrison, “A Methodology for the Performance
Modelling of Distributed Cache Coherent Multiprocessors,” The
State-of-the-Art in Performance Modeling and Simulation, K. Bagchi,
J. Walrand, and G.W. Zobrist, eds., pp. 55-92, Gordon and Breach,
1998.

[11] M.J. Flynn, Computer Architecture: Pipelined and Parallel Processor
Design. Sudbury, Mass.: Jones and Bartlett, 1995.

[12] T. Harriss, R. Walke, B. Kienhuis, and E. Deprettere, “Compilation
from Matlab to Process Networks,” Design Automation for
Embedded Systems, vol. 7, pp. 385-403, 2002.

[13] P.A. Jackson, J.L. Tripp, and B.L. Hutchings, “Sea Cucumber: A
Synthesizing Compiler for FPGAs,” Field Programmable Logic and
Applications, pp. 875-885, Springer, 2002.

[14] D. Cottet, T. Jeger, R. Enzler, and G. Tröster, “The Performance
Prediction Model,” technical report, Electronics Lab, Swiss
Federal Inst. of Technology (ETH) Zurich, 2000.

[15] L. Kleinrock, Queueing Systems. Volume I: Theory. John Wiley &
Sons, Inc., 1975.

[16] L. Kleinrock, Queueing Systems. Volume II: Computer Applications.
John Wiley & Sons, Inc., 1976.

[17] M.S. Lam, R.P. Wilson, R.S. French, and J.L. Hennessy, “Suif: An
Infrastructure for Research on Parallelizing And Optimizing
Compilers,” SIGPLAN Notices, vol. 29, no. 12, pp. 31-37, 1994.

[18] R. Leupers and P. Marwedel, Retargetable Compiler Technology for
Embedded Systems: Tools and Applications, Kluwer Academic, 2001.

[19] W. Luk, T.K. Lee, J.R. Rice, N. Shirazi, and P.Y.K. Cheung,
“Reconfigurable Computing for Augmented Reality,” Proc. IEEE
Symp. Field-Programmable Custom Computing Machines, 1999.

[20] X.-J. Zhang, K.-W. Ng, and W. Luk, “A Combined Approach to
High-Level Synthesis for Dynamically Reconfigurable Systems,”

Field Programmable Logic and Applications, pp. 361-370, Springer,
2000.

[21] S. McMillan and S. Guccione, “Partial Run-Time Reconfiguration
Using jrtr,” Field Programmable Logic and Applications, Springer,
2000.

[22] K.N. McNall and A.E. Casavant, “Automatic Operator Config-
uration in the Synthesis of Pipelined Architectures,” Proc. 27th
ACM/IEEE Design Automation Conf., pp. 174-179, 1990.

[23] O. Mencer, H Hübert, M. Morf, and M.J. Flynn, “StReAm: Object-
Oriented Programming of Stream Architectures Using PAM-
Blox,” Field-Programmable Logic: the Roadmap to Reconfigurable
Systems, pp. 595-604, Springer, 2000.

[24] I. Mitrani, Probabalistic Modelling. Cambridge Univ. Press, 1998.
[25] T. Moller and B. Trumbore, “Fast, Minimum Storage Ray-Triangle

Intersection,” J. Graphics Tools, vol. 2, no. 1, pp. 21-28, 1997.
[26] S. Ong et al., “Automatic Mapping of Multiple Applications to

Multiple Adaptive Computing Systems,” Proc. IEEE Symp. Field-
Programmable Custom Computing Machines, pp. 218-227, 2001.

[27] U. Prabhu and B.M. Pangrle, “Global Mobility Based Scheduling,”
Proc. IEEE Int’l Conf. Computer Design: VLSI in Computers and
Processors, pp. 370-373, 1993.

[28] R.O. Onvural, “Survey of Closed Queueing Networks with
Blocking,” ACM Computing Surveys, vol. 22, no. 2, pp. 83-121,
June 1990.

[29] J. Park, K.R. Shesha Shayee, and P.C. Diniz, “Performance and
Area Modeling of Complete FPGA Designs in the Presence of
Loop Transformations,” Field Programmable Logic and Applications,
Springer, 2003.

[30] H. Schmit, “Incremental Reconfiguration for Pipeline Applica-
tions,” Proc. IEEE Symp. Field-Programmable Custom Computing
Machines, 1997.

[31] S. Singh and P. James-Roxby, “Lava and jbits: From Hdl to
Bitstream in Seconds,” Proc. IEEE Symp. Field-Programmable
Custom Computing Machines, 2001.

[32] H. Styles and W. Luk, “Accelerating Radiosity Calculations Using
Reconfigurable Platforms,” Proc. IEEE Symp. Field-Programmable
Custom Computing Machines, pp. 279-281, 2002.

[33] A.H. Veen, “Dataflow Machine Architecture,” ACM Computing
Surveys, vol. 18, no. 4, pp. 365-396, 1986.

[34] M. Weinhardt and W. Luk, “Pipeline Vectorisation,” IEEE Trans.
Computer-Aided Design, vol. 20, no. 2, pp. 234-248, Feb. 2001.

[35] J.M. Stone et al., “Stream-Oriented Fpga Computing in the Stream-
C High Level Language,” Proc. IEEE Symp. Field-Programmable
Custom Computing Machines, 2000.

[36] W. Wang, A. Raghunathan, N.K. Jha, and S. Dey, “High-Level
Synthesis of Multi-Process Behavioral Descriptions,” Proc. IEEE
Int’l Conf. VLSI Design, pp. 467-473, 2003.

[37] H. Ziegler, B. So, M. Hall, and P.C. Diniz, “Coarse-Grain
Pipelining on Multiple FPGA Architectures,” Proc. IEEE Symp.
Field-Programmable Custom Computing Machines, pp. 77-86, 2002.

Henry Styles is a PhD student in the Depart-
ment of Computing, Imperial College London.
His main research interests are compilation of
level languages into hardware, runtime reconfi-
guration, performance modeling, and computer
graphics.

Wayne Luk is a professor of computer en-
gineering in the Department of Computing,
Imperial College London and leads the Custom
Computing Group there. His research interests
include theory and practice of customizing
hardware and software for specific application
domains, such as graphics and image proces-
sing, multimedia, and communications. Much of
his current work involves high-level compilation
techniques and tools for parallel computers and

embedded systems, particularly those containing reconfigurable devices
such as field-programmable gate arrays.

STYLES AND LUK: EXPLOITING PROGRAM BRANCH PROBABILITIES IN HARDWARE COMPILATION 1419

