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Abstract

We develop reconfigurable designs to support radiosity,
a computer graphics algorithm for producing highly realis-
tic images of artificial scenes, but which is computationally
expensive. We implement radiosity using stochastic ray-
tracing, which affords both instruction-level and data par-
allelism. Our designs are parameterisable by bitwidth, al-
lowing trade-offs between image quality and computation
speed. We measure the speed of our designs for a Xil-
inx XC2V6000 device in the Celoxica RC2000 platform:
at 53MHz it can run up to five times faster than a soft-
ware implementation on an Athlon MP 2600+ processor
at 2.1GHz. We estimate that retargeting our design for a
Virtex-4 XCVSX55 device can result in over 160 times soft-
ware speed, while a Spartan-3 XC3S5000 device can run
more than 40 times faster than the software implementation.

1. Introduction

Real-time methods for calculating lighting in computer
graphics use local illumination methods, where the colour
of a given point on a surface depends only on the properties
of that surface, and of a set of light sources. To produce
more realistic images, we can use global illumination meth-
ods, where all surfaces in a graphics scene are considered as
potential sources of illumination for all other surfaces. One
specific technique for solving the global illumination prob-
lem is radiosity. This involves modelling the balance of en-
ergy between surfaces in a view-independent manner, hence
accurately calculating the diffuse illumination of all objects
in the scene. Unlike other graphics algorithms like ray-
tracing, radiosity can model diffuse lighting effects, such
as the bleeding of colours between nearby objects. Radios-
ity is an extremely computationally expensive process; it
has mainly been used by film studios with large computers
and much time to calculate lighting solutions. For example,
to calculate the lighting for the seven-minute film Bunny
by Blue Sky Productions took four weeks on a Compaq

AlphaServer RenderPlex system using a total of 164 pro-
cessors [1]. Although the radiosity technique is computa-
tionally expensive, the majority of calculations are involved
in repetitively answering a simple question: “does this line
segment intersect this triangle?”. This paper investigates us-
ing reconfigurable hardware to accelerate the calculation of
a radiosity solution.

The achievements covered by this paper include: (a) a
hardware architecture for accelerating calculations involv-
ing intersections of triangles and line segments (section 3),
(b) optimisations including rearranging computation order-
ing to reduce memory bandwidth, and concurrent execution
of hardware and software elements (section 4), (c) imple-
mentation and evaluation of the proposed approach, show-
ing that a single FPGA with clock speed almost 40 times
slower than a microprocessor can outperform the latter by
up to 5 times (section 5).

Although our design does not take advantage of run-time
reconfiguration, and thus could be implemented as an Ap-
plication Specific Integrated Circuit, implementing it on re-
configurable hardware has two key benefits: (1) our generic
description, parameterised by bitwidth, can be used to cre-
ate several designs with different speed and fidelity trade-
offs, allowing users to choose their preferred solution to suit
particular domains; (2) we have studied FPGA-specific op-
timisations, such as the use of Virtex II block multipliers.

2. Background and related work

The radiosity method [2, 3] models the balance of energy
between surfaces in a view-independent manner, hence ac-
curately calculating the diffuse illumination of all objects in
the scene. These objects are generally made up of polygonal
faces. These faces are further split up into patches, which
are the individual units considered by the radiosity calcu-
lations. The radiosity B of a surface is the energy leaving
the surface per unit area [4]. This is the sum of the emitted
energy E and the reflected energy. For a small area dA, we
have:

BdA = EdA + RI



where R is a constant, the reflectivity of a surface, and I is
the incident energy. The incident energy Ii at each patch i
is collected from all other patches:

Ii =
∑

BjFij

where Fij is a constant which links patch i and patch j
called the form factor. This gives:

Bi = Ei + Ri

∑

j

BjFij

The aim is to solve this for all Bi, that is, to calculate
the radiosity of every patch in the scene. The form factor
between patches i and j is given by:

Fij =
Vijcos(φi)cos(φj)Aj

πr2

where φi and φj are the angles between the line connecting
the centres of the two patches and the normal of each patch,
Aj is the area of patch j, and r is the distance between the
centres of the two patches. This is illustrated in figure 1. Vij

is the visibility: how much of patch j is visible from patch
i. Assuming the patches are small, Vij can be simplified
by considering only whether there is a clear line of sight
between the centres of the two patches:

Vij =
{ 1 if a clear line of sight exists

0 otherwise

The above problem can be reformulated as a matrix
equation:
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This can be solved using the Gauss-Seidel iterative
method:

Initially : B0
i = Ei

kthiteration : Bk
i = Ei + Ri

∑

Bk−1
j Fij

This method allows a partial solution to be rendered after
each step, so that the results of the calculation can be pre-
viewed. The method of progressive refinement [6] is a slight
alteration to the above method, which can considerably re-
duce the number of iterative steps required. Evaluation of
a single radiosity value using the Gauss-Seidel method is a
process of gathering. For the patch whose radiosity value
we wish to compute, all of the other patches are examined,

Figure 1. The angles and distance used in
form factor calculations

and the amount of energy they pass to the first patch is cal-
culated. This is essentially solving the matrix equation by
considering one row at a time.

Another way to solve the matrix equation is to consider a
column at a time. If in a given iteration Bi changes by ∆Bi,
the radiosity of each other patch will need to be updated by:

∆Bj = RjFji∆Bi

giving:

Bk
j = Bk−1

j + RjFji∆Bi

Rather than the gathering of the Gauss-Seidel method,
this is a process of shooting. For each iteration, a patch
is chosen and its energy is distributed to all of the other
patches in the scene. This allows us to reduce the number of
steps by always choosing to distribute from the patch with
the largest amount of energy. The computation ends when a
simple heuristic is satisfied: if the maximum unshot energy
(that yet to be distibuted) is less than a certain fraction of
the maximum initial energy, then the computation has con-
verged. For example, if the maximum unshot energy is less
than 0.5% of the maximum initial energy, 99.5% conver-
gence has been achieved.

Calculating the visibility term between two patches is
the most computationally expensive part of the radiosity al-
gorithm. Given patch i and patch j, a line segment from
the centre of patch i to the centre of patch j can easily be
constructed. Using the above approximation, the visibility
term is a simple test: does this line segment intersect any
other triangle? If it does, we consider the patches to be non-
visible from each other, and thus set Vij to be zero. If there
is no intersection, the visibility term is set to one.

Although the intersection calculations are simple, the
overall complexity is prohibitive. For each step in the algo-
rithm, energy needs to be transferred from a single source



patch to every face. For m faces in the scene, and n patches,
for a single step each ray needs to be tested for intersection
against every face, leading to O(mn) intersection calcula-
tions. Given that the number of steps required to reach a cer-
tain level of convergence is linear in the number of patches,
the radiosity algorithm overall needs O(mn2) such calcu-
lations. To reduce the number of intersection calculations
necessary, spatial subdivision methods can be used; these
typically enclose several patches within a bounding volume;
if rays do not intersect the bounding volume, they cannot in-
tersect the patches contained within.

We now consider related work. Styles and Luk [12]
study the feasibility of implementing radiosity on recon-
figurable hardware. They show that a throughput of 5.4
million ray-triangle intersections is possible using a Xil-
inx XCV2000E-6 FPGA chip, and estimated 22.4 mil-
lion intersections per second should be achievable with an
XC2V8000-4 device. Ko and Ng [13] develop an architec-
ture that reconfigures between visibility calculations and ra-
diosity distribution, and attain roughly four times speedup
over software. Their design moves configurations to and
from the hardware, rather than just data, as we do. It is pos-
sible that we could use this technique with our design, if
host to hardware bus speed becomes a limiting factor.

There are several examples of using reconfigurable hard-
ware to accelerate ray-tracing, a related rendering algorithm
which relies heavily on ray-object intersection calculations.
Fender and Rose [14] use two Virtex 2000E FPGAs for their
ray-tracing architecture, and achieve a peak 23 times speed
up over a software implementation for a scene with 512000
triangles, and an average speed up of 9 times over a range
of scenes. The SaarCOR project [15] is another hardware
architecture for ray-tracing, which uses the same RC2000
board as is used in this paper. The peak speedup achieved
by the SaarCOR team is 4.7 times, with an average improve-
ment of 3.7 times. Ray-tracing requires not only intersec-
tion tests to be computed, but also lighting coefficients. The
SaarCOR design thus uses a novel method which can cal-
culate both an intersection and a ray-normal dot product in
a single operation. A more efficient ray-triangle intersec-
tion method should be used if intersection calculations are
all that is required, as in this paper.

Some work has also been done on using programmable
graphics hardware to accelerate radiosity calculations. This
hardware is not reconfigurable, rather it is programmable
in the same sense as a general purpose CPU. However, the
graphics hardware still runs independently of the host CPU.
Coombe, Harris and Lastra [16] use an Nvidia Geforce
FX5900 graphics card hosted on a Pentium 4 running at
1.8 GHz and achieve an average of 263 lighting steps per
second. In contrast, the design we develop is capable of
producing 271 light steps per second; details can be found
in Section 5.

3. Mapping to hardware

Since the visibility calculations are by far the most com-
putationally demanding part of a radiosity solver, we choose
to implement these on the reconfigurable hardware, whilst
the rest of the steps of the algorithm are carried out on the
host PC. In this section, we discuss the issues involved in
developing a hardware architecture to perform these calcu-
lations:

• Evaluating a ray-triangle intersection algorithm to use,
in section 3.1

• Increasing the parallelism of an architecture for this
algorithm, in section 3.2

• Using fixed-point arithmetic, in section 3.3
• Limiting the widths of fixed-point intermediate vari-

ables, in section 3.4

3.1. Ray-triangle intersection

There are several ray-triangle intersection algorithms
which could have been used for this paper. We use Möller
and Trumbore’s algorithm [17] as it does not require the
plane equation of the triangle to be stored or computed. This
saves memory bandwidth as the plane equations need not be
passed to the reconfigurable hardware.

The algorithm proceeds as shown in figure 2, where
“∧” represents a vector product and “·” represents a scalar
product. The inputs to the algorithm are the five three-
dimensional vectors: start (Line segment start position), di-
rection(Line segment end position), v0 (Triangle vertex 0),
edge1 (Triangle edge 1) and edge2 (Triangle edge 2).

To calculate values for u, v and t, a division by det is
needed, which is expensive in hardware resources. Note
that the only operation performed on u, v and t after their
computation is a comparison: does the value lie in [0, 1]?
The division can thus be removed by altering the compari-
son. Rather than testing whether 0 < u

det
< 1 a calculation

which gives the same results is 0 < u
sign(det) < |det|. The

second calculation avoids the division, consuming fewer
hardware resources. The sign of det can easily be taken
since det is a two’s complement number, and hence its sign
will be given simply by the value of its most significant bit.
The modulus of det can be calculated by negating det to
give −det, and then using the sign bit to select between det
and −det.

3.2. Increasing parallelism

The data dependency graph in figure 3 reveals
instruction-level parallelism. The temporary variables
temp1, temp2, temp3, det, u, v and t depend on each other
and on the input values. In this graph, an edge from one



Figure 2. Flowchart of Möller-Trumbore algo-
rithm

variable to another means that the second variable depends
on the first. We can split the algorithm into three stages of
calculation, computing several variables in parallel at each
stage: Stage 1 (temp1, temp2), Stage 2(temp3, det) and
Stage 3 (u, v, t).

Figure 3. Data dependency graph for Möller-
Trumbore algorithm

Also, the operations required once det has been com-
puted, such as calculating |det|, can be performed in par-
allel with the calculation of u, v and t, since the value of
|det| is not required until the necessary vector operations to
compute u, v and t have been completed. This leads to the
architecture given in figure 4.

The individual operations which calculate these quanti-

Figure 4. Architecture for Möller-Trumbore al-
gorithm. Most blocks are pipelined in our im-
plementation in section 5.1.

ties can also take advantage of parallelism. Calculating a
vector product requires six multiplications and three sub-
tractions to be performed. The multiplications can be per-
formed in parallel, as can the subtractions, which rely on
the multiplication results. The scalar product requires three
multiplications, all of which can be parallelised, but the re-
sults then need to be added together. Thus two serial addi-
tions are required after the multiplications are complete.

3.3. Fixed-point arithmetic

In our software implementation of the radiosity solver,
all calculations are done using floating-point arithmetic. To
maximise the speed and minimise area, the hardware im-
plementation uses fixed-point arithmetic. To simplify the
conversion from floating-point to fixed-point, all scenes are
scaled such that the X, Y and Z coordinates of their vertices
lie in the range [0, 1]. Thus, the absolute positions which
need to be passed to hardware, for example the positions
of vertices, can be converted into an unsigned fixed-point
format with no bits before the binary point, and N bits after-
wards. Differences between two points, for example the di-
rection vector of a line segment, can be expressed in signed
fixed-point with a single bit before the binary point.

Fixed-point arithmetic has a much smaller dynamic
range than floating-point arithmetic in a similar bitwidth.
However, by constraining the scene within the range [0, 1],
the dynamic range of values within the Möller-Trumbore
algorithm is similarly constrained.

Our fixed-point architecture is parameterised by the
number of binary places used. This allows users to manu-
ally trade speed for fidelity: more binary places give greater
fidelity at the expense of speed; section 5.1 shows the trade-
off between speed and number of binary places.



3.4. Reducing intermediate variable widths

Calculating the result of an intersection using Möller and
Trumbore’s algorithm requires the calculation of two vector
cross products and four dot products. Including the final
multiplication of u, v and t by the sign of the determinant,
a total of 27 multiplications, the algorithm requires 27 mul-
tiplications in total. Multiplication of an A.B fixed-point
number (that is, one with A integer bits and B fractional
bits) by a C.D fixed-point number produces a result with A
+ C bits before the binary point and B + D bits after, result-
ing in an (A+C).(B+D) fixed-point number. Since the result
of one multiplication is often an argument to another (see
figure 4), significant fan-out can occur, leading to quanti-
ties with very large fractional parts. If all calculations are
performed to full precision and numbers are left unadjusted,
the wide logic required to perform arithmetic on the num-
bers causes a substantial reduction in maximum clock speed
and an increase in the area required for the circuit.

In order to prevent this from causing a problem, all re-
sults from multipliers are truncated so that they have the
same number of bits after the binary point as the original
inputs to the circuit. Thus, the number of fractional bits in
the values throughout the algorithm are the same.

The number of integer bits does not grow as quickly as
the number of fractional bits, since there are many fewer in-
teger bits to begin with. For example, if two inputs to the
pipeline are 1.15 fixed-point numbers, with one integer bit
and 15 fractional bits, multiplying them together will result
in a 2.30 number. Multiplying this by another, similar prod-
uct leads to a 4.60 fixed-point number. Clearly the number
of fractional bits is becoming very large, whereas the num-
ber of integer bits has only increased by 3. Furthermore,
none of the integer bits can be discarded, since doing so
would lead to the calculations overflowing the integer bits.
Thus, only the fractional bits are truncated, so in this exam-
ple, the number would be reduced to 4.15 format.

4. Optimising hardware

The architecture developed thus far has several opportu-
nities for optimisation. In this section we discuss some of
the tweaks applied to both the hardware and software sides
of the radiosity solver. Specifically, these are:

• Reducing memory bandwidth by rearranging the order
of computation, in section 4.1

• Exploiting parallel computation by creating two copies
of the intersection pipeline running in parallel, in sec-
tion 4.2

• Using the time during which the FPGA is calculating
intersection results to perform useful calculations on
the host PC, in section 4.3

• Increasing the upper bound on the number of faces and
patches in scenes for which the hardware can be used,
in section 4.4

4.1. Reducing memory bandwidth

The pipeline delivers a result every cycle. As inputs,
the pipeline requires 15 fixed point numbers, (five 5 three-
dimensional vectors): line segment start position, line seg-
ment end position, triangle vertex 0, triangle edge 1 and
triangle edge 2.

For a single source patch, the line segment start position
is fixed. For each destination patch there will be a fixed line
segment end position. Every face of the scene needs to be
tested for intersection with this line segment. To deliver one
result per cycle therefore, 9 fixed point numbers need to be
input to the pipeline per cycle.

We can significantly reduce memory bandwidth by rear-
ranging the order of computation. Rather than fixing a line
segment and testing for intersection against all of the faces,
we fix a face, and test against all of the line segments from
the source patch to the destination patches. Since all of the
line segments will begin at the centre of the source patch,
only the line segment end position need be updated each
cycle. Thus only 3 fixed point numbers need to be input to
the pipeline per cycle.

If 9 fixed point numbers were required per cycle, each
of at least 16-bit precision, these would need to be read
from five 32-bit wide memory banks. Assuming six mem-
ory banks are available, in order to fit all of the data required
into those banks, all line segment data would have to be
placed in the final bank. Once a line segment has been con-
sidered, its data could be overwritten in the sixth memory
bank by the result of its intersection tests.

Reducing the requirement to 3 fixed-point numbers per
cycle simplifies the design of the memory system. One of
the six banks of memory can be used to hold the face data,
and one bank each can be given to the X, Y and Z coordi-
nates of the line segment end positions. This way, the line
segment coordinates can be up to 32 bits wide, and all three
coordinates can be read in parallel in a single cycle. Once
the result has been computed, this can be extended to 32
bits and placed in a fifth memory bank. This memory or-
ganisation and the way it is used to stream data through the
pipeline is shown in figure 5.

If there are six or more memory banks then we use
the following strategy. Our basic architecture requires five
memory banks, but some platforms have eight banks or
more. Each ray intersected in parallel requires three banks,
so N rays require 3N + 2 banks. For platforms with six
or seven banks, we can modify this strategy to place the
rays in one or two banks. Those banks then feed a pipeline
which is deliberately run slower than the main pipeline, be-



cause it is only fed by one or two banks, running at one third
(for six banks) or two thirds (seven banks) of the speed of
main pipeline. The speedup over five banks is then 4/3 (six
banks) or 7/3 (seven banks).

Figure 5. Example assignment of memory
banks

4.2. Parallel computation

As shown in the previous subsection, it is possible to re-
duce the data required by the pipeline to only three fixed-
point numbers per cycle. Another benefit of this reduction
is that if the fixed-point coordinates are restricted to being
16-bits wide, each 32-bit word in the memory bank holding
line segment X coordinates can hold two numbers. Thus,
two X coordinates can be read in per cycle. Similarly, two
Y and Z coordinates can be read per cycle. Two results
can easily be written in a single cycle, since each result is
only a single bit. If two copies of the pipeline can be fitted
onto the reconfigurable device in parallel, it is possible to
increase throughput to two results per cycle. This is a kind
of data parallelism: the same instruction (the intersection
algorithm) is simultaneously applied to several data items
(the rays).

To take advantage of the presence of two copies of the
pipeline, the wrapper is altered slightly. Whenever the face
data or ray start data is read from memory, this is passed
to both copies of the pipeline in parallel. When ray data is
read, each individual 32-bit word contains a coordinate for
each of two rays, so this is split and one coordinate is sent
to either pipeline. Thus the two copies of the pipeline allow
the calculations to occur with two rays at once, but the same
triangle is used as a potential shadow caster in each copy.

One slight complication with this method is that it is no
longer possible to compute the logical-or of the result of
the intersection being carried out with the result already in
memory by simply ignoring the result if it is not blocked.

This is because each memory word will now hold two re-
sults, and the logical-or of the two results needs to be taken
independently. Thus it is necessary to read back the previ-
ous result from memory and logical-or the results together
explicitly.

4.3. Concurrent execution: software and hardware

For a single batch of rays and triangles, the host program
uploads data to the FPGA board and then informs the chip
that the data is present. The FPGA will then begin pro-
cessing the data and will signal an event, via an interrupt,
once calculations are complete. The algorithm described in
the previous section has the host PC simply waiting for this
event immediately it has told the card to begin processing.

Although the FPGA is responsible for the intersection
calculations, the host PC must still calculate the form fac-
tors between the source and each destination patch. This
will be modulated by the intersection test results once they
are available. If an array of a large enough size to hold one
floating-point number per patch is created on the host PC,
the form factors can all be computed in parallel to the in-
tersection tests occurring on the FPGA board. These can be
stored in the array and read back when the energy transfer
is actually calculated. Some pseudocode demonstrating this
is shown below:

UploadData(rays, triangles);
WriteFPGA(FPGA_START_CALCULATION_ADDRESS, 1);
//Calculate form factors whilst the hardware
// calculates visibility terms
float formFactors[numPatches];
for(int i=0; i<numPatches; ++i)

formFactors[i]=(cos(phi1)*cos(phi1)
* shootingPatch.area)/(PI*r*r);

//Wait until calculations complete
WaitForEvent(interruptEvent);
//Continue to distribute energy
//...

4.4. Raising upper bound on number of faces and
patches

One limitation of the implementation described in the
previous section is that, with limited memory banks, all the
patches from the scene must fit in one bank. For example,
4MB banks (common on many reconfigurable platforms)
limit us to scenes with fewer than 116,000 (' 4MB divided
by 9) faces and 220 patches. Very large scenes may contain
more faces than this limit, and scenes where very fine detail
is required may include more patches than can be processed.

To cope with an increased number of faces, multiple uses
of the FPGA hardware can be made in a single lighting step.
The first 116,000 faces can be considered as usual, and the



results read back. The calculations can then be done again,
using the next set of faces. Once the results for each set of
faces are known, a simple operation will combine them to
give overall results; a ray is blocked overall if it is blocked
in any of the result sets. If an increased number of patches
is required, again multiple uses of the hardware can be used
to calculate full results. Since the rays are streamed through
the hardware independently, all that is required is to calcu-
late intersections using the first set of rays, then upload the
second set of rays and calculate results for them.

These two techniques can be combined to compute ra-
diosity solutions for scenes with arbitrary numbers of faces
and patches. The first step is to split the rays into batches
of up to 220 each and upload the first batch. Then, for each
set of up to 116,000 faces, calculate the intersections with
the rays, combining the results to give overall intersection
values for each of the first 220 rays. The calculations can
then be repeated for each further batch of rays.

By doing the calculation in this order, rather than upload-
ing a batch of faces at a time and streaming through all of
the rays, the amount of traffic over the PCI bus is reduced
since the face data for a single calculation run is only 4MB,
whereas the ray data is 12MB. Also, after the first batch
of rays have been tested against all of the faces, the results
can be used to transfer energy and then discarded, so that
enough memory to hold the results of 220 intersection tests
is required on the host PC, rather than requiring the tempo-
rary storage of results for all of the rays.

5. Implementation and evaluation

5.1. Implementation

The hardware implementing the Möller-Trumbore algo-
rithm, shown in figure 4, is generated using Xilinx System
Generator [9] and driven by a wrapper written in Celox-
ica’s Handel-C [8]. The pipeline consists of 18 addi-
tion/subtraction blocks and 27 multipliers, as well as some
logic elements. It has a total latency of 37 cycles and a
throughput of one result per cycle.

5.2. Varying pipeline precision

The pipeline for ray-triangle intersection takes fixed-
point numbers with zero or one integer bit and a fixed num-
ber of fractional bits as inputs. The number of fractional bits
can be varied to trade off speed and size versus accuracy.
The following table shows the results, from place and route
reports, of instantiating a single copy of the pipeline, with-
out any support circuitry, on the XC2V6000 FPGA chip.

Fractional Bits Max. Clock No. of Slices
Rate / MHz (% of 33792)

7 219.5 1951 (5.77%)
15 185.5 5471 (16.2%)
23 132.3 10615 (31.4%)
31 59.6 16889 (50.0%)

These results show that as the precision of the calcula-
tions are increased, the size of the implementation increases
and the maximum speed decreases. This corresponds with
what would be expected; as the width of the operators in
the circuit increases, their size increases, and so does the
length of the critical path within them, thus causing the
maximum clock speed to decrease. Figure 6 shows the max-
imum clock speed and number of slices versus the number
of fractional bits.

Figure 6. Graph of design speed versus frac-
tional bitwidth

5.3. Using dedicated multipliers

Allowing the multiplication blocks in the pipeline circuit
to take advantage of the 18 by 18 bit hard-wired multipli-
ers provided in the Virtex-II chip changes both the maxi-
mum speed and the size of the design. Unfortunately, it is
not possible to synthesize the 23 and 31 fractional bit pre-
cision pipelines if all multiplications in the circuit use the
block multipliers. For the wider designs, a compromise is
necessary; block multipliers can be used for some of the
multiplications required, but not for others. Table 1 shows
the size and speed of the 7 and 15 fractional bit precision
pipelines when block multipliers are used. The last column
gives the proportion of slices used compared to the previous
table (when the use of block multipliers was disabled).

The block multipliers allow for a marked decrease in the
number of slices used, since the multiplication blocks need



Fractional Max. No. of No. of Slices Used
Bits Clock Slices Block Compared

Rate / MHz (% of 33792) Multipliers to Non-Multiplier
(% of 144) version

7 200.7 1128 (3.34%) 27 (18.8%) 57.8%
15 176.9 1976 (5.85%) 30 (20.8%) 36.1%

Table 1. Size and speed of pipeline when using dedicated block multipliers

No. of No. of Lighting Time taken / seconds Overall
faces patches steps software single 2 parallel concurrent speedup

required hardware hardware hardware
pipeline pipelines software

70 280 385 0.9 0.9 0.8 0.8 1.1
70 1120 1488 8.5 8.2 6.4 5.8 1.5
70 4480 5889 119.7 114.0 87.3 78.4 1.5

280 280 385 2.0 1.6 1.3 1.2 1.7
280 1120 1488 25.3 15.5 10.9 9.4 2.7
280 4480 5889 380.2 220.7 143.7 123.0 3.1

1120 1120 1488 93.8 45.6 27.7 23.1 4.1
1120 4480 5889 1459.8 651.7 370.0 298.5 4.9

Table 2. Comparing speedup from different implementations

no longer be synthesized. However, using the block mul-
tipliers does slightly reduce the maximum clock speed of
the design. This is probably due to the fact that the mul-
tipliers are in fixed positions on the FPGA chip, and the
remaining components need to be placed around the posi-
tion of the multipliers. On the version of the pipeline with
synthesized multipliers, the placement of components need
not be constrained due to having to work around multiplier
positioning, so can be more optimal.

5.4. Solutions for real scenes

Instantiating both the 15-bit fractional precision pipeline
which uses block multipliers and the supporting circuitry
produced by the Handel-C Wrapper on the Virtex-II chip
gives the following speed and size results:

Max. clock No. slices No. Block Multipliers
rate / MHz

53.833 3339 (9.8%) 30 (20.8%)
We use the combination to calculate radiosity solu-

tions for several different incarnations of the Cornell Box
scene [18], a standard radiosity test scene, based upon a real
model. Physical data including emission and reflectance
spectra have been measured from the real model and are
used by the radiosity solver.

The results can be compared against real photographs of
the box available from Cornell. Figure 7 shows the Cor-

Figure 7. Cornell box test scene

nell box scene; unfortunately much of the effect is lost due
to the greyscale image. The side walls are red and green
– only the radiosity algorithm can model the way the wall
colour bleeds onto the white boxes. This effect cannot be
realised using either local illumination methods, nor by us-
ing raytracing without radiosity.

The model of the box which we created for testing the
radiosity solver is based on this physical data, and begins



with 70 faces each also constituting a single patch. The
faces can be split uniformly to produce scenes with higher
face counts for testing, and then these faces can be split fur-
ther into patches. Table 2 shows the time taken by both a
software implementation and the hardware radiosity solver
to calculate the solution to 99.5% convergence for several
different face and patch counts. All results were obtained
from a dual processor Athlon MP 2600+ machine running
at 2133MHz with 2GB of RAM and with the FPGA at its
maximum speed of 53MHz.

The table shows that for all face and patch counts tested,
the hardware implementation performs at least as well as the
software implementation, and in many cases performs sub-
stantially better. On average, the hardware implementation
provides a 50% speed-up over the software implementation,
with a 124% speed-up in one case. In fact, as the scenes get
larger, the amount by which the hardware implementation
is faster than the software only solver increases, which im-
plies that for even larger scenes, the amount by which the
hardware solution is faster than a software-only approach
will increase.

5.5. Multiple pipeline instances in parallel

The previous section shows how multiple pipeline in-
stances could be run in parallel, producing multiple results
per cycle. The following table gives size and speed results
for two parallel instances using the RC2000 board (Virtex
XC2V6000):

Max. clock No. slices (%) No. Block
rate / MHz Multipliers

52.5 5562 (16.5%) 60 (41.7%)
The maximum clock rate is very close to the single-

pipeline case, because the two pipelines are identical and
independent.

5.6. Performance estimations

We now estimate potential performance when using re-
cent reconfigurable devices, and when some constraints of
existing platforms are removed. These estimations show the
potential of radiosity on reconfigurable devices. We inves-
tigate (a) maximum performance when limited by memory
bandwidth, and (b) maximum performance when limited by
the resources of current reconfigurable devices.

(a) Limited by memory bandwidth. Many current recon-
figurable platforms use several small static memory banks;
the RC2000 that we use has six 4MB banks. Assuming a
peak memory clock of 100MHz, the total available band-
width is 0.1GHz × 6banks × 4bytes = 2.4GB per second.
Each ray intersection reads three 16-bit words, and writes a
1-bit result: 6.125 bytes (we ignore reading new faces; these
reads will be infrequent compared to intersection reads in

large scenes). Limited by the RC2000 bandwidth, we can
achieve: 2.4GB/sec ÷ 6.125 = 392 × 106 intersections /
sec. This is roughly 30 times our measured peak software
intersection rate.

(b) Limited by current hardware device resources. Re-
cent devices can fit more instances of the pipeline. The Xil-
inx Virtex 4 XCVSX55 device (24,576 slices and 512 block
multipliers) could accommodate 12 instances of the 15-bit
pipeline. Assuming that this configuration could achieve
the same speed in table 1 (176.9 MHz), this configuration
would support 12 pipes × 176.9 MHz = 2122 millon ray
intersections per second: 164 times speedup over our soft-
ware implementation. This would require 6.125 bytes per
cycle × 12 pipes = 73.5 bytes per cycle, requiring 73.5 ×
176.9 = 12.9 GB / second bandwidth.

Is this feasible? Modern graphics cards have comparable
bandwidth: the ATI Radeon X600Xt use DDR memory to
achieve 12 GB / second memory bandwidth.

Similarly, we estimate that the Spartan 3 XC3S5000 de-
vice, with 33,280 slices and 104 block multipliers could
fit three 15-bit pipelines. At 176.9MHz, this would re-
quire 3 pipes × 176.9MHz × 6.125 bytes per intersection
= 531 million intersections per second, 41 times speedup
over software. This requires 6.125 bytes per intersection ×
3 pipes = 18.375 bytes per cycle or 3.23 GB / second band-
width at 176.9MHz.

5.7. Summary

In this section, we first give the speed and size results for
the ray-triangle intersection pipeline at different precisions,
both with and without the use of block multipliers. We then
present the speeds achieved by four different implementa-
tions on scenes of ranging complexity. These results are
summarised in table 2.

Comparing the version of the hardware which calculates
two intersections in parallel per cycle controlled by the en-
hanced driver, we obtain a significant overall improvement
in speed using the techniques here. The average improve-
ment over the 8 scenes tested is 2.6 times, and for the largest
scene tested, the speedup is just under five times.

The maximum theoretical number of intersections per
second possible using the implementation we have de-
veloped for the XC2V6000 chip is 104 million (2 par-
allel pipelines at 52 MHz). Compared to the feasibility
study [12], which claims a maximum of 22.4 million in-
tersections per second on an XC2V8000 FPGA, our imple-
mentation shows a 4.6 times improvement in throughput,
whilst using a smaller FPGA.

The implementation of radiosity using graphics hard-
ware presented by Coombe, Harris and Lastra [15] achieves
an average of 263 lighting steps per second. Our implemen-
tation achieves an average of 271 steps per second for the



same scene. The two approaches are very different, yet give
almost identical performance. However, the graphics hard-
ware used runs at a clock speed of 400MHz, almost eight
times that required by our implementation.

6. Conclusion

This paper develops reconfigurable designs to support
the radiosity algorithm, with three contributions: (a) a
37-stage fixed point hardware pipeline with user-defined
bitwidth for the Moller-Trumbore ray-triangle intersection,
(b) optimsations such as re-arranging order of computa-
tion and introducing multiple pipelines running in parallel,
(c) evaluation of the proposed approach, showing speed im-
provement of up to 5 times over a software implementation
at almost 40 times the clock speed.

Current and future work includes the following. First,
floating-point implementation. We carefully normalised our
scene and arranged our fixed-point implementation so that
it would not overflow, whilst maintaining a constant frac-
tional bitwidth in the ray-triangle intersection algorithm. A
floating-point version would yield much higher dynamic
range, reducing the need to normalise. It could also re-
duce the rounding errors inevitable from truncation. Al-
though floating-point arithmetic takes much more hardware
resources than fixed-point, this could be offset by being able
to use a narrower total bitwidth, saving on bandwidth.

Second, other subdivision methods. Our software im-
plementation used a regular subdivision of the scene into
patches. More sophisticated versions of the radiosity
method adaptively subdivide the scene according to how
the illumination changes over the surfaces, so more rapidly
changing areas are accorded more subdivisions, and sub-
divisions align with discontinuities such as shadow bound-
aries.

Third, multiple FPGA cards. Our evaluation shows
that multiple parallel pipelines perform well. The radios-
ity method is sufficiently parallel that several FPGA cards
could usefully work simultaneously on the same scene. This
would require careful planning to avoid one card waiting for
more inputs whilst another accesses the bus.
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