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ABSTRACT

String pattern matching is a computationally expensive task,
and when implemented in hardware, it can consume a large
amount of resources for processing and storage. This pa-
per presents a novel technique, based on a tree-based con-
tent addressable memory structure, for a pattern matching
engine for use in a hardware-based network intrusion detec-
tion system. This technique involves hardware sharing at
bit level in order to exploit powerful logic optimisations for
multiple strings represented as a boolean expression. Our
approach has been used to implement the entire SNORT
rule set with around 12% of the area on a Xilinx XC2V8000
FPGA. The design can run at a rate of approximately 2.5 Gi-
gabits per second, and is approximately 30% smaller in area
when compared with published results. The performance of
our design can be improved further by having multiple de-
signs operating in parallel.

1. INTRODUCTION

Network Intrusion Detection Systems (NIDS) have been de-
veloped recently as a solution to increasingly complex se-
curity violations. Security measures previously relied solely
upon the use of packet headers for filtering. However, this
reliance has become vulnerable in many aspects, as system
infiltrators modify their tactics in order to circumvent basic
protection. Advanced security systems have to go beyond
packet header information, and examine the actual payload
content of packets traversing the network. The purpose of
scrutinising payload content is to spot recognised patterns
of intrusion: examples include patterns which relate to the
acquisition of password storage locations.

NIDS search through a packet payload seeking known
attack signatures. These attack signatures are represented
as strings which are stored in the NIDS, and are matched
against packet payload content in order to determine whether
or not an unauthorised action is taking place. As the time
taken to search through each packet for a matching string is
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computationally expensive, this can have an adverse effect
on the network performance, especially when the NIDS is
software-based. Software-based systems such as SNORT [1]
employ lists of known intrusion signatures against which
packet payloads are examined and, if found to be in infringe-
ment of security rules, subsequently rejected. These systems
are constantly updated when information on new intrusion
signatures or viruses emerges, ensuring that the system’s in-
trusion detection does not lag behind the sophistication of
security violators.

Software-based NIDS, however, suffer from one major
drawback – speed limitations. This defect is exacerbated
as packet payload is searched rather than the packet header.
In general, software systems such as SNORT are incapable
of operating at multi-gigabit rates, and they are unable to
support current network speeds.

Recent strides have been made in developing hardware-
based NIDS which are able to deal with increasingly fast
network speeds. Despite this ability to deal with tremendous
speeds, hardware-based systems have their own drawbacks –
the storing and processing of signature strings in hardware-
based systems often require a large amount of resources.
As known intrusion signatures may number in the hundreds,
and possibly thousands or more, sufficient resources are es-
sential for their storage.

In order to solve this problem of size limitation while re-
taining the speed advantage of hardware, we develop a pat-
tern matching engine which uses hardware sharing methods
for signature storage. This hardware sharing method signif-
icantly reduces the amount of area required, since logic can
be reconfigured as necessary. We use a tree-based Content
Addressable Memory (CAM) structure for a pattern match-
ing engine for use in a hardware-based network intrusion
detection system. This technique involves hardware sharing
at bit level in order to exploit powerful logic optimisations
for multiple strings represented as a boolean expression, in
the form of a Binary Decision Diagram (BDD).

The main contributions of this paper include:

• the separation of a single BDD into common and non-
common BDDs, in order to reduce duplications or re-
dundancies,
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• a recursive optimisation algorithm that produces an
efficient architecture for implementing a BDD, through
the extraction of common and non-common BDDs,

• a specialised CAM for implementing intrusion detec-
tion signatures, using bit-level resource sharing, which
gives results that are up to 30% more compact than
other hardware approaches, while retaining the speed
advantage of a CAM,

• an automated transformation of signature strings to
a BDD structure, and automatic transformation from
BDDs to an efficient and compact hardware imple-
mentation, called a BCAM (BDD-based CAM).

2. BDD-BASED CAM

Our BDD-based CAM (BCAM) structure is presented with
the use of a simple example involving four strings: “qiya”,
“bebe”, “spin”, and “moki”. Our example illustrates each
stage in the procedure to implement a BDD in reconfig-
urable logic, showing the advantages of our method over
two other approaches.

Our framework transforms a binary decision tree repre-
sentation to an efficient implementation on a reconfigurable
hardware platform through the five stages illustrated in Fig-
ure 1. With the exception of Section 3, we use the simple
example to clarify the procedure in our approach.

BDD Representation

CAM Representation of
commom/non-common bits

Further BDD optimisation of non-
common bits

List of Strings

Logically connect
representations of common and

non-common bits

Signature ListStage 1

Stage 5

Stage 4

Stage 3

Stage 2

BDD Based CAM (BCAM)
Structure

> 2 paths
&&

> 4 bits per path

Fig. 1. Design flow diagram of the BCAM technique

2.1. Stage 1: Signature List

A signature list contains multiple signatures that indicate
what patterns or sequence of bytes to look for in each packet,
and based on this, an alert is generated if necessary.

The signature list for our complete experiments is ob-
tained from the SNORT database. We start with the signa-
ture list and compile it to a simple list of strings, which con-
tain the intrusion pattern that we are looking for in the pack-
ets. SNORT offers multiple keyword fields in the signature,
such as ‘distance’, ‘nocase’ etc, which detail the number of
bytes into the packet the search should be carried over, or
whether the search should be case sensitive. However, we
only make use of the ‘content’ keyword, as we are only con-
cerned about the packet content. The other keywords are
mainly there to aid the processing speed of SNORT. Our
compiler extracts the strings from the ‘content’ keyword,
and passes the new list to the second stage of our flow. For
ease of explanation, we use the four simple strings listed
above to explain the rest of our procedure.

2.2. Stage 2: BDD Representation

Our approach converts each string representing the signa-
ture into a boolean expression, from which we generate a
reduced ordered binary decision diagram. The process of
generating a BDD representation of the four strings is as
[2, 3]. We first create BDDs for each character in the string
as above, which are then combined to construct a BDD rep-
resenting the entire string. The BDD is basically a boolean
representation of each character concatenated. Two values
are possible from each node, a ‘1’ or a ‘0’, and these repre-
sent the value of that bit.

The same operations are then performed on all the given
strings. Finally, all four BDDs are linked, and the end result
denotes a BDD representation of the entire list of strings.
For ease of expression, this final conversion of all the strings
into one BDD shall subsequently be referred to as a list.

With a total number of 107 nodes, the cost of imple-
menting a list would be approximately 107 look up tables
(LUTs), assuming that one LUT is used to implement each
BDD node or multiplexor, barring the potential optimisa-
tions mentioned in [3], such as using a karnaugh map to
minimise the algebraic expressions representing the BDD.

There are redundancies that result from the fact that ev-
ery time a BDD has a node with both the true and false edge
leading to different nodes, then some or all of the bits from
that node number are replicated on both sides. To cater for
this inefficiency, we extract the common and non-common
bits of a list to generate two smaller BDDs, common and
noncommon, where common has only a single path; these
are illustrated in Figures 2(a) and 2(b) respectively. The
following section details the course taken to implement com-
mon and noncommon.
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Fig. 2. BDD representation of the common and non common bits

2.3. Stage 3: CAM Representation

This stage of our approach produces an efficient hardware
architecture for the generated BDD structures in Stage 3
above. Figure 3 demonstrates how a regular CAM imple-
mentation of the list of strings requires 4 locations. In this
particular scenario, the 4 locations consist of four 8-bit char-
acters, and hence require a 32-bit wide CAM. Using 4 input
LUTs as shown in Figure 3 for the implementation of an 8-
bit wide CAM comparator requires 3 LUTs per character.
Hence our example requires a total of 53 LUTs, which will
be compared to our BCAM usage.

Match

LUT

LUT

AND

Q I Y A

B E B E

S P I N

M O K I

One Character Comparator

AND

Fig. 3. A CAM representation of the four strings

At this stage in the design flow, we implement com-
mon and noncommon, obtained from Section 2.2, in hard-
ware. Instead of implementing them in the traditional tree-
like manner with each node indicating the path to be taken,
we choose to implement them using characteristics similar
to a traditional CAM, thereby eliminating the excessively
large number of logic dependencies and high latency.

The common BDD is implemented using LUTs, similar
to a traditional CAM, since there is only one path in com-
mon. The noncommon BDD generally has multiple paths,
and each path leading to a terminal node is implemented
using LUTs, as previously explained. Unlike the common
CAM, the number of paths in the noncommon CAM is equal
to or less than the number of strings in the list. The non-

common CAM outputs are logically ANDed with the result
of the common CAM output. This makes up the BCAM
technique. A match occurs if the input bits match the cor-
responding bit from common part and one of the paths from
the noncommon part.

Returning to our example, Figure 4 illustrates the BCAM,
showing the implementation of the common CAM, and how
the output of the common is propagated to the multiple non-
common CAMs. If this were the end stage of our technique,
we would have used a total of only 30 LUTs, a much lower
cost than either the BDD [3] or CAM [4, 5] techniques on
their own. However, continuing our procedure to the next
stage of further BDD optimisation (Stage 4) enables us to
further reduce the number of LUTs used, as described in
Section 2.4.

Match(0)

14-Bit Comp
common(0)

18-Bit Comp

18-Bit Comp

18-Bit Comp

18-Bit Comp

ANDnoncom(0)

noncom(1)

noncom(2)

noncom(3) AND

AND

AND
Match(1)

Match(2)

Match(3)

Fig. 4. A level 1 BCAM implementation of the simple example

2.4. Stage 4: Recursive BDD Optimisation

This stage of our design flow further optimises the imple-
mentation, and is a recursive step. Figure 4 shows the first
level of optimisation in the BCAM technique described in
the preceding sections. The flow of design to achieve level
1 optimisations for BCAM can be repeated further on the
noncommon BDD of level 1 to achieve further reductions.

The noncommon BDD is used to construct two smaller
BDDs (high and low) by extracting into high the paths from
the TRUE edge of the root node, and into low the paths from
the FALSE edge of the root node. We then repeat the steps
in Sections 2.2 and 2.3 on high and low, in order to build
further CAM blocks representing our original a list BDD.
This process is repeated on each non-common BDD until
only two paths or fewer remain in the corresponding non-
common BDD, or until each path only requires x input bits
to be implemented, where x is equal to the number of input
bits for a reconfigurable LUT.

The common and noncommon BDDs of high are shown
in Figures 5(a) and 5(b) respectively, and similarly, Fig-
ures 5(c) and 5(d) illustrate the common and noncommon
BDDs of low. Our technique uses only a total of 27 LUTs
for the representation of the original list of strings, a reduc-
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tion of 70% compared to the approach by [3] and 51% less
than a traditional CAM approach [4, 5].
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Fig. 5. Further optimised BDD representations

2.5. Stage 5: Automated Functional Block Construction

At this stage of our design process, we connect the CAM
blocks obtained from extracting the common and the non-
common bits, after performing Stages 1 to 3 of our BCAM
technique. This end product represents our original list of
string patterns as one BDD-based CAM.

We now describe the procedure to connect the CAM
blocks resulting from Stages 3 to 5 of our technique. Start-
ing from the first common CAM (common(0) in Figure 4),
we propagate it to all subsequent CAM blocks which are ob-
tained from the extraction process in Figure 5. The process
in Figure 5 is repeated until only two possible paths remain
in the noncommon BDD structure. Once this state has been
reached, the end product represents our BDD-based CAM
as applied to the original a list BDD (Figure 6).

We complete the description of all five stages of our
technique as applied to the original 4 strings. The end prod-
uct is an automated transformation method of a BDD struc-
ture to a compact and efficient implementation in hardware
as a BDD-based CAM.

14-Bit Comp
common(0)

9-Bit Comp

9-Bit Comp

9-Bit Comp

noncom(0)

noncom(1)

common(1)

AND

High Branch

9-Bit Comp

9-Bit Comp

9-Bit Comp

noncom(2)

common(2)

noncom(3)

AND

AND

AND
Match(0)

Match(1)

Match(2)

Match(3)

Low Branch

Fig. 6. A complete BCAM implementation of the simple example

3. BCAM OPTIMISED FOR HIGH THROUGHPUT

The drawback of most tree-based search systems in hard-
ware is the high latency and also the slow speed due to long
propagation delays. The main speed detriment is caused by
the large fan-out from outputs of the common CAM blocks,
which are propagated to all subsequent CAM blocks. The
implementation of our BCAM structure is optimised to rad-
ically reduce long propagation delays due to fan-out, and
achieve a relatively fast speed, by constructing a fan-out tree
for the common BDDs at each level of the BCAM. From ex-
perimenting with a very large signature set, comprised of al-
most 2,000 strings, we find the largest fan-out to be approxi-
mately 70. Thus, we construct a fan-out tree as illustrated in
Figure 7. This is done without incurring extra area resources
as we use the flip flops within the configurable logic blocks.
The fan-out tree for other levels can be constructed in a sim-
ilar way.

The largest fan-out will always occur from the common
BDD at level 1, and with the implementation shown in Fig-
ure 7, it can be seen that the latency is only five clock cycles.
To achieve maximum operating frequency, we pipeline the
BCAM structure, incurring a total latency of approximately
ten clock cycles. Although we have not eliminated latency,
we manage to contain it at a reasonable limit in order to
achieve a satisfactory trade-off with speed. We apply this
BCAM optimisation in the experiment of the large signature
set above, and are able to achieve an operating frequency of
310 MHz for a Xilinx Virtex2 XC2V8000 device.
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Fig. 7. A fan-out tree used to eliminate excessive propagation
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4. RESULTS

We use an open-source BDD package, BuDDy [6], to trans-
form each string to its BDD equivalent. From each string,
we extract a character and use its ASCII value as a parameter
to a function provided by the BDD package in order to con-
struct a BDD representation of that character. Our simple
example shows that the representation of the strings using
our BCAM technique is done at a cost of approximately 27
LUTs (Figure 6). Normally, where the string list is partic-
ularly large, the CAM method uses the largest amount of
hardware area resource. The BDD method in general uses
less area resources than the CAM, but our BCAM technique
uses less area resources than the BDD approach, although
according to [3], the standard BDD approach can still be op-
timised.

Although the standard BDD approach has a latency de-
pendent on the location of the matching rule, there is still
potential for optimising throughput by pipelining. However,
the BCAM technique does not have as deep a latency, and
has a significantly smaller area usage than the BDD imple-
mentation (in our simple example approximately 70% less
area), even where the BDD approach is less effective than a
CAM approach.

To illustrate the effectiveness of our system, we imple-
ment a realistic rule set. We use the entire Snort rule set,

as of August 2004, to do so, and this clearly illustrates the
gap between using our technique and using other published
techniques, since some others use a subset of SNORT (Ta-
ble 1). We compare our results with the nearest best result
[7], LUTs/byte ratio is approximately 0.825 (this figure is
obtained using the average unit size for their 16 character
pattern block). In contrast, our method has a ratio of 0.6, a
result which indicates area resource usage of close to 30%
less than that of [7]. Furthermore, we calculate that our ap-
proach equates to an approximate unit size of 4.7, which is
less than 6.6 [7].

In terms of the speed levels obtained, we compare our re-
sults to that which attained the best speed levels [8]. Whilst
[8] reports speeds of up to 7.3 Gbps, at a LUTs/byte ratio
of 5.3, we achieve a speed of approximately 2.5 Gbps at our
ratio of 0.6 per unit. When multiple units are used (i.e. 6
units), we obtain a calculated rate of approximately 12-14
Gbps at a LUTs/byte ratio of 3.6, assuming we can main-
tain an operating frequency between 250-300 MHz. This
throughput is achieved with a smaller resource ratio com-
pared to [8], although there is still some indication of in-
evitable trade-offs between speed and resources.

Table 1 shows the comparison of our results against other
FPGA-based techniques. It is clear from this table that our
BCAM is the most efficient in terms of area usage. Al-
though initial design objectives are for area efficiency, we
pipeline our system to achieve speed results comparable to
other techniques, and by making use of multiple BCAM en-
gines, we estimate an improvement in speed. The main ob-
stacle in optimising for speed is the large number of fan outs
from the common CAMs to all noncommon CAMs, espe-
cially from the root CAM (i.e. common(0)). Thus, this is
where we focus our pipelining efforts. Finally, when our
BCAM structure is compared to all the other techniques dis-
cussed, on average ours is up to 30% more area-efficient
than the most efficient of them [7].

To determine the effectiveness of the system as a whole,
we use a metric of the throughput per LUTs/byte ratio (effi-
ciency), and in this case the larger the ratio, the more effec-
tive the system. By using this ratio, we determine that our
pattern matching engine is the most balanced system, with
the closest rival being the system in [12].

5. SUMMARY

We illustrate our BCAM approach in a NIDS application
setting, utilising a simple example of a signature set. Our
multi-staged technique allows us to vastly decrease the hard-
ware area resource needed to implement a pattern-matching
engine. We are able to implement the entire SNORT rule set
with around 12% of the area on a Xilinx XC2V8000 FPGA;
the design can run at a rate of approximately 2.5 Gbps, and
is up to 30% smaller in area when compared with published
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Table 1. A comparison of LUTs/byte ratios amongst published techniques – Multiple PBCAM is an estimated result. NFA/DFA: Non-
deterministic/Deterministic Finite Automaton; CAM: Content Addressable Memory.

Technique Device Throughput # Bytes # LUTs LUTs/Byte Efficiency
(Gbps) (LpB) Gbps/(LpB)

BCAM XC2V8000 1 19,715 11,780 0.6 1.67
Pipelined BCAM XC2V8000 2.5 19,715 11,780 0.6 4.17
Multiple PBCAM (x6) XC2V8000 12-14 19,715 70,680 3.6 3.33

Clark et al. (NFA) [8] XC2V8000 7.3 17,537 93,180 5.3 1.38
Franklin et al. (NFA) [9] XCV2000E 0.4 8,003 20,618 2.58 0.16
Sidhu et al. (NFA) [10] XCV1000 0.46 29 1,920 66.2 0.01
Moscola et al. (DFA) [11] XCV2000E 2.5 420 14,660 34.9 0.7
Cho et al. (CAM) [12] XC3S2000 3.2 6805 6,136 0.9 3.56
Gokhale et al. (CAM) [13] XCV1000 2 640 9,722 15.2 0.13
Sourdis et al. (CAM) [14] XC2V6000 2.5 6,000 7,200 1.2 2.08
Baker et al. [7] XC2VP100 2 19,584 per 16 char unit: 13.2 0.825 2.42

results. This performance can be further improved by hav-
ing multiple designs operating in parallel.

In our technique, we also introduce a hardware sharing
method which eliminates the need to work at the character-
sharing level. Our approach instead focuses on the lowest
possible level of sharing at bit level, an idea which is based
on BDD structures. The strength of our BDD-based tech-
nique is its ability to remove replications in tree-based struc-
tures which may contribute to resource wastage, resulting in
a much smaller BDD structure and a more compact hard-
ware implementation.
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