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Abstract. This paper presents a framework for verifying compilation tools for parametrised hardware designs
with placement information. The framework involves Pebble, a simple declarative language based on Structural
VHDL which supports the use of placement information to guide circuit layout; such information often leads to
efficient designs that are particularly important for hardware libraries. Relative placement information enables
control of circuit layout at a higher level of abstraction than placement information in the form of explicit coor-
dinates. An approach based on pass separation techniques is adopted for specifying and verifying two Pebble
abstraction mechanisms: a flattening procedure and a relative placement method. For the flattening procedure,
which takes a set of parametrised blocks and unfolds the circuit description into a netlist, we provide seman-
tic descriptions of both the hierarchical and the flattened Pebble languages to prove its functional correctness.
For the relative placement method, we specify the compilation procedure from Pebble programs with relative
placement information to Pebble programs with explicit coordinate expressions, often in the form of symbolic
placement constraints. This compilation procedure can be used in conjunction with partial evaluation to optimise
the size and speed of parametrised circuit descriptions using relative placement, without flattening the original
hierarchical descriptions. Our approach has been used for optimising a pattern matcher design, which results in a
33% reduction in resource usage. For DES encryption, our method can reduce the size of a DES design by 60%.

1. Introduction

Advance in integrated circuit technology leads to an increasing emphasis on building designs from hardware
libraries. A single parametrised library can be used to generate many implementations supporting multiple archi-
tectures, variable bit widths and trade-offs in speed and size. Such libraries enable effective hardware utilisation
by exploiting technology-specific features whenever desirable, allowing designs with optimal performance and
resource usage while minimising the need for knowing low-level details.

This paper describes an approach for developing provably-correct compilation tools for the Pebble language
[LuM97], which has been used to produce hardware libraries in VHDL, an industry standard language. While it
is desirable to have hardware libraries in industry standard languages, there are, however, two major difficulties
with developing VHDL libraries. First, VHDL is a versatile but complex language, and it takes much effort to
write good parametrised code and to check its behaviour by simulation or other means – even when the subset
used for realistic hardware libraries is small [Luk96]. Second, most vendors have their own VHDL dialect; for
instance not all VHDL tools support multi-dimensional vectors. It is unattractive to develop and maintain the
same set of library elements in various vendor-specific dialects.
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Our research involving Pebble has two aspects. The first is to enable application builders and library developers
to work at a higher level of abstraction than that provided by VHDL, while ensuring that the resulting libraries
are as flexible and efficient as those produced by hand. Our Pebble compiler targets various description formats,
including parametrised and flattened VHDL and EDIF. It enables designers to compose and instantiate library
elements, and it has been used to develop many designs for applications such as data encryption [MLD02] and
special video and graphics effects in augmented reality [Luk99].

An important component of the Pebble compiler is the flattening procedure, which produces flattened descrip-
tions from hierarchical descriptions. Flattened descriptions are required by many tools, such as partitioning tools
for physical design [Con01], and model checkers for design verification [SSS00]. Interestingly, our proof of the
flattening procedure not only offers users greater confidence in its correctness, it also leads to a more efficient
implementation.

The second aspect of our research is in supporting relative placement. Relative placement information enables
control of circuit layout at a higher level of abstraction than placement information in the form of explicit coor-
dinates. It has been shown that, despite advances in automatic placement methods, user-supplied placement
information can often significantly improve FPGA performance and resource utilization for common applica-
tions [S00]. Relative placement for hardware design has been developed for languages such as µFP [LJS89],
Ruby [GL01] and Lava [S00]. However, all hardware languages that support such placement techniques are com-
piled into a netlist in a single stage. This method makes it difficult to interface libraries written using explicit
coordinates with those designed using relative placement information. It is therefore important that placement
information, which guides design tools to produce efficient designs, should be supported in hardware library
descriptions. Our method uses the notions of Beside and Below to describe relative placement of circuit cells
and blocks. Our compilation technique projects such blocks onto a coordinate grid such that no overlapping can
occur.

Pass separation [JøS86] provides a framework for correctness proof of both abstraction mechanisms. Such
proofs are rare, but we feel that they are well-suited to verifying development tools for domain-specific languages
containing multiple evaluation phases. These phases can be effectively combined so that compilation becomes a
process of refinement from an abstract description to a more concrete version.

The result from pass separation can be expressed in a language different from the one used in describing
hardware designs. For example, our compiler converts hardware descriptions with relative placement informa-
tion to those with explicit placement information with a different syntax. In contrast, the result from partial
evaluation [JGS93] is usually expressed in a language which is a subset of the original.

To summarise, the contributions of this paper are:

1. A framework based on pass separation techniques for specifying, verifying and implementing a flattening
procedure for hardware designs that are hierarchical and parametrised (Sects. 3, 4 and 5),

2. Extension of this framework for compiling and verifying designs with relative placement information (Sects. 6,
7 and 8),

3. Further extension of this framework to support conditionals, which forms the basis of a partial evaluation
method for design compaction (Sect. 9).

While much has been published on formal methods and tools for hardware design [KeG99], it appears that
most researchers focus on tools for producing correct designs [Den00, SSS00] rather than on the correctness
of the tools themselves [KBE96]. Other relevant work includes embedding high-level synthesis algorithms in
HOL [EBK96], and integrading automated verification of synthesised designs with a high-level synthesis tool
[Mav98]. An example of a verified tool is PBS, a multi-level logic synthesis program based on the weak division
algorithm which has been verified using the Nuprl proof development system [AaL94, AaL95]. Another example
is a run-time specialisation algorithm for the Xilinx XC6200 devices, which has been verified by the PVS prover
[SM98].

Our research is complementary to their efforts: it focuses on a framework for specifying and verifying hardware
abstraction mechanisms, rather than on formalising and mechanising the proof of a particular logic synthesis
algorithm. It is in a similar spirit to research on verifying compiler correctness for imperative descriptions for
hardware [HBL96, HPB93] and software [HHA93] implementations. Currently our proofs have been undertaken
by hand. While we are confident in their correctness, it would be useful and interesting to explore both their
mechanisation and their recasting using fold and unfold operators [Hut98].

The rest of this paper is organised as follows. Section 2 provides an overview of the Pebble language. Section 3
describes the flattening procedure for Pebble, while Sect. 4 outlines its proof and Sect. 5 provides its implemen-
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mux mux mux mux

c

u(0) u(1) u(2) u(3)

w(0) v(0) w(1) v(1) w(2) v(2) w(3) v(3)

Fig. 1. An array of multiplexors described by the Pebble program in Fig. 2

tation. Section 6 extends Pebble with relative placement information and illustrates its features using a simple
pattern matcher. Section 7 describes how the relative placement information is projected onto a coordinate scheme
using arithmetic expressions with symbolic constraints. Section 8 outlines the proof of this procedure. Section 9
shows how to integrate the relative placement information with conditionals, and discusses how this approach
enables compaction by partial evaluation. Section 10 provides a summary and describes on-going research.

2. Overview of Pebble

The Pebble language can be regarded as a much simplified variant of Structural VHDL. It provides a means of
representing block diagrams hierarchically and parametrically [LuM97]. A Pebble program is a block, defined by
its name, parameters, interfaces, local definitions, and its body. The block interfaces are given by two lists, usually
interpreted as the inputs and outputs. An input or an output can be of type WIRE, or it can be a multi-dimensional
vector of wires. A wire can carry integer, boolean or other primitive data values.

A primitive block has an empty body; a composite block has a body containing the instantiation of composite
or primitive blocks in any order. Blocks connected to each other share the same wire in the interface instanti-
ation. For hardware designs, the primitive blocks can be bit-level logic gates and registers, or they can, like an
adder, process word-level data such as integers or fixed-point numbers; the primitives depend on the availabil-
ity of corresponding components in the domain targeted by the Pebble compiler. The GENERATE-IF statement
enables conditional compilation and recursive definition, while the GENERATE-FOR statement allows the concise
description of regular circuits.

Pebble has a simple, block-structured syntax. As an example, the multiplexor array in Fig. 1, is described in
Fig. 2, provided that the size parameter n is 4. In more complex descriptions, the parameters in a Pebble program
can include the number of pipeline stages or the pitch between neighbouring interface connections [LuM97].
Different network structures, such as tree- or butterfly-shaped circuits, can be described parametrically by index-
ing the components and wires.

The semantics of Pebble depends on the behaviour of the primitive blocks and their composition in the target
technology. Currently a synchronous circuit model is used in our tools (Sect. 3), and special control compo-
nents for modelling run-time reconfiguration are also supported [LuM97]. However, other models can be used if
desired. Indeed Pebble can model any block-structured systems, not just electronic circuits.

Advanced features of Pebble include support for annotations and for modules. Such features improve design
efficiency and reusability, and facilitate interface to components in other languages, including behavioural descrip-
tions. Discussions about these features are beyond the scope of this paper.

3. Program staging and pass separation

This section introduces a framework in which abstraction mechanisms for Pebble can be specified and veri-
fied. Our approach consists of three steps. The first step is to provide a semantics for a flattened version of
Pebble. The second step is to characterise an abstraction mechanism in two ways: (a) specify how designs exploit-
ing the abstraction mechanism can be transformed into flattened Pebble, and (b) provide the semantics of the
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BLOCK muxarray (n:GENERIC)
[c:WIRE, u,v:VECTOR (n-1..0) OF WIRE]
[w:VECTOR (n-1..0) OF WIRE]

VAR i
BEGIN
GENERATE FOR i = 0..(n-1)
BEGIN
mux [c,u(i),v(i)] [w(i)]

END
END;

Fig. 2. A description of an array of multiplexors (Fig. 1) in Pebble. The external input c is used to provide a common control input for each
mutiplexor
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Fig. 3. Commuting diagram describing the pass separation equation

abstraction mechanism directly. The third step is to show that the semantics of a design produced by (a) is
consistent with (b).

In the following, we specify and verify two Pebble abstraction mechanisms: hierarchical blocks, and
GENERATE-FOR loops. The insight is to recognise that pass separation provides a framework for the above ap-
proach, so that the correctness of the two abstraction mechanisms can be demonstrated with respect to a structural
operational semantics [NiN92] for Pebble. Only elementary understanding of such semantics is required to follow
our work. We shall first present an overview of pass separation, and then explain how it can be used in verify-
ing Pebble abstraction mechanisms. The key to our proof is an environment invariant (Eq. 1) inspired by pass
separation.

Consider a repeated computation, part of whose input context remains invariant across all repetitions. Pro-
gram staging is a technique which improves performance by separating the computation into two phases. We
follow this approach to separate the task of interpreting a Pebble program on a variety of inputs: an early phase
flattens the parametrised description into a collection of primitive gate calls, and a late phase completes the task
given the varying inputs.

Two popular methods for separating a computation into stages are partial evaluation and pass separa-
tion [JøS86]. We have used both methods in our study of Pebble and in tool development. In the following
we shall focus on pass separation as a means to study abstraction mechanisms for Pebble; we shall illustrate the
use of partial evaluation in Sect. 9.

Pass separation constructs, from a program p, two programs p1, p2 such that:

[[p]] (x, y) � [[p2]] ( ([[p1]] x), y)

for all x and y, where [[p]] is the function mapping the program p to its meaning. The equation indicates that [[p]]
can be split into two stages: computing v � [[p1]] x and [[p2]] (v, y). The intention in performing pass separation
is to “move” as many computations from p to p1 as possible, given only input x. In our framework, let p be the
semantics (PS) of Pebble, x be a parametrised circuit description C, and y be some input data. Then p1 corre-
sponds to the abstraction mechanism, which in this case can be described using a flattening procedure (FP).
Similarly p2 corresponds to the semantics (FS) of the flattened description on the data as shown in Fig. 3.
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We shall restrict our attention to a subset of Pebble which does not include vectors or GENERATE-IF state-
ments. We begin by presenting the semantics of Flattened Pebble before adding the necessary structure to create
Hierarchical Pebble. We then display a procedure for instantiating the generics. We show that for a set of input
values, a flattened description produces the same results as those from the hierarchical description.

3.1. Flattened Pebble

In its most basic form, a circuit consists of a collection of primitive block calls mapping input wires to output
wires. Intermediate wires link these primitive block calls together. A circuit description is enclosed within a main
block and primitive block identifiers are denoted by idP , as shown in the following syntax:

circuit ::� BLOCK main
[id in1:typein1

, . . . ,id inn:typeinn
]

[idout1:typeout1
, . . . ,idoutm:typeoutm

]
dec1; · · · ;decj

BEGIN stmts END
type ::� WIRE
dec ::� VAR id : type
stmts ::� stmt1; · · · ; stmtk
stmt ::� idP [id1, . . . ,idn] [id1, . . . ,idm]

Note that the language is applicative, as each wire is given an attribute only once. Input wires are defined and
given the appropriate values; the purpose of the semantics is to find suitable definitions for the output wires. The
semantic domain for wires is parametrised by the metavariable a, so that primitive objects can be of any type; it
allows us to deal with both bit-level descriptions and word-level descriptions.

data wire a � Undefined | Defined a

To deal with sequential circuits, the datatype a can be lifted to the stream domain [JoS88]. A delay primitive can
then be included to cover sequential designs.

The structural operational semantics rules for Flattened Pebble, defined by → transitions [NiN92], are given
in Fig. 4. A local environment ρ maps identifiers to their wires. The operator ⊕ denotes relational overwriting.
Primitive logic operators that map boolean pairs to booleans, such as xor, are held in an environment labeled δ.
Such operators can only be applied to wires that are defined.

Two rules provide the meaning of primitive gate calls. If one or more inputs are Undefined, then the statement
is returned unevaluated, as the gate call cannot be completed. The second rule applies the primitive function to
the gate’s parameters. Statements can be evaluated in any order; those that complete update the local environment
ρ. When all statements have been reduced, the final environment is returned.

The output and intermediate wires of the main block are initially declared as Undefined. The block’s state-
ments are evaluated to calculate the final environment ρ ′, from which the output wires are extracted.

3.2. Hierarchical Pebble

Parametrised designs require the addition of a separate parameter list for generic values. Blocks other than main
can receive values that define the bounds of loops or that can be passed to subsequent gate calls as defined in the
syntax for Hierarchical Pebble:

hcircuit ::� hmain; hblock1; · · · ; hblocki

hmain ::� BLOCK main
[id in1:typein1

, . . . ,id inn:typeinn
]

[idout1:typeout1
, . . . ,idoutm:typeoutm

]
hdec1; · · · ; hdecj

BEGIN hstmts END
hblock ::� BLOCK id (idgen1, . . . ,idgenq )

[id in1:typein1
, . . . ,id inn:typeinn

]
[idout1:typeout1

, . . . ,idoutm:typeoutm
]

hdec1; · · · ; hdecj

BEGIN stmts END
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∃j · 1 � j � n ∧ (ρ id j ) � Undefined
δ � 〈idP [id1, . . . , idn] [id ′

1, . . . , id ′
m], ρ〉

→stmt 〈idP [id1, . . . , idn] [id ′
1, . . . , id ′

m], ρ〉

(ρ id1) � Defined v1 ∧ · · · ∧ (ρ idn) � Defined vn

(δ idP ) (v1, . . . , vn) � (v′
1, . . . , v′

m)
δ � 〈idP [id1, . . . , idn] [id ′

1, . . . , id ′
m], ρ〉

→stmt ρ ⊕ {id ′
1 
→ Defined v′

1, . . . , id ′
m 
→ Defined v′

m}

δ � 〈stmti , ρ〉 →stmt ρ ′

δ � 〈stmt1; · · · stmti−1;stmti ;stmti+1; · · · stmtk, ρ〉
→stmts 〈stmt1; · · · stmti−1;stmti+1; · · · stmtk, ρ

′〉

δ � 〈stmti , ρ〉 →stmt 〈stmti , ρ〉
δ � 〈stmt1; · · · stmti−1;stmti ;stmti+1; · · · stmtk, ρ〉

→stmts 〈stmt1; · · · stmti−1;stmti ;stmti+1; · · · stmtk, ρ〉

δ � 〈[ ], ρ〉 →stmts ρ

ρ1 � {id in1 
→ Defined v1, . . . , id inn

→ Defined vn}

ρ2 � {idout1 
→ Undefined, . . . , idoutm 
→ Undefined}
ρ3 � {id1 
→ Undefined, . . . , id j 
→ Undefined}
ρ � ρ1 ⊕ ρ2 ⊕ ρ3

δ � 〈stmts, ρ〉 →stmts ρ ′

δ �
〈


BLOCK main
[id in1:WIRE, . . . ,id inn

:WIRE]
[idout1:WIRE, . . . ,idoutm:WIRE]
VAR id1:WIRE; . . . VAR id j:WIRE

BEGIN stmts END


 , [v1, . . . , vn]

〉

→main [(ρ ′ idout1 ), . . . , (ρ ′ idoutm )]

Fig. 4. Semantics of Flattened Pebble, based on → rules for main, stmts and stmt

hdec ::� VAR id : type | VAR id : NUM
hstmts ::� hstmt1; · · · ; hstmtk
hstmt ::� idP [id1, . . . ,idn] [id1, . . . ,idm]

| id (exp1, . . . ,expq) [id1, . . . ,idn] [id1, . . . ,idm]
| GENERATE FOR id = exp1 .. exp2

BEGIN stmts END
exp ::� id | n | exp1 bop exp2 | uop exp

The semantic rules for Hierarchical Pebble statements, defined by ⇒ transitions, are given in Fig. 5. Two
new environments are introduced: � maps block names to their bodies, while σ maps generic variables and loop
indices to their values. Arithmetic expressions are evaluated by the valuation function E in an appropriate value
environment. The rules for primitive gate calls and statement lists remain essentially unchanged except for the
additional environments.

Loops describe the structure of a circuit and are not incremental in operation as in imperative programming
languages. Loops require two passes. The first pass creates a list of pairs binding value environments to their
statement bodies. Therefore each loop iteration creates a distinct σ that will be used to give meaning to that
particular instance of the loop body. The three rules for statement pairs show how progress is made while
evaluating loop bodies until the final environment ρ has been calculated. Statement pairs can be evaluated in any
order and in parallel.

The rule for enacting new block calls retrieves the block definition from the environment �; it creates a
value environment σ1 by mapping the generic variable names to their values calculated in the outer block’s
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�, δ � 〈[ ], ρ〉 ⇒stpairs ρ

�, δ, σi � 〈stmtsi , ρ〉 ⇒stmts ρ ′
�, δ � 〈[(σ1, stmts1), . . . , (σi−1, stmtsi−1), (σi, stmtsi), (σi+1, stmtsi+1), . . . , (σn, stmtsn)], ρ〉

⇒stpairs 〈[(σ1, stmts1), . . . , (σi−1, stmtsi−1), (σi+1, stmtsi+1), . . . , (σn, stmtsn)], ρ ′〉

�, δ, σi � 〈stmtsi , ρ〉 ⇒stmts 〈stmts′
i , ρ

′〉
�, δ � 〈[(σ1, stmts1), . . . , (σi−1, stmtsi−1), (σi, stmtsi), (σi+1, stmtsi+1), . . . , (σn, stmtsn)], ρ〉
⇒stpairs 〈[(σ1, stmts1), . . . , (σi−1, stmtsi−1), (σi, stmts′

i), (σi+1, stmtsi+1), . . . , (σn, stmtsn)], ρ ′〉

Eσ [[exp1]] > Eσ [[exp2]]
〈stmts, σ, exp1, exp2〉 ⇒pairs [ ]

Eσ [[exp1]] � Eσ [[exp2]] 〈stmts, σ, exp1 + 1, exp2〉 ⇒pairs ps
〈stmts, σ, exp1, exp2〉 ⇒pairs [(σ ⊕ {id index 
→ Eσ [[exp1]]}, stmts)]++ps

〈stmts, σ, exp1, exp2〉 ⇒pairs ps �, δ � 〈ps, ρ〉 ⇒stpairs ρ ′

�, δ, σ �
〈(

GENERATE FOR id index = exp1.. exp2
BEGIN stmts END

)
, ρ

〉
⇒stmt ρ

...

(� id) �




BLOCK id (idgen1 , . . . , idgenq
) [id in1:WIRE, . . . ,id inn

:WIRE]
[idout1:WIRE, . . . ,idoutm:WIRE]

VAR id index1 : NUM; . . . VAR id indexj
: NUM;

VAR id local1 : WIRE; . . . VAR id localk : WIRE
BEGIN stmts END




σ1 � {idgen1 
→ Eσ [[e1]], . . . , idgenq

→ Eσ [[eq ]]}

ρ1 � {id in1 
→ (ρ id1), . . . , id inn

→ (ρ idn)}

ρ2 � {idout1 
→ Undefined, . . . , idoutm 
→ Undefined}
ρ3 � {id local1 
→ Undefined, . . . , id localk 
→ Undefined}
ρ ′ � ρ1 ⊕ ρ2 ⊕ ρ3

�, δ, σ1 � 〈stmts, ρ ′〉 ⇒stmts ρ ′′

�, δ, σ � 〈id (e1, . . . , eq) [id1, . . . , idn] [id ′
1, . . . , id ′

m], ρ〉
⇒stmt ρ ⊕ {id ′

1 
→ (ρ ′′ idout1 ), . . . , id ′
m 
→ (ρ ′′ idoutm )}

Fig. 5. Semantics of Hierarchical Pebble. The ⇒ rules dealing with primitive statements are similar to the corresponding → rules and are not
shown. The ++ operator denotes list concatenation

value environment σ ; it creates an initial wire environment ρ ′ by mapping the input variable names to their wire
values extracted from ρ and coalesced with Undefined bindings for output and intermediate variable names;
and it evaluates the called block’s statements to create a final environment ρ ′′, from which the output wires are
extracted.

The rule for the main block creates the initial environment ρ in much the same manner as with Flattened Pebble
descriptions, and is shown in Fig. 6. The blocks statements are evaluated in an initial empty value environment.

3.3. Flattening procedure

A Hierarchical Pebble description can be flattened to produce Flattened Pebble by unfolding both the generic
variables and the GENERATE-FOR loops. The block environment � and the local variable environment σ support
the abstraction mechanisms, and do not affect the underlying evaluation mechanism. Hence we can instantiate
generic variables prior to the application of input wires, enabling block definitions to be flattened and incorporated
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ρ1 � {id in1 
→ Defined v1, . . . , id inn

→ Defined vn}

ρ2 � {idout1 
→ Undefined, . . . , idoutm 
→ Undefined}
ρ3 � {id1 
→ Undefined, . . . , id j 
→ Undefined}

�, δ, {} � 〈stmts, ρ1 ⊕ ρ2 ⊕ ρ3〉 ⇒stmts ρ ′

�, δ �
〈


BLOCK main
[id in1:WIRE, . . . ,id inn

:WIRE]
[idout1:WIRE, . . . ,idoutm:WIRE]
VAR id1:WIRE; . . . VAR id j:WIRE

BEGIN stmts END


 , [v1, . . . , vn]

〉

⇒main [(ρ ′ idout1 ), . . . , (ρ ′ idoutm )]

Fig. 6. Semantics of the main block in Pebble

into the main block. Flattened Pebble, itself a subset of Pebble, is used as the output language of this flattening
process to facilitate its proof. To avoid parameters and local wire names overwriting each other when instantiating
block calls, we rename all such variables beforehand using the function α :: block → block (Fig. 7).

To model the static behaviour of the wire environment ρ in hierarchical descriptions with local bindings,
we introduce a local environment µ which behaves like a symbol table mapping local parameter names to their
original definitions, be they inputs to the circuit or local variable definitions. This leads to the invariant equation
below, where ρ is the environment for modelling wire values in a hierarchical description, while ρd is a dynamic
environment for flattened descriptions:

∀id · ρ id � ρd (µ id) (1)

This invariant equation will be used extensively in the correctness proof of the flattening procedure for Hierarchi-
cal Pebble in Sect. 4. The flattening procedure itself, defined by ⇓, is given in Fig. 7. Flattening a single statement
will result in a pair of lists consisting of primitive gate calls and intermediate wire declarations. The statement list
represents those primitive calls required to implement the statement derived from unfolding subsequent para-
metrised blocks, while the declarations are for the local wire definitions belonging to each unfolded block. The
intention is to create the flattened main block from these two lists.

Primitive calls are simply returned with their parameter lists updated with their original variable definitions
held in µ. Parametrised gate calls create a new instance or variant of the retrieved block using the function α.
Generic variables are bound to their values in σ1. A static environment µ′ is created by mapping the parameter
names to their original names held in µ. Local variables are bound to themselves, but are returned as declara-
tions so that they are properly declared at run time. The blocks statements are flattened and returned with the
local wire declarations. The two rules for loops apply the unfolding procedure at compile time to their subterms
by incrementing the loop bound, creating primitive gate calls to implement the loop at run time. The rule for
statements flattens each statement, and collects the intermediate calls and declarations together.

The flattening rule for the main block is shown in Fig. 8. An initial static environment µ is created binding
input, output and local wire names to themselves as these will be their run-time names. The body of the block
is flattened with an empty value environment. The returned list of primitive gate calls forms the body of the
flattened main block and the derived intermediate wires are declared local to this block.

To illustrate how blocks are flattened and local variables are renamed, we shall use the following example
which creates a row of two not-gates:

BLOCK notrow (n) [vin:WIRE] [vout:WIRE]
VAR inter:VECTOR (n..0) OF WIRE
VAR i:NUM

BEGIN
connect [vin] [inter(0)];
GENERATE FOR i=0..n-1
BEGIN

not [inter(i)] [inter(i+1)]
END;
connect [inter(n)] [vout]

END;
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�, µ, σ � 〈idP [id1, . . . , idn] [id ′
1, . . . , id ′

m]〉
⇓stmt ([idP [µ id1, . . . , µ idn] [µ id ′

1, . . . , µ id ′
m]], [ ])

(α (� id)) �




BLOCK id (idgen1 , . . . , idgenq
) [id in1:WIRE, . . . ,id inn

:WIRE]
[idout1:WIRE, . . . ,idoutm:WIRE]

VAR id index1 : NUM; . . . VAR id indexj
: NUM

VAR id local1 : WIRE; . . . VAR id localk : WIRE
BEGIN stmts END




µ1 � {id in1 
→ (µ id1), . . . , id inn

→ (µ idn)}

µ2 � {idout1 
→ (µ id ′
1), . . . , idoutm 
→ (µ id ′

m)}
µ3 � {id local1 
→ id local1 , . . . , id localk 
→ id localk }
σ1 � {idgen1 
→ Eσ [[e1]], . . . , idgenq


→ Eσ [[eq ]]}
�, µ1 ⊕ µ2 ⊕ µ3, σ1 � 〈stmts〉 ⇓stmts (stmts′, locals′)
�, µ, σ � 〈id (e1, . . . , eq) [id1, . . . , idn] [id ′

1, . . . , id ′
m]〉

⇓stmt (stmts′, [VAR id local1 : WIRE; · · · ; VAR id localk : WIRE] ++ locals′)

Eσ [[exp1]] > Eσ [[exp2]]
�, µ, σ � 〈(

GENERATE FOR id index=exp1.. exp2 BEGIN stmts END
)〉 ⇓stmt ([ ], [ ])

Eσ [[exp1]] � Eσ [[exp2]]
�, µ, σ ⊕ {id index 
→ Eσ [[exp1]]} � 〈stmts〉 ⇓stmts (stmts′, locals′)

�, µ, σ �
〈(

GENERATE FOR id index=(exp1+1)..exp2
BEGIN stmts END

)〉
⇓stmt (stmts′′, locals′′)

�, µ, σ �
〈(

GENERATE FOR id index=exp1.. exp2
BEGIN stmts END

)〉
⇓stmt (stmts′ ++ stmts′′, locals′ ++ locals′′)

�, µ, σ � 〈stmt1〉 ⇓stmt (stmts1, locals1) · · · �, µ, σ � 〈stmtn〉 ⇓stmt (stmtsn, localsn)
�, µ, σ � 〈stmt1; · · · ; stmtn〉 ⇓stmts (stmts1 ++ · · · ++ stmtsn, locals1 ++ · · · ++ localsn)

Fig. 7. Transition rules for flattening Pebble statements, based on ⇓ rules for stmts and stmt. The ++ operator concatenates together statement
lists and local declaration lists

BLOCK main [x:WIRE] [y:WIRE]
BEGIN

notrow (2) [x] [y]
END;

The circuit is defined in terms of two primitive components: connect which links two wires together, and the
not gate. Fig. 9 demonstrates how a block call is flattened given previously established environments. The called
block is initially renamed; the environment σ is created for the generic values; the environment µ maps parameter
names to their original names; the block’s statements are then flattened to create a list of primitive calls, and
returned along with the distinct local wire definitions.

4. Verifying flattening procedure

We can now present the main correctness theorem for flattening hierarchical blocks and GENRATE-FOR loops.
This result, given by Eq. 2, relies on Lemmas 3, 4 and 5. Each lemma is an instance of the commuting diagram
given in Fig. 3, and involves the environment invariant given by Eq. 1. At each syntactic level, they show how
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µ1 � {id in1 
→ id in1 , . . . , id inn

→ id inn

}
µ2 � {idout1 
→ idout1 , . . . , idoutm 
→ idoutm}
µ3 � {id1 
→ id1, . . . , id j 
→ id j }
µ � µ1 ⊕ µ2 ⊕ µ3

�, µ, {} � 〈stmts〉 ⇓stmts (stmts′, [VAR id ′
1:WIRE; . . . VAR id ′

k:WIRE])

� �
〈


BLOCK main [id in1:WIRE, . . . ,id inn

:WIRE]
[idout1:WIRE, . . . ,idoutm:WIRE]

VAR id1:WIRE; . . . VAR id j:WIRE
BEGIN stmts END




〉

⇓main




BLOCK main [id in1:WIRE, . . . ,id inn
:WIRE]

[idout1:WIRE, . . . ,idoutm:WIRE]
VAR id1:WIRE; . . . VAR id j:WIRE;
VAR id ′

1:WIRE; . . . VAR id ′
k:WIRE

BEGIN stmts′ END




Fig. 8. Transition rules for flattening the main block

...

�, µ′, σ1 �
〈 connect [vin1] [inter1(0)];

GENERATE FOR · · ·
...

connect [inter1(n1)] [vout1]

〉
⇓stmts ([ connect [x] [inter1(0)];

not [inter1(0)] [inter1(1)];
not [inter1(1)] [inter1(2)];
connect [inter1(2)] [y]],
[ ])

σ1 � {n1 
→ 2}
µ1 � {vin1 
→ x} µ2 � {vout1 
→ y} µ3 � {i1 
→ i1}
µ′ � µ1 ⊕ µ2 ⊕ µ3

(α(� notrow)) � BLOCK notrow (n1) [vin1:WIRE] [vot1:WIRE]
VAR inter1:VECTOR (n1..0) OF WIRE;
VAR i1:NUM

BEGIN
connect [vin1] [inter1(0)];
GENERATE FOR i1=0..n1-1
BEGIN not [inter1(i1)] [inter1(i1+1)] END;
connect [inter1(n1)] [vot1]

END;

�, {x 
→ x, y 
→ y}, {} � 〈notrow (2) [x] [y]〉
⇓stmt ( [ connect [x] [inter1(0)];

not [inter1(0)] [inter1(1)];
not [inter1(1)] [inter1(2)];
connect [inter1(2)] [y]], [ ])

[ VAR inter1:VECTOR (2..0) OF WIRE] )

Fig. 9. Fragment of the proof tree for flattening notrow, where α is used to rename variables and µ maps local variables to those of the block
call
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the sequence of outputs generated by the hierarchical definition can be calculated by first flattening the term and
then using the simplified semantics. 1

The main theorem states that, from a given Hierarchical Pebble description consisting of a main block, a block
environment �, a primitive gate environment δ, and a sequence of input wires [v1, . . . , vn], one can calculate the
sequence of outputs derived from the circuit’s proof trees by first unfolding the description to create one large
main block, to which the flattening rules can be applied:

�, δ � 〈main, [v1, . . . , vn]〉 ⇒main [v′
1, . . . , v′

m]

�⇒ � � main ⇓main main′

∧ δ � 〈main′, [v1, . . . , vn]〉 →main [v′
1, . . . , v′

m] (2)

This result can be proved by structural induction on the rules for the main block (Figs. 4, 6 and 8). We establish
the invariant on wire environments initially, and we use Lemma (3) below to show how it holds on completion
of the block’s statements so that the same final values are derived.

From a given Hierarchical Pebble statement list, a block environment �, a primitive gate environment δ, a
local value environment σ and a local wire environment ρ, we can calculate the wire bindings ρ ′ derived from a
successful completion of the statements, by staging the computation in two. The first stage flattens the statements
into a list of primitive calls, where local wire names are mapped to their original definitions using the static
environment µ, and a distinct list of local wire declarations is also created and bound within µ. The second
stage applies the Flattened Pebble rules to the primitive gate call list using the dynamic wire environment ρd . An
environment ρ ′

d can be derived that will contain the same bindings as those for the hierarchical statements. This
implication requires the invariant, given by Eq. 1, to hold for wire environments:

�, δ, σ � 〈stmts, ρ〉 ⇒stmts ρ ′

�⇒ �, σ, µ � stmts ⇓stmts (stmts′, locals′)

∧ ∀id · ρ id � ρd (µ id)

∧ ∀id · ρ ′ id � ρ ′
d (µ id)

∧ δ � 〈stmts′, ρd〉 →stmts ρ ′
d (3)

This lemma can be proved by induction on the length of derivation sequences using Lemma 4; it completes the
presentation of the main theorem.

The next lemma deals mainly with GENERATE-FOR loops (Figs. 4, 5 and 7). From a given Hierarchical Pebble
statement, a block environment �, a primitive gate environment δ, a local value environment σ , and a local wire
environment ρ, one can calculate a set of wire bindings ρ ′ derived from the successful completion of the statement,
by first flattening the statement using the static environment µ, and then executing the derived statements in the
dynamic wire environment ρd :

�, δ, σ � 〈stmt, ρ〉 ⇒stmt ρ ′

�⇒ �, σ, µ � stmt ⇓stmt (stmts′, locals′)

∧ ∀id · ρ id � ρd (µ id)

∧ ∀id · ρ ′ id � ρ ′
d (µ id)

∧ δ � 〈stmts′, ρd〉 →stmt ρ ′
d (4)

This result can be proved by structural induction on statements: primitive gate calls, parametrised gate calls
and loops. The first two cases are straightforward, once the invariants of the environments have been established.
The third case, however, requires Lemma 5 to show that the appropriate final environment can be derived after
staging:

1 With the addition of conditional statements, recursive block definitions can result in non-terminating programs. In these cases the flattening
procedure will also fail to terminate
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(
�, δ, σ1 � 〈stmts1, ρ〉 ⇒stmts ρ ′

∧ �, δ, σ2 � 〈stmts2, ρ
′〉 ⇒stmts ρ ′′

)
�⇒ �, σ1, µ � stmts1 ⇓stmts (stmts′

1, locals′
1)

∧ �, σ2, µ � stmts2 ⇓stmts (stmts′
2, locals′

2)
∧ ∀id · ρ id � ρd (µ id)
∧ ∀id · ρ ′′ id � ρ ′′

d (µ id)
∧ δ � 〈stmts1 ++ stmts2, ρd〉 →stmts ρ ′′

d (5)

This lemma states that reducing a statement list stmts1 in the value environment σ1 with wire bindings ρ, followed
by reducing a second statement list stmts2 in σ2 yielding a final wire environment ρ ′′, can be derived by first
flattening the two statement lists and then executing the concatenation of the two primitive gate call lists. The
lemma can be proved by induction on the length of derivation sequences.

5. Compiler development

This section reflects on the implications of our approach for compiler development. Natural semantic rules, as
used in specifying Pebble, rely on notions of pattern matching, inference rules and operational semantics. They
can be captured in a theorem prover [Den00, PfS99] or translated into Horn clauses via a metalanguage such as
Typol [Des84]. Since the transition rules for flattening Hierarchical Pebble descriptions permit a left–right and
top–down construction of the proof tree with no backtracking, we can replace a resolution engine by a functional
evaluator based on pattern matching [ACG92] to improve efficiency.

In practice, an implementation in a functional language of the core flattening procedure (Fig. 10) follows
naturally from the rules in Fig. 7. For a particular language construct, a function definition is created that pattern
matches its goal and obtains the result from the intermediate transitions by means of a where clause. This tech-
nique offers a way of automatically producing a functional implementation of the compilation tools directly from
their specifications.

It is educational to compare the original, hand-developed implementation of the flattening procedure, and
the new version in Fig. 10 which results from the specification and proof exercises. The new version is better than
the original version in all aspects: it is clearer, more concise, more robust and more efficient. The main reason is
that, based on the formal development, the new version separates variable renaming from the flattening process.
The original non-verified implementation, in contrast, contains a single procedure which performs both variable
renaming and flattening. The mingling of the two functions, however, leads to situations where the renaming
process is deeply nested within the unfolding procedure, leaving little scope for further optimisations. In compar-
ison, the new version is amenable to further optimisations, such as the use of de Bruijn indices to avoid the costly
rename function [Han94]. Further refinements would lead to a highly efficient imperative implementation.

Our experience shows that deriving provably-correct compiler implementations can benefit their efficiency, in
addition to increasing the confidence in their correctness. One explanation is that the verification process often
reveals insights about a design, and such insights can often be used to improve its efficiency.

6. Placement information

This section describes both explicit and relative placement information for Pebble. We demonstrate both place-
ment styles on a simple pattern matcher. Precise control of library layout using placement information is especially
rewarding in two situations. First, such information is particularly effective for regular circuits, where conven-
tional placement algorithms may not be able to fully exploit the circuit structure. Second, controlling placement
is desirable for reconfigurable circuits to minimize reconfiguration time, since components at identical locations
common to two successive configurations do not need to be reconfigured. Such optimisation has been included
in recent design tools for reconfigurable applications [SLC00].

Pebble adopts the convention “AT (x,y)” to denote the placement of a block at a location with coordinates
(x,y) as shown in Fig. 11. Flattening proceeds as before, only the rule for primitive gate calls of Figure 7 needs
to be modified:

�, µ, σ � 〈idP [id1, . . . , idn] [id ′
1, . . . , id ′

m] AT (e1, e2)〉
⇓stmt ([idP [µ id1, . . . , µ idn] [µ id ′

1, . . . , µ id ′
m] AT (Eσ [[e1]], Eσ [[e2]])], [ ])
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data Exp = Number Int
| Var String
| Binop (Exp,Bop,Exp)
| Unop (Uop,Exp)

data Type = WIRE
data Dec = VARW (String,Type)

| VARN String
data Stmt = PrimCall (String,[String],[String])

| BlkCall (String,[Exp],[String],[String])
| Loop (String,Exp,Exp,[Stmt])

data Blk = Block (String,[String],[(String,Type)],[(String,Type)],[Dec],[Stmt])

fetch :: [(String,a)] -> String -> a
..
eval_exp :: Exp -> [(String,Int)] -> Int
..

flatten_stmt :: ([(String,Blk)],[(String,String)],[(String,Int)]) -> Stmt -> ([Stmt],[Dec])
flatten_stmt (gamma,mu,sigma) (PrimCall (pnm,args1,args2))

= ([PrimCall (pnm,map (fetch mu) args1,map (fetch mu) args2)],[])
flatten_stmt (gamma,mu,sigma) (BlkCall (bnm,gens,args1,args2))

= (stmts’,[(VARW d) | (VARW d) <- decs] ++ locals’)
where

(Block (nm,gennms,parms1,parms2,decs,stmts)) = rename (fetch gamma bnm)
sigma1 = zip gennms (map (\ e -> eval_exp e sigma) gens)
mu1 = zip parms1 (map (fetch mu) args1)
mu2 = zip parms2 (map (fecth mu) args2)
mu3 = [(id,id) | (VARW (id,WIRE)) <- decs]
mu’ = mu1 ++ mu2 ++ mu3
(stmts’,locals’) = flatten_stmts (gamma,mu’,sigma1) stmts

flatten_stmt (gamma,mu,sigma) (Loop (nm,e1,e2,stmts))
| n1>n2 = ([],[])
| otherwise = (stmts’++stmts’’,locals’++locals’’)

where
n1 = eval_exp e1 sigma
n2 = eval_exp e2 sigma
(stmts’,locals’) = flatten_stmts (gamma,mu,(nm,n1):sigma) stmts
(stmts’’,locals’’) = flatten_stmt (gamma,mu,sigma) (Loop (nm,Binop (e1,Add,Number 1),e2,stmts))

flatten_stmts :: ([(String,Blk)],[(String,String)],[(String,Int)]) -> [Stmt]-> ([Stmt],[Dec])
flatten_stmts (gamma,mu,sigma) = unzip . map flatten_stmt

Fig. 10. Flattening Pebble in Haskell

BLOCK muxarray (n:GENERIC)
[c:WIRE, x,y:VECTOR (n-1..0) OF WIRE]
[z:VECTOR (n-1..0) OF WIRE]

VAR i
BEGIN
GENERATE FOR i = 0..(n-1)
BEGIN
mux [c,x(i),y(i)] [z(i)] AT (i,0)

END
END;

Fig. 11. A description of an array of multiplexors (Fig. 1) in Pebble with explicit placement coordinates
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BBlock ::� BLOCK id (idgen1 , . . . , idgenq )
[id in1:typein1

, . . . , idinn:typeinn
]

[idout1:typeout1
:typeoutm

, . . . , idoutm]
dec1; · · · ; decj

BEGIN bes END

bes ::� idP [id1, . . . , idn] [id1, . . . , idm]
| id (exp1, . . . , expq) [id1, . . . , idn] [id1, . . . , idm]
| BESIDE (cstmt1; . . . ;cstmtn)
| BELOW (cstmt1; . . . ;cstmtn)
| BESIDE FOR id = exp1..exp2 BEGIN bes END
| BELOW FOR id = exp1..exp2 BEGIN bes END

cstmt ::� GENERATE IF exp THEN bes
| bes

Fig. 12. Syntax of Beside and Below Pebble with conditionals

While such placement information helps to optimize the layout, it is usually tedious and error-prone to specify.
We have therefore developed high-level descriptions for placement constraints, abstracting away the low-level
details. These descriptions are compile-time directives for the Pebble compiler to project coordinates onto designs,
generating a tree representing placement possibilities.

The two main descriptions, shown in Fig. 12, are BESIDE, which places two or more blocks beside each other,
and BELOW, which places blocks vertically. These descriptions allow blocks to be placed relatively to each other,
without the user providing the coordinates of their locations.

For a case study, consider a simple pattern matcher design that matches a string of bits in a serial data stream.
The design features a regular array of 1-bit pattern matching cells. The performance and area utilisation can be
optimised by controlling the layout using placement information. We show that the BESIDE and BELOW operators
allow a compact and efficient layout to be captured in a simple way.

Figure 13a shows a pattern matcher design that matches strings with a bit width of 1. The pattern is stored
in the lower shift register when load=1. This register contains d-type flip-flops with an enable (labelled fde).
The data moves through the d-type flip-flops of the top shift register (labelled fd). The data and the pattern are
compared by the combinational logic implemented by the 3-input lookup tables (labelled lut3). The output,
match, is asserted when a match is found.

To layout this design, we assume that the primitives fd, fde and lut3 occupy a single location. The layout
corresponds to the positions of the primitives shown in Fig. 13a. This can be captured with BESIDE and BELOW
by composing a 1-bit matcher using BELOW and then by laying it out as a row using BESIDE. A multi-bit pattern
matcher can then be composed as a column using BELOW to stack up the 1-bit rows. The match results must be
combined using a further AND gate to obtain the final result.

If the match pattern is constant, then a specialised implementation can be produced by removing the pattern
shift register and simplifying the combinational logic by boolean optimisation. The combinational logic can then
be mapped to a 2-input lookup table as shown in Fig. 13b. The match pattern is encoded into the lookup tables
using an AND gate for a 1, and an AND gate with an inverted input for a 0. When implemented on an FPGA,
the match pattern can be changed by reconfiguring the data in the lookup tables. This optimisation can be used
to reduce the amount of resources required to implement the design. For a multi-bit pattern matcher, the layout
can be compacted after optimisation by closing the gaps created by the removal of the pattern shift register.

Figure 14 shows a parametrised Pebble description that can be used to implement either the full pattern
matcher (Fig. 13a or the specialised pattern matcher Fig. 13b): parameter w is the bit-width of the data; n is the
length of the match pattern; specialise selects between the full and specialised implementations; and pattern
is the match pattern for the specialised implementation. When the BESIDE-BELOW description is converted to
a coordinate description, the coordinates are assigned within the conditionals such that a compact layout is
achieved for each of the alternate implementions. This is achieved using partial evaluation techniques [JGS93]
and is discussed further in Sect. 9.

Figure 15 shows the corresponding Pebble description using coordinates. In this description, the position of
each instance is provided by a set of coordinates comprising of symbolic arithmetic expressions given in terms of
the design parameters. The mechanism to compact the layout when evaluating the conditionals must be provided
explicitly. Using the BESIDE and BELOW operators, this compaction is provided for free, hence removing the need
to provide an otherwise tedious and error-prone layout description. The next section describes the process for
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Fig. 13. Two 1-bit pattern matcher implementations with n � 4. (a) Non-specialised design (specialise=0). (b) Specialised design
(specialise=1) with pattern=[1, 1, 0, 1]

mapping a description with placement given by BESIDE and BELOW to a description with placement given by
coordinates.

7. Compiling placement descriptions

In order to project a coordinate scheme onto a Beside–Below Pebble statement, we use an environment �B map-
ping block names to their syntactical definitions, an environment φ mapping block names to their sizes, and
a placement function P (Fig. 16). Block sizes are functions that take the symbolic arguments of a block and
return its symbolic width and height. The placement function P is used to position blocks within their immedi-
ate context; it maps an abstract coordinate scheme onto a statement. It returns a tuple of three components: a
sequence of statements unfolded by the rules of BESIDE and BELOW, the dimensions of the block associated with
the statement, and an updated block size environment φ.

The placement of blocks is achieved locally to derive suitable symbolic locations. Symbolic addresses are
calculated using the given (x, y) expressions and the function ‘f ’. For placing single blocks, an identity function
is used for ‘f ’. For designs that derive repeated positions in BESIDE FOR and BELOW FOR loops, we create two
new local placement functions, g1 and g2, that ‘f ’ could become. These two functions do not depend on the
nesting level of the statement, but only on the given start position of the loop. Our model does not include space
for wiring: it is assumed that wiring resources are orthogonal to the network of logic blocks and have no effects
on them, or that the effects of routing between logic blocks are captured within the blocks themselves.

A coordinate scheme is projected onto a Beside–Below statement in the following manner. A primitive block
of width across (idP ) and height upwards (idP ) is positioned according to its placement function and dimension.
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BLOCK pmatch (w, n, specialise, pattern)
[din, pin : VECTOR(w-1..0) OF WIRE;
load, clk : WIRE]

[match : VECTOR(w-1..0) OF WIRE]
VAR i, j;
VAR d : VECTOR(n..0) OF VECTOR(w-1..0) OF WIRE;
VAR p : VECTOR(n..0) OF VECTOR(w-1..0) OF WIRE
VAR m : VECTOR(n..0) OF VECTOR(w-1..0) OF WIRE

BEGIN
BELOW FOR j=0..w-1
BEGIN

connect [d(0)(j)] [din(j)];
connect [m(0)(j)] [pin(j)];
connect [match(j)] [p(size)(j)];

BESIDE (
constant (1) [] [p(0)(j)];

BESIDE FOR i=0..n-1
BEGIN

BELOW (
GENERATE IF specialise = 0
THEN fde [m(i)(j), clk, load] [m(i+1)(j)];

lut3 (132) [d(i)(j), p(i)(j), m(i+1)(j)]
[p(i+1)(j)]

END;
GENERATE IF specialise = 1
THEN

GENERATE IF pattern(i) = 0 THEN
lut2 (4) [d(i)(j), p(i)(j)] [p(i+1)(j)]

ELSE
lut2 (8) [d(i)(j), p(i)(j)] [p(i+1)(j)]

END
END
fd [d(i)(j), clk] [d(i+1)(j)] )

END )
END

END;

Fig. 14. Pebble description of the pattern matcher design with placement given by the BESIDE and BELOW operators. Parameter n is the
length of the pattern. constant (1) denotes a constant generator producing 1. lut2 and lut3 are lookup tables, and fd and fde are d-type flip
flops. A specialised implementation is generated when specialise=1, otherwise a full implementation is generated. When specialised, the
use of the BELOW ensures that the design is compacted. Parameter pattern is the match pattern when the design is specialised. The AND
gates required to produce the final result are not included in this description

The size expression of composite blocks is calculated by applying the generic expressions to the block’s size stored
in φ. If the size expression is unknown, then it is derived using PB. Coordinates are projected onto a row of beside
terms by adding previous widths together. The final size of the BESIDE statement is the sum of each width and
the maximum height of all subterms. Similarly for the BELOW statement.

For loops, the position of each loop body depends on the iteration index and the size of the body. Initially,
we do not know the size of the loop body so we create a new identifier using the function NV , and replace it with
the value once it is known. The concealed function NV creates a distinct new identifier each time it is called. This
method works because the place holder variables will not be required until after the size of the block is known.
The position of each repeated subterm is calculated using a new placement function.

The size of a Beside–Below block is calculated from the size of its statement body using P and the default
identity placement function f . The resulting dimensions (acc, up) are parametrised by the block’s generic vari-
ables (gid1, . . . , gid j ), as shown in the lambda expression of Fig. 17. This expression denotes the size of the block
when applied to a list of values; it is bound to the block’s name and added to the updated size environment φ′.

We can use the above definitions to prove the correctness of various source to source transformations. As an
example, consider the composition of two BESIDE statements:

Pφ �B [[BESIDE(a;BESIDE(b;c))]] (x, y) f

� Pφ �B [[BESIDE(a;b;c)]] (x, y) f
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BLOCK pmatch (x, y, w, n, specialise, pattern)
[din, pin : VECTOR(w-1..0) OF WIRE;
load, clk : WIRE]

[match : VECTOR(w-1..0) OF WIRE]
VAR i, j;
VAR d : VECTOR(n..0) OF VECTOR(w-1..0) OF WIRE;
VAR p : VECTOR(n..0) OF VECTOR(w-1..0) OF WIRE
VAR m : VECTOR(n..0) OF VECTOR(w-1..0) OF WIRE

BEGIN
GENERATE FOR j=0..w-1
BEGIN

connect [d(0)(j)] [din(j)];
connect [m(0)(j)] [pin(j)];
connect [match(j)] [p(size)(j)];

GENERATE IF specialise = 0 THEN
constant (1) [] [p(0)(j)] AT (x,y+(j*3));

END;
GENERATE IF specialise = 1 THEN

constant (1) [] [p(0)(j)] AT (x,y+(j*2));
END;

GENERATE FOR i=0..n-1
BEGIN

GENERATE IF specialise = 0
THEN

fde [m(i)(j), clk, load]
[m(i+1)(j)] AT (x+i+1,y+(j*3));

lut3 (132) [d(i)(j), p(i)(j), m(i+1)(j)]
[p(i+1)(j)] AT (x+i+1,y+(j*3)+1);

fd [d(i)(j), clk]
[d(i+1)(j)] AT (x+i+1,y+(j*3)+2)

END;
GENERATE IF specialise = 1
THEN

GENERATE IF pattern(i) = 0 THEN
lut2 (4) [d(i)(j), p(i)(j)]

[p(i+1)(j)] AT (x+i+1,y+(j*2))
ELSE

lut2 (8) [d(i)(j), p(i)(j)]
[p(i+1)(j)] AT (x+i+1,y+(j*2))

END;
fd [d(i)(j), clk]

[d(i+1)(j)] AT (x+i+1,y+(j*2)+1)
END

END
END

END;

Fig. 15. Pebble description of the pattern matcher design with placement given by explicit placement expressions in the form of symbolic
placement constraints. Parameters x and y are the coordinates of the origin of the pmatch block

A proof can be obtained by unfolding the LHS twice using P , rearranging the resulting expression, and then
folding P to arrive at the RHS.

8. Verifying placement compilation

The verification of the compilation scheme for designs with relative placement, specified by the mapping P in
the preceding section (Fig. 16), involves three steps. The first step is to specify a flattened version of Pebble with
explicit placement coordinates. This has been achieved with the → rules of Fig. 4. The second step is to specify the
semantics of descriptions with relative placement using a function B, and to specify the semantics of descriptions
with explicit placement using ⇓stmts. The third step is to show that the composition of P and ⇓stmts corresponds
to B, as illustrated by the commuting diagram in Fig. 3 with FP and PS becoming, respectively P and B.

To assign meaning to descriptions with relative placement, we use the function B for mapping such descrip-
tions with relative placement directly to flattened descriptions in which primitive blocks have numerical placement
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P :: SizeEnv → BBlockEnv → bes → (exp × exp) → FuncPos → (hstmts × (exp × exp) × SizeEnv)
Pφ �B [[ idP [id1, . . . , idn] [id ′

1, . . . , id ′
m] ]] (x, y) f

� let (xpos, ypos) � f (x, y)
in ([idP [id1, . . . , idn] [id ′

1, . . . , id ′
m] AT (xpos, ypos)], (across (idP ), upwards (idP )), φ)

Pφ �B [[ id (exp1, . . . , expj) [id1, . . . , idn] [id ′
1, . . . , id ′

m] ]] (x, y) f

� if (id ∈ (dom φ))
then

let (acc, up) � (φ id) (exp1, . . . , expj )
(xpos, ypos) � f (x, y)

in ( [id (xpos, ypos, exp1, . . . , expj) [id1, . . . , idn] [id ′
1, . . . , id ′

m]],
(acc, up), φ)

else
let φ′ � PBφ �B (�B id)

(acc, up) � (φ′ id) (exp1, . . . , expj )
(xpos, ypos) � f (x, y)

in ( [id (xpos, ypos, exp1, . . . , expj) [id1, . . . , idn] [id ′
1, . . . , id ′

m]],
(acc, up), φ′)

Pφ �B [[ BESIDE(bes1; . . . ;besn) ]] (x, y) f

� let (stmts1, (acc1, up1), φ1) � Pφ �B [[ bes1 ]] (x, y) f

(stmts2, (acc2, up2), φ2) � Pφ1 �B [[ bes2 ]] (x + acc1, y) f
...

(stmtsn, (accn, upn), φn) � Pφn−1 �B [[ besn ]] (x + acc1 + · · · + accn−1, y) f

in (stmts1++ · · · ++ stmtsn, (acc1 + · · · + accn, max (up1, . . . , upn)), φn)
Pφ �B [[ BELOW(bes1; . . . ;besn) ]] (x, y) f

� let (stmts1, (acc1, up1), φ1) � Pφ �B [[ bes1 ]] (x, y) f

(stmts2, (acc2, up2), φ2) � Pφ1 �B [[ bes2 ]] (x, y + up1) f
...

(stmtsn, (accn, upn), φn) � Pφn−1 �B [[ besn ]] (x, y + up1 + · · · + upn−1) f

in (stmts1++ · · · ++ stmtsn, (max (acc1, . . . , accn), up1 + · · · + upn), φn)
Pφ �B [[ BESIDE FOR id = exp1..exp2 BEGIN bes END ]] (x, y) f

� let xoffset � NV ()
g1 (x, y) � (x + (id − exp1) × xoffset, y)
(stmts, (acc, up), φ′) � Pφ �B [[ bes ]] (x, y) g1
stmts′ � (λ xoffset · stmts) acc

in ( [FOR id = exp1..exp2 BEGIN stmts′ END],
(acc × (exp2 − exp1 + 1), up), φ′)

Pφ �B [[ BELOW FOR id = exp1..exp2 BEGIN bes END ]] (x, y) f

� let yoffset � NV ()
g2 (x, y) � (x, y + (id − exp1) × yoffset)
(stmts, (acc, up), φ′) � Pφ �B [[ bes ]] (x, y) g2
stmts′ � (λ yoffset · stmts) up

in ( [FOR id = exp1..exp2 BEGIN stmts′ END],
(acc, up × (exp2 − exp1 + 1)), φ′)

Fig. 16. Compiling descriptions with relative placement to descriptions with explicit placement coordinates constructed symbolically. The ++
operator concatenates together statement lists

positions (Fig. 18). The B function begins at the bottom left hand corner of a design, and uses a recursive descent
algorithm to position each primitive block.

We can now proceed to the third step: to verify the correctness of P by structural induction on the syntax of
Pebble statments containing relative placement information (Fig. 12). The purpose is to show that, for all cases,
the two-stage evaluation process with P and ⇓stmts yields the same results as the one where the initial coordinates
are provided and the language unfolded in one stage using the function B. The theorem that corresponds to the
commuting diagram in Fig. 3 is as follows:
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PB :: SizeEnv → BBlockEnv → BBlock → SizeEnv
PBφ �B [[ BLOCK id (gid1, . . . , gid j)

[id1:WIRE, . . . , idn:WIRE] [id ′
1:WIRE, . . . , id ′

m:WIRE]
VAR lid1, . . . , lidq;
VAR id ′′

1:WIRE, . . . , id ′′
p:WIRE;

BEGIN
bes

END ]] � let f (x, y) � (x, y)
(stmts, (acc, up), φ′) � Pφ �B [[ bes ]] (x, y) f

in φ′ ⊕ { id 
→ λ(gid1, . . . , gid j ) · (acc, up) }
Fig. 17. An algorithm for calculating the size of a block. The identifiers lid i and wires id ′′

j are local to this block

Pφ �B [[ bes ]] (x, y) f � (hstmts, (exp1, exp2), φ′)
�C, µ, σ � 〈hstmts〉 ⇓stmts (stmts, decs)

B (�B, µ, σ ) [[ bes ]] (xn, yn) � (stmts, decs, (n′
1, n

′
2))

where xn � Eσ ′ [[x]] and yn � Eσ ′ [[y]]

n′
1 � Eσ ′ [[exp1]] and n′

2 � Eσ ′ [[exp2]]

Verifying the cases for primitives, block calls, beside and below sequences is straightforward since ‘f ’ would
just be the identity function. For the cases involving loops, we need to consider two possible placement functions,
g1 and g2, that are used to substitute f . As the placement of blocks is achieved locally, symbolic addresses are
calculated using the given (x,y) expressions and the function f . They provide all that is required to derive suitable
symbolic locations. Therefore we only need to consider one level of nesting at a time.

One important point is that explicit placement expressions cannot be fully evaluated until the second stage,
⇓stmts, since the values of some of the variables are undefined at design time, when P is involved. Given that these
values are known in the run-time environment σ ′, where σ ′ ⊆ σ , we can relate their symbolic representation to
their concrete ones as follows:

xn � Eσ ′ [[x]]
yn � Eσ ′ [[y]]

Since the size of a description involving relative placement is the same for both B and the composition of P and
⇓stmts, we have

n′
1 � Eσ ′ [[exp1]]

n′
2 � Eσ ′ [[exp2]]

The above proof outline covers a subset of Pebble that does not include vectors and conditional statements. Our
approach can be extended to cover such Pebble constructs, such as the syntax in Fig. 12.

9. Dealing with conditionals and compaction by partial evaluation

This section explains how our approach can be extended to deal with conditionals, and how this extension can
be used to support design compaction using partial evaluation.

The use of our guarded command, GENERATE IF, causes problems from a placement perspective as we have
to consider both what happens when the guard succeeds and fails. Primitive block calls that occur after a condi-
tional call will be placed differently depending on whether the conditional is true or not. Consider the following
example:

BESIDE ( a;
GENERATE IF x=2 THEN b;
c)

In effect it describes two situations. If x is 2 then we can rewrite the above as BESIDE(a;b;c), otherwise it
becomes BESIDE (a;c). Applying P to each case will result in differing layouts. Our solution is to ensure that all
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B :: (BBlockEnv × WireEnv × NumEnv) → bes → (Num × Num) → (stmts × Decs × (Num × Num))
B (�B, µ, σ ) [[idP [id1, . . . , idn] [id ′

1, . . . , id ′
m]) ]] (xn, yn)

� ([idP [id1, . . . , idn] [id ′
1, . . . , id ′

m] AT (xn, yn)], [ ], (across (idP ), upwards (idP )))
B (�B, µ, σ ) [[id (exp1, . . . , expj) [id1, . . . , idn] [id ′

1, . . . , id ′
m] ]] (xn, yn)

� (stmts′, (VAR id local1:WIRE, . . . , id localp:WIRE)++locals′
, (acc, up))

where ( BLOCK id (gid1, . . . , gid j)
[id in1:WIRE, . . . , id inn

:WIRE] [idout1:WIRE, . . . , idoutm:WIRE]
VAR lid1, . . . , lidq;
VAR id local1:WIRE, . . . , id localp:WIRE;

BEGIN
bes

END ) � α(�B id)
µ1 � {id1 
→ id in1 , . . . idn 
→ id inn

}
µ2 � {id ′

1 
→ idout1 , . . . id ′
m 
→ idoutn}

µ3 � {id local1 
→ id local1 , . . . id localp 
→ id localp }
σ ′ � {gid1 
→ Eσ [[exp1]], . . . , gid j 
→ Eσ [[expj ]]}
(stmts′, locals′

, (acc, up)) � B (�B, µ1 ⊕ µ2 ⊕ µ3, σ
′) [[bes]] (xn, yn)

B (�B, µ, σ ) [[ BESIDE (bes1; . . . ;besn) ]] (xn, yn)
� (stmts1++ · · · ++ stmtsn, locals1++ · · · ++ localsn, (acc1 + · · · + accn, max (up1, . . . , upn))

where (stmts1, locals1, (acc1, up1)) � B (�B, µ, σ ) [[bes1]] (xn, yn)
(stmts2, locals2, (acc2, up2)) � B (�B, µ, σ ) [[bes2]] (xn + acc1, yn)

...
(stmtsn, localsn, (accn, upn)) � B (�B, µ, σ ) [[besn]] (xn + acc1 + · · · + accn−1, y))

B (�B, µ, σ ) [[ BELOW (bes1; . . . ;besn) ]] (xn, yn)
� (stmts1++ · · · ++ stmtsn, locals1++ · · · ++ localsn, (max (acc1, . . . , accn), up1 + · · · + upn))

where (stmts1, locals1, (acc1, up1)) � B (�B, µ, σ ) [[bes1]] (xn, yn)
(stmts2, locals2, (acc2, up2)) � B (�B, µ, σ ) [[bes2]] (xn, yn + up1)

...
(stmtsn, localsn, (accn, upn)) � B (�B, µ, σ ) [[besn]] (xn, y + up1 + · · · + upn−1))

B (�B, µ, σ ) [[ BESIDE FOR id � exp1..exp2 BEGIN bes END ]] (xn, yn)
� if Eσ [[exp1]] > [[exp2]]

then ([ ], [ ], (0, 0))
else (stmts′++stmts′′, locals′++locals′′

, (acc′ + acc′′, max(up′, up′′)))
where (stmts′, locals′

, (acc′, up′)) � B (�B, µ, σ ) [[bes]] (xn, yn)
(stmts′′, locals′′

, (acc′′, up′′)) � B (�B, µ, σ ) [[ BESIDE FOR id � (exp1 + 1)..exp2
BEGIN bes END ]] (xn + acc′, yn)

B (�B, µ, σ ) [[ BELOW FOR id � exp1..exp2 BEGIN bes END ]] (xn, yn)
� if Eσ [[exp1]] > [[exp2]]

then ([ ], [ ], (0, 0))
else (stmts′++stmts′′, locals′++locals′′

, (max(acc′, acc′′), up′ + up′′))
where (stmts′, locals′

, (acc′, up′)) � B (�B, µ, σ ) [[bes]] (xn, yn)
(stmts′′, locals′′

, (acc′′, up′′)) � B (�B, µ, σ ) [[ BELOW FOR id � (exp1 + 1)..exp2
BEGIN bes END ]] (xn, yn + up′)

Fig. 18. Mapping descriptions with relative placement information to flattened descriptions in which primitive blocks have numerical place-
ment positions

conditionals occur at the end of a BESIDE or BELOW. We pre-process conditional descriptions so that all calls that
occur after a GENERATE IF statement are removed. These calls are nested within either a conditional that suc-
ceeds or one that fails for the particular guard. Considering our example above we would arrive at the following
description:
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BESIDE ( a;
GENERATE IF x=2

THEN BESIDE (b;c)
GENERATE IF NOT (x=2) THEN c)

In effect we create a tree of possible placement paths so that each conditional branch will contain all possible
subsequent gate calls. The recursive descent algorithm that undertakes this conversion is presented in [MLD02].

The suport for conditional statements enables us to build a partial evaluator for Pebble. A partial evaluator is
an algorithm which, when given a program and some of its input data, produces a residual or specialised program.
Running the residual program on the remaining data will yield the same result as running the original program
on all of its input data [JGS93].

Our use of the Pebble language is to enable a parametrised style of hardware design [Luk96]. Partial eval-
uation, even with no static data at all, can often optimise such descriptions. This is because it can propagate
constants from blocks where they are defined to those where they are used, and precomputing wherever possible.

However, in the case of our placement descriptions, we seek to exploit the inefficiency introduced when assign-
ing locations to primitive blocks within conditionals. We assume that the size of a conditional statement is the
maximum of both the true and false cases. If we know in advance which branch of the conditional will be chosen,
then we can not only eliminate the dead code from our circuit description, but also re-apply the P function to
create a more precise layout.

We demonstrate this process by partially evaluating our pattern matcher example when the value ofspecialise
is 1. The size of the loop body of the resulting implementation is smaller, reducing the height of the pattern matcher
block from:

(n, w × 3)

to:

(n, w × 2)

where n is the length of the pattern and w is the bit width of the data. The bounding box of the floorplan of
the specialised design is 66% of that of the non-specialised design – in other words, the compaction reduces the
resources used by 33%.

We have also developed larger examples using the proposed method than the pattern matcher designs consid-
ered in this paper. For instance, our work on DES encryption shows that, when implemented on a Xilinx Virtex
FPGA, our compaction technique is able to reduce the size of the design by 60% [MLD02].

10. Summary and future work

We have provided a functional specification for a procedure that compiles a description with relative placement
information into a version where symbolic information is specified using coordinates. We have also shown how
to give semantics to designs with symbolic relative placement and with symbolic explicit placement coordinates,
by mapping them to flattened designs containing primitive blocks with numerical placement coordinates. The
correctness of the compilation procedure can then be verified with respect to such semantics.

While the version of Pebble described in this paper does not include advanced abstraction mechanisms, current
work involves extending Pebble with polymorphic variables, records and higher-order functions. The Quartz lan-
guage, for instance, supports higher-order functions with overloading [PL05]. These features enable a combinator
style of development [JoS90] that tends to simplify the hardware design process.

Our extended compilation strategy infers the types of the polymorphic variables, unfolds the record defini-
tions, and instantiates higher-order functions prior to compile time to create a Hierarchical Pebble description.
The correctness proof for this Polymorphic Pebble [ML01] is similar to that for Hierarchical Pebble. An inter-
mediate environment mapping polymorphic variables to types is used to create distinct blocks, and it leads to
an invariant equation similar to Eq. 1. Higher-order Pebble enables nested function calls which require lambda
lifting before the calls can be unfolded. In this way the ability to generate correct parametrised VHDL will be
maintained.

The combinator style of description facilitates the formulation of correctness-preserving algebraic transfor-
mations for design development [JoS90]. The proposed extensions of Pebble take us a step closer to providing, for
instance, a generic transformation rule [Luk96] which can be used to derive pipelined designs from a non-pipelined
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design. This facility will enable speed and energy optimisation, since recent work [WAL04] has shown that, for
reconfigurable hardware technology, pipelined designs can run faster or can consume lower energy per operation
than non-pipelined designs. Further work will generalise our approach to deal with relational descriptions [GL01].

Our research contributes to insights about abstraction mechanisms and their validated implementations. It
also provides a useful foundation on which further work, such as verifying tools for branch-optimised compi-
lation [SL04] and pipeline optimisation [WeL01], can be based. While future studies will establish the extent to
which industrial tools can benefit from our approach, we believe that a provably-correct framework will have
a profound impact on understanding the scope and effectiveness of hardware synthesis algorithms and their
implementation [MLD02].

Current and future work involves extending our approach to support application-specific and architecture-
specific partitioning and placement methods, and exploring their use to guide development and optimisation of
realistic designs and tools. Moreover, we aim to integrate relative placement information with the compilation of
run-time Pebble descriptions to improve performance and reduce size and power consumption [DLu02]. It would
also be useful to explore mechanisation of our verification and compiler generation techniques.
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