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Abstract

In this paper, we investigate a combination of two tech-
niques — instruction coding and instruction re-ordering —
for optimizing energy in embedded processor control. We
present the first practical, hardware implementation incor-
porating both approaches as part of a novel flow for auto-
matic power-optimization of an FPGA soft processor. Our
infrastructure generates customized processors and associ-
ated software, to enable power optimizations to be evalu-
ated on multiple architectures and FPGA platforms. We
evaluate using both software estimates of power and actual
measurements from both low-cost and high-performance
FPGAs. We generate over 150 optimized processor de-
signs for two FPGA platforms, two processor architectures
and six different benchmarks at four different clock rates
and achieve consistent measured dynamic power reduction
of up to 74%, without performance cost. Our results are
applicable beyond processor optimization, quantifying the
benefits of practical switching reduction and highlighting
non-obvious pitfalls and complexities in dynamic power op-
timization.

1 Introduction

Energy consumption is an increasingly critical concern
for designs that incorporate FPGAs. In many cases, a
given computation must be executed within an energy con-
straint, or a level of performance sustained within a prac-
tical power dissipation. Power consumption in CMOS de-
vices — including FPGAs — has static and dynamic com-
ponents. Static power is due mainly to leakage, a feature
of the silicon that is outside the influence of the designer,
save for reducing the size of the circuit so that it can fit
onto a smaller device. Dynamic power is caused by switch-
ing, where switching activity on each net of the circuit re-
quires energy to charge/discharge the load capacitances of
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Figure 1. The power-aware compiler sched-
ules instructions to minimize switching. In-
struction encoding minimizes switching be-
tween adjacent instructions. Hardware syn-
thesis generates the new custom processor.

the FPGA logic and routing. Hence, the designer can have
a favorable impact on energy consumption by minimizing
the switching frequency of the design.

We present four main contributions in this paper:

1. combined instruction recoding and instruction
scheduling, to minimize power in embedded soft-
processors.

2. automated generation of systems incorporating power-
optimized instruction processors

3. infrastructure for evaluating instruction recoding and
power-aware scheduling, independently and com-
bined, using both measurements from the actual hard-
ware and software power estimation.

4. quantitative results showing up to 74% reduction in to-
tal FPGA system dynamic power with minimal design
overhead and no loss of performance.

Modern FPGAs provide substantial area resource and are
used to implement entire systems, incorporating a number
of instruction processors, custom accelerators and memory
interfaces onto the reconfigurable fabric. The activity of the
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circuit nets in these systems, and therefore energy consump-
tion, is dictated by the complex interaction of software and
hardware components in the design. FPGA vendors pro-
vide tools such as EDK (Xilinx) and SOPC Builder (Altera)
for instantiating systems from IP cores, custom design units
and software. This type of design flow — where system
hardware is synthesized at the same time as the software
is compiled — provides a unique opportunity to customize
both hardware and software simultaneously. We propose to
exploit this opportunity to optimize the energy consumption
of an entire system.

In this paper we introduce and investigate a flow for
generating both hardware and software for an FPGA based
system-on-chip incorporating a soft processor. Our frame-
work (Fig. 1) automatically optimizes aspects of hardware
and software that are conventionally assigned arbitrarilyfor
minimum energy consumption with no loss of performance.
We optimize power by combining two transformations that
minimize bit-switching in the processor control path and in-
struction memory bus: instruction recoding and instruction
re-ordering (scheduling). Both transformations seek to min-
imize the ‘hamming distance’ — or number of bit-switches
— between successive instructions in machine code.

The following section provides a review of related work
while the remaining sections describe each contribution in
turn. Section 3 details the power optimization aspect of our
framework. Section 4 describes the implementation, specif-
ically our method for processor description and synthesis.
Section 5 presents the infrastructure used to evaluate power
optimizations. Section 6 provides a quantitative evaluation
of our approach for two different FPGA platforms and three
different benchmarks. Finally, in Section 7 we conclude and
give possible directions for future work.

2 Related Work

Tiwari et al. [12] present some of the earliest work on
relating power to software instructions (on the Intel 486 in
this case). In particular, Tiwari differentiates the powercon-
sumed by each instruction independently and ‘circuit state
overhead’ arising from interactions between groups of in-
structions. Our focus is on the minimization of this circuit
state overhead. A similar analysis is presented by Ou et
al. [7] for the MicroBlaze soft-processor, implemented on
the reconfigurable fabric of a Virtex-II Pro FPGA. Unlike
Tiwari, the MicroBlaze study does not consider circuit state
overhead and relies upon FPGA vendor tools to perform
power estimation rather than actual measurements. Simu-
nic et al. [8] extend Tiwari’s work and consider power mod-
eling and minimization in complete embedded systems, in
particular battery powered designs.

A number of authors propose reducing energy in pro-
cessor buses and decode logic by re-encoding opcodes to

minimize hamming distance between adjacent instructions.
Benini et al. [2] apply a min-cut algorithm — originally de-
signed for state machine power optimization — to processor
instruction encoding. Woo et al. [13] perform a similar op-
timization that extends to register fields and unused fields in
instructions. Kim et al. [5] present additional results andin-
troduce a simulated annealing solution to the opcode assign-
ment problem. In all cases, the authors evaluate their work
in terms of bit-switch reduction and do not quantify the im-
pact on actual system power. Re-encoding complicates the
decode logic of the processor, possibly offsetting any sav-
ings in bit-switching, so actual measurements are impor-
tant. Our work enables further and more detailed evaluation
by performing both power measurement from real hardware
and software power estimation.

Su et al. [11] propose power aware ‘cold’ scheduling
that re-orders instructions for minimal bit-switching. Cold
scheduling reduces bit-switching by up-to 35% for their
benchmark set but at the expense of some performance
since the conventional scheduling — that orders instruc-
tions to minimize pipeline stalls — is disrupted. The au-
thors do not perform measurements of actual power al-
though Erdogan et al. [3] consider switched capacitence and
Lee et al. [6] achieve measured power reduction for a DSP
processor with a particularly high circuit state overhead.
We differentiate our work by combining re-ordering with
instruction re-coding and again by performing actual mea-
surement. In addition, our scheduler guarantees that exe-
cution time does not increase as a result of power-aware
scheduling.

Wilton et al. [9] quantify the effect of pipelining on en-
ergy per-operation in FPGAs and demonstrate considerable
dynamic power reduction. We also investigate pipelining
the decode unit of our instruction processor to show the
combined impact and to generalize our results so that they
are not specific to a particular processor instance. The re-
sults in Wilton et al. [9] indicate that power estimation tools
fail to reproduce many trends that are observable in actual
measurements, hence we evaluate our framework using ac-
tual measured results.

Our synthesis approach for processors has much in com-
mon with the SPREE [14] soft-processor design space ex-
ploration tool. The most important distinction is in how we
abstract the pipelining from the connectivity of the proces-
sor. In SPREE, the control is automatically generated but
the pipeline registers are manually located in the microar-
chitecture. In our framework, the control and pipelining are
concisely specified independently from the non-pipelined
connectivity of the functional units. We also specify com-
plete systems rather than just the soft-processor. Our work
builds upon a large volume of research on architecture de-
scription languages, in particular the MIMOLA system [1],
that also describes instruction processors structurally.The



PD-XML language [10] similarly differentiates between the
description of low and high level microarchitecture, al-
though the distinction is different, where high level in PD-
XML is the functional units and instruction set, as opposed
to the pipeline structure in our work.

3 Power Optimization Framework

Our framework extends and automates two optimiza-
tions: (1) opcode recoding and (2) power-aware instruction
scheduling. Both techniques aim to reduce the hamming
distance — the number of bit-switches — between succes-
sive instructions fetched by the processor. (1) Recoding as-
signs opcodes to instructions so that frequently adjacent in-
structions have most bits in common. Implementing this
technique requires simultaneous customization of the pro-
cessor and software so that both are configured for the new
encoding. (2) Power-aware instruction scheduling re-orders
instructions, subject to dependence constraints, so that in-
structions with similar encodings are adjacent. Unlike opti-
mal opcode assignment, low-power or ‘cold’ scheduling is
a pure software approach where only the ordering of soft-
ware instructions is modified. In particular we explore both
optimizations together, rather than separately as in previous
work [5, 11].

3.1 Instruction Recoding

Instruction recoding exploits the observation that the fre-
quency that each pair of instructions are adjacent in code ex-
ecution is highly skewed. The principle is to assign opcodes
to instructions so that instructions adjacent with high fre-
quency differ by only a few bits, while instructions that are
rarely adjacent differ by many bits. Provided that the fre-
quencies can be correctly estimated, we reduce overall bit-
switching. Recoding offers the possibility of saving power
simply by clever assignment of opcodes that are often as-
signed arbitrarily. For FPGA soft-processors, it is practical
to perform recoding for each application and we perform
application specific instruction coding.

FMxy =
∑

Follows(x, y) (1)

We build a matrixFM of frequencies that each instruc-
tion is adjacent to every other instruction, then perform a
simulated annealing optimization, similar to that proposed
in [5], to assign an opcode to each instruction. The fre-
quency matrix is of size2n × 2n wheren is the bitwidth of
the opcode. We populate each entryxy as per Eq. 1 with
the frequency that opcodex is adjacent to opcodey in the
execution profile. The dynamic profile is collected from an
RTL simulation where a duplicate instruction memory con-
tains the number of times that each location is accessed.

We approximate each matrix entry from these instruction
frequencies by visiting each instruction in turn and adding
its frequency to the entry for that instruction opcode and
the preceding opcode. The approximation introduces some
small errors at the boundary of loops but considerably re-
duces the size of profile data required fromn2 to n. The
profiling could equally take place in hardware using an ac-
tual duplicate instruction memory to hold the profile data.

Cost =
∑

xy∈FM

HammDist(x, y) × FMxy (2)

The optimization step swaps the encoding of each op-
code to minimize the total switching cost. We calculate the
total cost from the instruction frequency matrixFM using
Eq. 2, wherex andy are two opcodes. We stochastically
swap the assignment of each opcode, using simulated an-
nealing to prevent getting stuck in local minima. In sim-
ulated annealing, we always accept swaps that reduce the
total cost but occasionally, with decreasing probability,ac-
cept swaps that increase the cost. The incremental change
to total cost can be trivially calculated for each swap by sub-
tracting the contribution of the opcodes swapped in the ini-
tial state and adding the contribution in the final state. We
use the processor default instruction set as the initial state
and terminate after a pre-determined number of successful
swaps which we set by experimentation. In practice, the
algorithm rapidly converges on an optimal solution.

We provide theopcodeopttool for automating opcode
assignment given an application (compiled from C) and an
execution profile generated automatically from our synthe-
sis framework (Section 4). Theopcodeopttool is integrated
into our flow so that the optimization is completely transpar-
ent to the designer. When the system is synthesized and the
application software compiled,opcodeoptcustomizes the
processor decode unit and re-encodes the assembled soft-
ware. Our experimental processors have MIPS instruction
sets, henceopcodeoptperforms two independent optimiza-
tions, one for each six bit opcode field used in the 32-bit
MIPS instruction set, the opcode and the function code. Us-
ing two26 × 26 matrices, eachopcodeoptrun takes around
2–3 seconds to generate an optimal encoding.

3.2 Low-power instruction scheduling

Our framework includes an optimizing compiler, built
using the CoSy [4] framework, that we extend to support
an enhanced version of power-aware or ‘cold’ schedul-
ing [11]. The implementation introduces two significant
enhancements over the previous work. Firstly, we perform
power-aware scheduling simultaneously with performance
aware scheduling to ensure that the execution time is not in-
creased. Secondly, since the first enhancement significantly



limits the freedom for the scheduler to re-order instructions,
we introduce a two-phase approach to make additional flex-
ibility available to the power aware scheduler.

We extend a conventional heuristic list scheduler to sup-
port power aware scheduling. A conventional scheduler
generates a graph of the data dependences between instruc-
tions, then explores the space of schedules from the partial
order imposed by the dependences. Heuristic schedulers
evaluate the cost of a schedule by summing a set of heuris-
tics, each weighted to reflect their relative importance.

We add an additional power-aware term to the heuristic
of a conventional list scheduler to benefit schedules with
a low total hamming distance. To guarantee that the per-
formance schedule is not disrupted, we assign the lowest
weight to the power-aware term. Essentially, we use the
power-aware heuristic as a ‘tie-breaker’ to choose the low-
est power from possibly many schedules that are equal in
terms of performance. We find that, in practice, using a
lower priority than the performance driven terms causes
the power-aware term to influence the schedule only very
rarely. In fact, for the SHA-256 benchmark that has unusu-
ally large basic blocks that allow the scheduler consider-
able freedom, the scheduler was not influenced at all by the
power-aware term. We identify a classical phasing prob-
lem: power-aware scheduling requires the bit-encoding of
each instruction, available after register allocation. How-
ever, after register allocation, there is insufficient flexibility
to perform power-aware scheduling without disrupting the
performance motivated schedule.

We propose to perform two independent scheduling
passes that both optimize performance and are power-aware
at the same time. The first pass occurs prior to register al-
location, which allows for more flexibility, since temporal
reuse of registers constrains the schedule. Before register
allocation, the registers in the instruction encoding are of
course undefined and so we do not consider bit-switching
of register fields. Instead, the scheduler optimizes for all
other parts of the instruction word. The compiler performs
a second scheduling stage last, after register allocation.The
second stage has reduced freedom but can make fine adjust-
ments that consider the entire instruction word.

Our implementation introduces one further enhancement
to improve the flexibility available to the power-aware
scheduling. We add a loop-unrolling stage prior to code
generation to increase the size of loop bodies and thus the
range over which loop instructions can be moved. This step
has an added advantage that the unrolled loop bodies con-
tain repeated copies of the same instructions. Thus, instruc-
tions with identical opcodes can be packed together, subject
to dependence constraints. We retain the compiler default
heuristics for loop unrolling that compromise between per-
formance and code size. To ensure that loop unrolling does
not influence the results, we unroll loops equally irrespec-

tive of whether power-aware scheduling is also performed.
We anticipate that recoding and scheduling are comple-

mentary for three main reasons. Firstly, opcode encod-
ing only provides improvement in sections of code where
the instruction adjacency frequencies are similar to those
in the profile of the entire program. In contrast, power-
aware scheduling is performed independently for each code
segment. Secondly, the techniques influence different por-
tions of the instruction word: scheduling considers the en-
tire word whereas opcode assignment is only applicable to
certain fields. Thirdly, the techniques influence differentas-
pects of the activity: scheduling is able to place identical
instructions together for zero-bit switching, while encoding
minimizes the bit changes when they must occur between
non-identical instructions.

4 Implementation

We generate FPGA Systems-on-chip from an abstract
specification using our new synthesis framework. Our syn-
thesis framework includes all the functionality of the Xilinx
EDK tool with two major enhancements. (1) We support a
significant amount of customization of the soft-processor
including flexible pipeline organization and customizable
instruction encoding. (2) Our framework has flexible script-
ing capabilities allowing many hundreds of bitstreams to be
generated. Thus, we explore a wide design space in an au-
tomated fashion.

We describe instances of systems-on-chip concisely via
an object-oriented Python scripting interface. Our descrip-
tion interface provides a meta-language for connecting and
instantiating hardware blocks which are directly translated
into structural Verilog. The system includes a novel ab-
straction of microarchitecture and connectivity for embed-
ded processors, allowing various organizations of the func-
tional units to be tested by modifying only a few lines of
code.

We support specification at four levels of abstraction:

(1) System level: structural connection of auto-generated
or pre-designed modules at the bus level.

(2) Microarchitecture level: pipeline organization of in-
struction processor components, where functional
units are allocated to pipeline stages and pipeline con-
trol is specified.

(3) Connectivity level: connectivity of instruction proces-
sor components with no pipeline information, essen-
tially an unpipelined implementation of a processor.

(4) Register Transfer Level: conventional hardware de-
scription language to specify complete IP cores —
such as I/O or memory interfaces — or small state ma-
chines that can be combined into larger modules, for
example a fetch unit for an instruction processor.



Figure 2. The four levels of abstraction we
use to specify systems for synthesis. The
connectivity and microarchitecture levels are
exclusive to soft-processor components.

Our synthesis tool combines all four levels to generate a
set of top-level, structural HDL designs. We connect high-
level blocks using only the first and fourth levels, in com-
mon with contemporary design flows such as Xilinx EDK
where cores are implemented in RTL (4) and connected us-
ing a system level netlist (1). The cores are hand optimized,
while the top level interconnections are generated automat-
ically. We build instruction processors using all four levels
of abstraction. The motivation for the intermediate levels(2
and 3) is to abstract the connectivity of functional units from
the pipeline architecture. We generate multiple pipeline or-
ganizations of the same processor by modifying only the
microarchitecture description.

The system (1) and connectivity (3) levels are essen-
tially structural descriptions for connecting blocks. There
are two basic units at these levels: blocks, which are equiv-
alent to modules in Verilog or entities in VHDL and nets,
used to interconnect blocks. Blocks are constructed hier-
archically so that a single block can be constructed from
multiple internal blocks. At the lowest level of the hierar-
chy areopaqueblocks that are implemented and hand op-
timized at the register transfer level (4). Blocks have ports,
either input or output with specified bitwidth. Nets can be
connected to any number of block ports and are declared as
global or local. Two special rules apply to nets that devi-
ate from conventional structural language semantics but al-
low for concise description of our designs: Firstly, bitwidth
is not declared but inferred from the connected ports, an
error results if ports of different size are connected. Sec-
ondly, if multiple outputs are connected we generate an OR
function to provide a shorthand for wired-OR buses com-
mon in FPGA SoC designs. The nets at the connectivity

level are able to span multiple pipeline stages for processor
construction, where pipeline registers and control are added
automatically. Block output ports at the connectivity level
have a latency parameter to facilitate the automated inser-
tion of pipeline registers into these nets. A non-zero latency
n indicates a pipelined or multi-cycle output where a result
is available aftern cycles. Our tool uses latency informa-
tion to construct the pipeline so that the correct number of
pipeline registers are added for each signal.

The below excerpt describes a section of processor
datapath at the connectivity level. The example instan-
tiates two functional units, a fetch unit and a decode
unit, then connects a port on each to a common net,
instruction reg. Theinstruction reg net trans-
lates to a signal or a register in RTL depending on the na-
ture of the microarchitecture description that the connectiv-
ity description is composed with.

Python description for processor datapath segment

clock = NetGlobal(’clock’)
instruction reg = Net(’instruction reg’)
fe0 = fetchunit(’fe0’)
fe0.connect(’clock’, clock)
fe0.connect(’instruction reg’, instruction reg)
ilmb.busattach(fe0)
de0 = decodeunit(’de0’)
de0.connect(’instruction reg’, instruction reg)

The microarchitecture level (2) assigns pipeline stages
to sub-blocks within a custom processor designed at the
connectivity (3) level. The pipelined data paths are auto-
matically generated by adding the appropriate number of
pipeline registers to each net. We specify pipeline control
manually at the microarchitecture level using two primi-
tives: stalling and squashing. The stall primitive controls
a clock enable input for the pipeline registers after a spec-
ified stage. Similarly, squashing controls a multiplexer at
each stage that replaces an instruction with a no-op. The de-
signer specifies a boolean equation for the stall and squash
conditions at each stage.

The code below is the entire microarchitecture descrip-
tion for the four-stage pipelined processor used in our ex-
periments. The first function callinit instantiates a basic
pipeline with functional units from the connectivity descrip-
tion (de0, alu0 etc.). We present the functional units as a
list of lists, where each sub-list contains the units in a single
pipeline stage. The squash functions describe the pipeline
control required, stalling every pipeline stage when the pro-
cessor is waiting for data from the memory system.

Python 4 stage pipeline description

init(self, name, [ [fe0],
[de0, alu0, be0, rf0, ru a, ru b, rm a, rm b, rmux0],
[ls0, rf1],
[rf2] ] )
self.stall(0, "stall mem") self.stall(1, "stall mem")
self.stall(2, "stall mem")
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Figure 4. Implementation of our compilation
framework. The compiler unrolls loops to in-
crease the number of identical instructions
in loop bodies and schedules instructions
twice: pre and post register allocation. The
opcodeopt tool uses profile information to
assign opcodes to instructions.

We make minor modifications to generate the five stage
pipeline (below), moving the decode unit (de0) and reg-
ister read unit (rf0) to new stage. We add an additional
stall function for the new stage and also asquash. The
squash serves to nullify an instruction incorrectly fetched
in case of a taken branch.

Python 5 stage pipeline description.

init(self, name, [ [fe0],
[de0, rf0],
[rm a, rm b, ru a, ru b, alu0, be0, rmux0],
[ls0, rf1],
[rf2]])
self.stall(0, "stall mem") self.stall(1, "stall mem")
self.stall(2, "stall mem") self.stall(3, "stall mem")
self.squash(1, "target en")

5 Experimental Framework

Fig. 4 shows an overview of our complete framework
with the power optimization stages highlighted. The route
from application software to final FPGA configuration in-
corporates:

1. the compiler, which contains the two power-aware
scheduling passes, pre and post register allocation.

2. the standard GNU assembler/linker for the 32-bit
MIPS instruction set.

3. opcodeopt, our tool for optimizing the instruction set
encoding for power.

4. our synthesis framework, for instantiating a system
and processor with the required parameters and in-
struction set encoding.

Our compiler is built using the CoSy [4] development
system. Not shown in the figure are the standard C front-end
and source level optimizations including common subex-
pression elimination, scalar replacement, strength reduction
and dead-code removal. We have highlighted the two power
and performance aware scheduling phases that occur before
and after global register allocation (GRA).

The opcodeopttool reads the Executable and Linking
Format (ELF) binary output from the GNU tools. Using
profile information from simulation of the real system,Op-
codeoptoutputs an optimal coding to the processor synthe-
sis tool and substitutes opcodes in the original ELF file to
generate code that runs on the customized processor. We
also generate an opcode substitution file, used to make in-
cremental changes to the power-optimized software without
repeating theopcodeoptand synthesis steps.

We generate over 150 bitstreams for experiments using a
single Python script in our synthesis framework at the sys-
tem level of abstraction. This script takes a number of pa-
rameters that define the system:

• the FPGA board to target (XUP or Spartan3).
• instruction memory in external SRAM/Block RAM.
• instruction encoding generated byopcodeopt.
• ELF file, to initialize instruction and data memories.
• clock division factor for the system clock.
• number of pipeline stages (4 or 5).
• optionally, a guide placed and routed design.

We enumerate over ranges of these parameters using a sin-
gle top-level script, which automates the entire synthesis
and optimization process, configures the FPGA and runs
a power estimation step. We measure and estimate power
consumption from designs placed and routed using Xilinx
ISE 7.1. We minimize the impact of the place and route
tools on the results using a guide file for each platform, to
encourage the tools to use the same placement and routing
for common design elements. Figures 3(a) and 3(b) show
the two platforms that we use for power estimation and
measurement. The first platform uses the Spartan-3 Starter
Board, with 90nm XC3S400-4 FPGA and 1Mb of SRAM.
The second platform uses the Xilinx University Program
(XUP) board, with 130nm XC2VP30-7 FPGA. We measure
total system power on the Spartan board, placing an amme-
ter before the board power regulators. We use jumpers pro-
vided on the XUP board to measure the 1.5V VCCINT to
isolate the FPGA internal power. Both platforms contain a
processor with separate instruction and data buses, labeled
ILMB and DLMB respectively. For all results in this paper,
we configure external instruction memories on the Spartan3
board and internal BRAM on the XUP board. We measure
static power independently by gating the entire clock tree
and subtract static power from our measurements.
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Figure 3. FPGA platforms we use for power estimation and meas urement

6 Results

We evaluate our framework using six application bench-
marks: (1) SHA-256 (secure hashing) (2) Matrix/Matrix
Multiplication (3) CRC-32 (checksum) (4) SUSAN (edge
detection) (5) Quicksort and (6) ADPCM (audio codec).
We present detailed results for benchmarks 1–3 and sum-
mary results of final power reduction for 4–6. Fig. 5 shows
the reduction in bit-switches in the instruction stream across
benchmarks 1–3. Four histograms for each benchmark
show results with recoding alone, with scheduling alone,
with both and with no optimization. Each histogram shows
number of bit-switches against number of instructions, bro-
ken down by the two MIPS opcode fields,op andfunc. Re-
duced bit-switching results in more and higher bars towards
the left of the graphs.

The opcode assignment optimization alone causes a
mean improvement in switching of 45% across the bench-
marks. We note that the number of zero bit-switch transi-
tions cannot increase, since all opcodes must differ by at
least one bit. The power-aware scheduling reduces switch-
ing by a mean of 13%, but causes no improvement in the
CRC-32 case. The lack of impact in the CRC-32 case is due
to a dependence between each step of the CRC-32 calcula-
tion that tightly constrains the ordering of instructions in the
code. Unlike recoding, scheduling increases the number of
zero bit-switch transitions (by 58% in Matrix Multiply) by
scheduling identical instructions together. Composing the
two techniques gives the best result in all cases and looks
to combine the improvements from the independently ap-
plied optimizations. In particular, the number of zero bit-
switch transitions is increased by the same amount as with
scheduling alone. These results support our hypothesis that
the two optimization techniques are orthogonal, although
the impact that these abstract bit-switching metrics have on

Energy saving % Scheduling Recoding Both
Benchmark Only Only

SHA-256 59.26 7.41 74.07
Matrix Mult. 34.78 34.78 52.17

CRC-32 -4.55 9.09 4.55
SUSAN 11.48 7.99 13.32

Quicksort 0.85 2.61 8.89
ADPCM codec 5.88 4.07 7.49

Table 1. Energy savings for five stage
pipeline, XUP platform at 40MHz

actual system power is still unclear. Hence, the focus of our
analysis is the actual power measurement that our frame-
work provides.

Table 3 shows detailed software estimated and measured
results for the XUP platform. We obtain software estimated
results from the XPower tool, using signal activities from
the post place and route netlist. The percent power saving
column shows the reduction in measured dynamic power
for each optimization, relative to the measured dynamic
power with no optimization. We show the impact of power
optimization for benchmarks 1–3, running on 4 stage and
5 stage pipelined processors, each at three different clock
rates, 66, 50 and 40MHz. We omit performance measure-
ments from our results since our optimizations do not im-
pact execution speed, hence, the power measurements for
the same pipeline depth are equivalent to normalized en-
ergy consumption. Table 1 shows a summary of final power
savings for all benchmarks running on the XUP Platform
with 5 stage pipelined processor at 40MHz. Table 2 shows
results of identical experiments for the Spartan3 platform,
with the same processors and benchmarks running at 33
and 25MHz. We have condensed the results to show only
a mean and maximum (in parenthesis) measured dynamic
power saving for each optimization. Recoding complicates
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(c) CRC32 Checksum

Figure 5. Number of bit-switches against
number of dynamic instructions for both op-
timizations independently and combined.

the decode logic that accounts for around 7% of the proces-
sor, Table 6 summarises the increase in decoder area above
the default MIPS encoding. We are unable to detect any
significant impact on timing from increased decoder com-
plexity. The estimated critical path is increased on average
by 1.69% although there is no consistent trend: for 29% of
designs recoding decreases the critical path length.

We highlight the following observations:

• the impact of our optimizations varies across the
benchmarks, architectures and clock rates, illustrating
the value of the automation and flexibility our frame-
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Figure 6. Area increase of decode logic to
support recoding

work provides. Experiments for a single architecture
at a single clock-rate would be misleading in either di-
rection.

• optimization performs best on the five stage pipeline
and at 25MHz on the Spartan3 and 50MHz on the Vir-
tex2Pro.

• the percentage power savings are high, as much as 74%
(SHA-256, 5 stages at 40MHz) on the Virtex2Pro and
22% (SHA-256, 5 stages at 33MHz) on the Spartan3.

• scheduling reduces power consumption by a mean of
7.11% across all results on the Spartan3 and 13.02%
on the VirtexIIPro.

• scheduling reduces power in all cases on the Spartan3
and for all except the CRC benchmark on the VirtexI-
IPro where a small (<6%) power increase occurs.

• the relative improvement of scheduling compared to
recoding is larger than suggested in Fig 5, we antic-
ipate an additional benefit arising from identical in-
structions executed in sequence.

• recoding reduces power by a mean of 7.11% on the
Spartan3 and 14.26% on the VirtexIIPro.

• recoding is effective in all cases, reducing power by up
to 37% (CRC-32, 4 stages at 50MHz) on the VirtexI-
IPro and 21% (Matrix Multiply, 4 stages at 25 MHz)
on the Spartan3.

• recoding incurs a negligable area cost, an average of
2.5% above the default processor core. We were un-
able to detect any significant timing cost, even for the
four stage pipeline where the decoder is on the critical
path.

• combined optimization yields the highest mean im-
provement: 9.31% for the Spartan3 and 28.37% for
the VirtexIIPro.

• for the XUP platform, combined optimization reduces
power in all cases although in 5/18 experiments recod-
ing alone performs slightly better.

• for the Spartan3 platform, combined optimization
causes two power increases of 11% and 4% respec-
tively, both for the four stage pipeline.

• our results show greater power for the five stage
pipeline in contrast to previous work [9]. Interestingly,



Mean (Max) % 4 Stage 5 Stage
power saving 33MHz 25MHz 33MHz 25MHz
Scheduling 3.14 6.15 8.81 10.34
only (7.69) (12.5) (15.63) (17.39)
Re-coding 4.67 9.72 8.21 9.12
only (6.9) (20.83) (13.51) (13.64)
Both 0.63 5.93 15.37 14.92

(4.55) (20.83) (21.88) (21.74)

Table 2. Summary of percent energy savings,
Spartan-3 platform with external SRAM.

the software power estimation tool predicts the oppo-
site trend.

7 Conclusion

In this paper, we quantify the independent and com-
bined impact of two power optimization techniques: in-
struction recoding and power-aware scheduling. We present
a novel infrastructure for simultaneously optimizing aspects
of hardware and software and automating a large number
of experiments. We measure significant dynamic power
savings, a mean of 28.37% for a VirtexIIPro system and
9.31% for a Spartan3 system . In particular, we find that the
two optimization techniques are largely complementary; in
some cases, the combined optimization result is larger than
the sum of the independent results. We show that the ef-
ficacy of the optimizations varies considerably with the ar-
chitecture of the processor and with the system clock rate.
In a general sense, our results show that design techniques
for reducing signal activity can have a considerable impact
on measured system power, well beyond that predicted by
current software estimation tools.

Comparison with prior work is difficult since we are the
first to evaluate using actual power measurements and the
results are specific to the exact benchmarks. Comparing
switching activity, our recoding reduces power by an av-
erage of 46%, similar to the 49% achieved in [13]. With
scheduling, our average reduction of 14% is lower than the
27% achieved in [11], although our method does not incur a
performance overhead and so optimizes energy in addition
to power. Our combined average reduction of 52% is higher
than for either individual optimization.

In our future work, we intend to leverage our infrastruc-
ture to investigate more extensive customization of the pro-
cessor control and datapath and the impact on power.
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Benchmark Optimization Power/mW
Est. Actual Saving %

SHA-256 None 102.5 78 -
SHA-256 Scheduling only 103.5 78 0
SHA-256 Re-coding only 98.5 73.5 5.77
SHA-256 Both 93.5 67.5 13.46
MatMult None 82.5 77.25 -
MatMult Scheduling only 79.5 71.25 7.77
MatMult Re-coding only 75.5 66.75 13.59
MatMult Both 74.4 60.75 21.36
CRC-32 None 131.5 89.25 -
CRC-32 Scheduling only 131.5 89.25 0
CRC-32 Re-coding only 120.5 78 12.61
CRC-32 Both 120.5 78 12.61

(a) 4 Stage Pipeline @ 66MHz

Benchmark Optimization Power/mW
Est. Actual Saving %

SHA-256 None 93.5 114 -
SHA-256 Scheduling only 89.5 72 36.84
SHA-256 Re-coding only 92.5 108.75 4.61
SHA-256 Both 88.5 69 39.47
MatMult None 74.5 72.75 -
MatMult Scheduling only 71.5 76.75 8.25
MatMult Re-coding only 70.5 69.75 4.12
MatMult Both 68.5 60.75 16.49
CRC-32 None 132.5 99.75 -
CRC-32 Scheduling only 132.5 102 -2.26
CRC-32 Re-coding only 128.5 97.5 2.26
CRC-32 Both 128.5 96 3.76

(b) 5 Stage Pipeline @ 66MHz

Benchmark Optimization Power/mW
Est. Actual Saving %

SHA-256 None 68.5 42 -
SHA-256 Scheduling only 71.5 42 0
SHA-256 Re-coding only 68.5 40.5 3.57
SHA-256 Both 66.5 31.5 25
MatMult None 54.5 42.75 -
MatMult Scheduling only 51.5 35.25 17.54
MatMult Re-coding only 47.5 30.75 28.07
MatMult Both 51.5 31.5 26.32
CRC-32 None 88.5 48 -
CRC-32 Scheduling only 88.5 49.5 -3.13
CRC-32 Re-coding only 78.5 37.5 21.88
CRC-32 Both 78.5 39 18.75

(c) 4 Stage Pipeline @ 50MHz

Benchmark Optimization Power/mW
Est. Actual Saving %

SHA-256 None 60.5 69.75 -
SHA-256 Scheduling only 64.4 40.5 41.94
SHA-256 Re-coding only 60.5 67.5 3.23
SHA-256 Both 61.5 32.25 53.76
MatMult None 49.5 42 -
MatMult Scheduling only 47.5 35.25 16.07
MatMult Re-coding only 44.5 33.75 19.64
MatMult Both 43.5 26.25 37.5
CRC-32 None 93.5 58.5 -
CRC-32 Scheduling only 93.5 60 -2.56
CRC-32 Re-coding only 89.5 55.5 5.13
CRC-32 Both 89.5 57 2.56

(d) 5 Stage Pipeline @ 50MHz

Benchmark Optimization Power/mW
Est. Actual Saving %

SHA-256 None 53.5 21 -
SHA-256 Scheduling only 56.5 21 0
SHA-256 Re-coding only 54.5 19.5 7.14
SHA-256 Both 49.5 12 42.86
MatMult None 38.5 20.25 -
MatMult Scheduling only 35.5 14.25 29.63
MatMult Re-coding only 32.5 12.75 37.04
MatMult Both 33.5 12.75 37.04
CRC-32 None 63.5 28.5 -
CRC-32 Scheduling only 63.5 30 -5.26
CRC-32 Re-coding only 57.5 18 36.84
CRC-32 Both 57.5 20.25 28.95

(e) 4 Stage Pipeline @ 40MHz

Benchmark Optimization Power/mW
Est. Actual Saving %

SHA-256 None 46.5 40.5 -
SHA-256 Scheduling only 48.5 16.5 59.26
SHA-256 Re-coding only 43.5 37.5 7.41
SHA-256 Both 46.5 10.5 74.07
MatMult None 30.5 17.25 -
MatMult Scheduling only 28.5 11.25 34.78
MatMult Re-coding only 27.5 11.25 34.78
MatMult Both 26.5 8.25 52.17
CRC-32 None 66.5 33 -
CRC-32 Scheduling only 66.5 34.5 -4.55
CRC-32 Re-coding only 64.5 30 9.09
CRC-32 Both 64.5 31.5 4.55

(f) 5 Stage Pipeline @ 40MHz

Table 3. Measured and estimated power consumption for auto- generated SoC designs running on
the XUP platform. Power estimation from XPower with signal a ctivities from simulation of the placed
and routed netlist.


