
www.elsevier.com/locate/micpro

Microprocessors and Microsystems 30 (2006) 388–397
Dynamic clock-frequencies for FPGAs

J.A. Bower a,*, W. Luk a, O. Mencer a, M.J. Flynn b, M. Morf b

a Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK
b Computer Systems Laboratory, Department of Electrical Engineering Stanford, CA 94305, USA

Available online 28 February 2006
Abstract

Most FPGA designs run at a fixed clock-frequency determined through static analysis in FPGA vendor supplied tools. Such a clock-
ing strategy cannot take advantage of the full run-time potential of an application running on a specific device and in a specific operating
environment. This paper describes methods for using dynamic clock-frequencies to overcome this limitation. We begin by describing a
methodology for designing systems which allow dynamic clock-frequencies in FPGAs. We then present a framework for exploring the
dynamic behaviour of suitable clock-frequencies for a number of FPGA applications in varied operational environments. Finally we
introduce our AutoTEA system, which automatically adds circuitry to arbitrary FPGA designs for dynamically adjusting clock-frequen-
cy to a safe limit given current operating conditions. Our results show that dynamically clocking designs can lead to a speed improvement
of 33–86% compared to using a fixed, statically estimated clock.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Timing analysis; Better than worst-case performance; Over-clocking; Power-saving; High-performance computation
1. Introduction

FPGAs enable the implementation of adaptive high-per-
formance applications. Such custom hardware designs
require a custom clock-frequency which balances perfor-
mance with reliable circuit operation.

In a traditional FPGA design flow, clock-frequency is
determined through static analysis of netlists for a device
performed by software. After place-and-route a timing ana-
lyser program locates the longest combinatorial path
between RAMs, I/Os and flip-flops [1]. This path, termed
the ‘critical-path’, is the main bottleneck of the system and
as such a design’s clock-frequency can be derived from this.

We identify two sources of wasted performance with a
statically determined clock-frequency. First, the manufac-
turing process for FPGAs is not perfectly uniform, and dif-
ferent physical devices have different characteristics.
0141-9331/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2006.02.006

* Corresponding author.
E-mail addresses: Jacob.bower@imperial.ac.uk (J.A. Bower), w.luk@

imperial.ac.uk (W. Luk), o.mencer@imperial.ac.uk (O. Mencer), flynn@
ee.stanford.edu (M.J. Flynn), morf@snow.stanford.edu (M. Morf).
Second, the actual propagation delay through any path
in a device changes during operation. Such changes are
caused either by varying environmental conditions or even
internal temperature changes due to different inputs vary-
ing power consumption.

Static timing tools deal with the above issues by employ-
ing worst-case models for estimating delays in hardware
designs – leading to conservative clock frequencies. Anoth-
er problem with using a fixed, statically determined clock-
frequency is that all possible operating environments must
be supported, however in some situations the environment
may exceed conservative error margins. For example, a
battery powered device running low on power and sudden-
ly placed into a hot environment may fail although suffi-
cient power would have been available to continue
processing at a lower rate.

Dynamic clock-frequency schemes are alternatives to
static estimates and have the potential to improve both
high-performance and low-power applications. High-per-
formance applications can run at the maximum physically
attainable speed, while low-power applications can in gen-
eral manage power-consumption by optimally balancing

mailto:jacob.bower@imperial.ac.uk
mailto:w.luk@imperial.ac.uk
mailto:w.luk@imperial.ac.uk
mailto:o.mencer@imperial.ac.uk
mailto:flynn@ee.stanford.edu
mailto:flynn@ee.stanford.edu
mailto:morf@snow.stanford.edu

J.A. Bower et al. / Microprocessors and Microsystems 30 (2006) 388–397 389
clock-frequency, voltage supply, and demand for
computation.

This paper contributes towards realising practical
FPGA-based systems with dynamic clock-frequency. In
particular, we provide:

• A methodology for creating dynamic clock-frequency
systems which provide user confidence in correct
operation.

• LIMIT: A hardware framework and experiments for
exploring the behaviour of maximal safe dynamic
clock-frequencies in FPGA designs.

• AutoTEA: An automated implementation of a tech-
nique for dynamically adjusting clock-frequencies to
their optimal value for arbitrary FPGA designs.

• Experimental results from our LIMIT and AutoTEA
systems applied to a diverse set of FPGA applications
under varied environmental conditions.

The remainder of this paper is organised as follows. In
Section 2 we review related work. We present our method-
ology for designing systems which implement dynamic
clock frequencies in Section 3. In Section 4 we present
our LIMIT and AutoTEA systems for implementing and
evaluating dynamic clock-frequencies. Finally, in Sections
5 and 6 we present results of our experiments with Auto-
TEA and LIMIT, and our conclusions.

2. Previous work

Dynamic clock-frequency is already common in modern
microprocessors and high-end ASICs [2]. ‘‘Over-clocking’’
in such systems pushes clock-frequency beyond vendor
specifications [3]. While such a manual and brute-force
approach is not suitable for serious computing systems,
research in this area aims to develop solutions that reliably
and dynamically adapt clock-frequency to optimal limits.
In this paper, we limit ourselves to a discussion of dynamic
clock-frequency systems for FPGAs.

We categorise some examples of this work into error tol-
erating and error avoiding systems and compare them to
our own work in Table 1. From the table, three systems
use error detection and correction techniques to tolerate
errors in over clocked logic: TIMERTOL [4], Razor
[5,12] and DIVA [6]. In the TIMERTOL and Razor sys-
tems, errors are detected by sampling inputs to pipeline
Table 1
Comparison of our AutoTEA system to related efforts

AutoTEA (ours) TIMERTOL [4

Error avoidance/tolerance Avoidance Tolerance
Overhead scales with design size No Yes
Automated implementation Yes No
Potential for automation High Medium
Prototype technology FPGA FPGA
register stages at two different times. The idea is that early
samples can be used to continue processing and later out-
puts, which are more stable, can be used to detect if the
early samples are erroneous. DIVA describes a micropro-
cessor with a combined system of simple checker logic
and a complex processing core. The simplicity of the
checker logic allows it to be aggressively optimised for
high-speed operation. In this system the complex process-
ing logic is over-clocked using the high-speed checker to
catch all errors. The common idea in all these schemes is
to allow logic to run over-clocked, and check for errors
to prevent committing erroneous outputs. Clock-frequency
changes dynamically to minimise error rates.

Two systems which avoid errors by continuously re-
evaluating and adapting clock-frequency to maintain cor-
rect functionality are: a self-timed PIC16C57 compatible
microprocessor [7] and the TEAtime system [8]. In the
PIC16C57 microprocessor, execution is paused while
worst-case inputs exercise the system critical-path and the
results are checked for errors. Clock-frequency is adapted
to eliminate errors in the critical-path. TEAtime applies a
similar idea, except that it allows continuous operation of
a microprocessor design by creating a duplicate critical-
path for checking. This duplicate (or false) critical-path is
a one-bit wide version of the longest flip-flop-to-flip-flop
path in the main design with additional delay. The idea is
that the false critical-path, with its extra delay, will fail
before the main design so clock-frequency can be adjusted
based on observing errors in the false critical-path.

Other related research areas include: implementing low
temperature designs, designing for ‘‘average case perfor-
mance’’, dynamic voltage scaling (DVS) and adapting
clock-frequency to computation. The idea of designing
for average case performance is to create hardware which
can achieve higher clock-frequencies when inputs are
‘‘average case’’, and scaling the clock during worst-case
inputs [9]. Designing for low temperature enables higher
clock frequencies. A novel method for lowering tempera-
tures in FPGAs is to use dynamic reconfiguration to pre-
vent single areas of a chip from getting too hot [10].
Schemes for adapting clock-frequency to specific computa-
tion have also been developed with clock period altered
each cycle depending on which units are currently active
[11]. Dynamic clock-frequencies are also applicable to sys-
tems implementing DVS [14] as they allow frequency to be
optimally tailored to match the dynamic voltage.
] TEATime [8] DIVA [6] Razor [5] PIC16C57 [7]

Avoidance Tolerance Tolerance Avoidance
No Yes Yes No
No No No No
High Low Medium Low
FPGA ASIC ASIC [12] ASIC

390 J.A. Bower et al. / Microprocessors and Microsystems 30 (2006) 388–397
3. Our methodology for dynamic clock-frequency

Our objective is to create automated, dynamic, and
adaptive clock-frequency system. It is critical to the success
of such a system that the user has confidence that there are
no erroneous outputs due to timing errors. To achieve this,
we identify three elements of dynamic clock-frequency sys-
tems: (1) error analysis, (2) error handling, and (3) handling
of dynamic clock-frequency.

3.1. Error analysis

With dynamic clock-frequency an error analysis method
appropriately adjusts the clock. This error analysis can
come in one of two forms:

• Error detection – discover when errors have already
occurred.

• Error prediction – determine the likelihood of errors
occurring in the future.

For error detection, we modify a hardware design in either
an architecture dependent or independent manner to include
points where we test results for error. An example of an archi-
tecture dependent error checking scheme is manually creat-
ing a simplified version of a complex system which can be
used to validate results. This is the method employed in the
DIVA system [6]. In contrast, architecture independent error
detection systems do not require detailed understanding of a
design’s operation to check for errors. Instead some general
form of redundancy either in space or time is used to validate
computations. For example in the Razor system results are
used early, but compared with later outputs which have
had more time to settle on a correct value.

Varying the level of architecture dependence in an error
detection method reflects a trade-off in design complexity
versus efficiency. In a highly architecture dependent system,
complexity arises as a designer must create tailored valida-
tion mechanisms. However, this complexity allows a
designer to minimise the points at which errors need to
be checked. Architecture independent systems have greater
potential for automation, but require more overheads as
they are applied at the low-levels where features common
to more architectures arise.

In an error prediction system there is no explicit check
for errors. Instead parameters indicative of system failure
are monitored. Suitable parameters include: physical con-
dition e.g., temperature and power consumption, fuse-cir-
cuits designed to fail before the main design, and data
inputs which indicate when stress on the system is likely
to increase. Clock-frequency is dynamically adapted to
pre-emptively avoid failure. Our AutoTEA system
described later is an example of a fuse-circuit based error
predictor.

Advantages of error predictors over error detectors
include less interaction with a design thus allowing them
to be architecture independent without adding significant
overhead. The advantage of error detectors includes stron-
ger guarantees of catching errors.

3.2. Error handling

While error analysis is needed to adjust clock-frequency,
error handling is a strategy used for preventing erroneous
results that may arise from being committed. Methods
for handling error broadly fall into two classes: error
avoidance, and error tolerance.

Error avoidance systems detect the potential for failure
in either future or past results. Systems using error predic-
tion include implicit error avoidance as they keep changing
clock-frequency to avoid errors. In error detection systems
where error checking is expensive, error avoidance can also
be useful. For example, checkpoints can be used where
samples of outputs are checked and in the case of an error
we roll-back to the last checkpoint.

Error tolerant systems allow errors to occur but ensure
no erroneous results are ever committed by using detection
and correction techniques. These types of system rely on
error detection with all relevant outputs checked. If an
error is detected, the offending computation is either cor-
rected or recomputed. The correction or re-computation
of results leads to some kind of time penalty, so clock-fre-
quency is adjusted to balance error rate with performance.

Error tolerant systems have potential to achieve higher
clock-frequencies than error avoidance systems. This arises
as they can more precisely hone-in on optimal frequencies
by recovering from errors caused by going over the optimal
limit. Error avoidance systems will inherently be more con-
servative to ensure no erroneous results ever arise. Despite
this conservative approach error avoidance still have the
advantage over static systems of adapting to a dynamic
environment. The choice between tolerance and avoidance
is mediated by a trade-off in complexity of checking all
errors versus performance benefits of doing so.

Our AutoTEA system described later is an example of
an error avoidance system.

3.3. Handling of dynamic clock-frequency

A method for varying clock input is essential to a system
for dynamic clock-frequency. Handling dynamic clock-fre-
quency requires:

• Variable clock-signal generation hardware.
• A system for controlling the clock-generator using infor-

mation from error analysis.
• An algorithm to maximise the rate of convergence on a

suitable clock-frequency.

Clock-generation hardware in its simplest form requires
a system to stop operating while clock-frequency is adjust-
ed and allowed to stabilise. A more advanced implementa-
tion such as the one used in the self-timed PIC16C57
mentioned earlier, allows clock-frequency to scale rapidly.

J.A. Bower et al. / Microprocessors and Microsystems 30 (2006) 388–397 391
Clock-control logic can either be integrated for an
embedded system, or in an external controller such as a
host computer in a cooperating hardware/software system.
The advantage of using an external controller is that this
reduces the possibility of errors arising in the clock control
logic itself due to environmental conditions, and can also
allow for more complex clock-frequency selection systems.

Finally, we employ a strategy for choosing clock-fre-
quency. Two examples of strategies for finding suitable
clock-frequency are: binary search and linear increasing/
decreasing clock-frequency. Binary search allows fast con-
vergence on a suitable clock-frequency, but a running sys-
tem may need to halt in order to perform the search to
mitigate the times during the search where the clock-fre-
quency is too high. In contrast, a linearly adjusting clock-
frequency facilitates less interruptions during operation,
but may take longer to reach an ideal frequency. More
complex models based on preliminary stress testing of a cir-
cuit can also be used.

3.4. Other considerations

In addition to our three main identified features of
dynamic clock-frequency systems, other factors to consider
include:

• Ability to deal with meta-stability, which arises as phys-
ical signal propagation times become comparable to the
clock period.

• Overheads when incorporating the scheme in: design
time, size and power consumption.

• Applicability to a variety of architectures.

For FPGAs, applicability to a wide range of architec-
tures and low design time overheads are particularly
important as designs are often limited only by what is syn-
thesisable and can evolve rapidly.

4. Implementations

We show two implementations of systems with dynamic
clock-frequencies in FPGAs: AutoTEA and LIMIT.
Fig. 1. Overview of our LIMIT system used to determine dynamic c
LIMIT explores the limits of dynamic clock-frequency
behaviour in FPGA applications. AutoTEA is motivated
by results from LIMIT, and provides what we believe is
the first implementation of an automated approach to add-
ing dynamic clock-frequency features to arbitrary FPGA
designs.

In both LIMIT and AutoTEA we focus on finding
‘‘optimal’’ clock-frequencies, which we define as clock-fre-
quencies at which there are no errors given current operat-
ing conditions.

4.1. LIMIT

LIMIT consists of a framework for discovering the
maximum clock-frequency at which an FPGA applica-
tion can run without error. We use LIMIT to conduct
experiments exploring how the optimal clock-frequency
of FPGA circuits varies over time in different operating
conditions.

Fig. 1 gives an overview of our LIMIT system. LIMIT
consists of an FPGA design which feeds pre-computed ran-
dom data into an arbitrary target ‘Test Circuit’. All the
outputs of the test circuit are compared with pre-computed
results to check for the presence of errors. A host computer
adjusts clock-frequency of the test circuit and monitors
errors. Using this set-up, we can pragmatically determine
optimal clock-frequencies which balance error occurrences
with performance given the input samples. Using random
inputs effectively gives us an ‘average-case’ processing load.
To enable us to maximise the rate of processing, we store
pre-computed inputs and outputs for our test circuits
directly into our FPGA designs. This allows us to eliminate
data transfer bottlenecks which would arise if the Host PC
sent/received data for validation.

We use LIMIT to examine the behaviour of optimal
operating clock-frequency for test circuits using two classes
of experiments: continuously adaptive and long-term sta-
bility. Our continuously adapting experiments explore
how optimal clock-frequency behaves over time by contin-
uously re-evaluating the optimal clock-frequency. In our
long-term stability experiments we look for optimal
clock-frequencies which allow error free operation for an
lock frequencies which allow error-free operation of test circuits.

392 J.A. Bower et al. / Microprocessors and Microsystems 30 (2006) 388–397
extended period of time. For both classes of experiment, we
use a common set-up described in Section 4.3.

4.1.1. Continuously adapting experiments

In our continuously adapting LIMIT experiments we
attempt to determine:

• How different areas of an FPGA affect optimal clock-
frequency,

• How optimal clock-frequency varies over short periods
of time,

• The effect of different environments on the optimal
clock-frequency.

These aspects are monitored by repeatedly finding the
highest clock-frequency of a circuit.

Our algorithm for finding current error-free frequencies
is a binary search algorithm. This is implemented by the
host PC indicated in Fig. 1 and operates as follows:

(1) Set variable clock-frequency input to the mid-point of
our binary search range.

(2) Run the test circuit continuously for 10 s, checking all
outputs for error.

(3) If no errors are found, we make the current clock-fre-
quency our binary search lower bound, otherwise in
case of an error the current clock-frequency becomes
our upper bound.

(4) Repeat steps 1–3, ten times to give us a clock-fre-
quency result of comparable accuracy to the pro-
grammable clock-generator in our FPGA board.

We re-evaluate optimal clock-frequency using this
method repeatedly for an hour to examine the behaviour
of optimal clock-frequency over time. We perform this
experiment for every circuit in each of the four quadrants
of the FPGA and in all our different environmental
conditions.

4.1.2. Long-term stability experiments

In our long-term stability LIMIT experiments we
explore optimal clock-frequencies for test circuits that are
usable for an extended period of time. We do this different-
ly from our continuously adapting experiments to mitigate
the effects of repeatedly changing the clock-frequency dur-
ing execution due to continuous binary searching.

Our goal in these experiments is to see how long it takes
to converge on an optimal clock-frequency which allows
3 h of error free operation. We determine this using the fol-
lowing procedure:

(1) Perform a binary search, as in our continuously
adapting experiments, to find an initial optimal
clock-frequency.

(2) Run the test-circuit continuously at this optimal
clock-frequency for up to 3 h, stopping if an error
occurs.
(3) If an error is detected, we set the upper bound of our
binary search to the current ‘‘unsafe’’ frequency.

(4) Repeat steps 1–3, until we find an optimal clock-fre-
quency which allowed an error free, 3 h run.

We repeat this experiment for each of our test circuits
without varying the environment or circuit location in the
FPGA.

4.2. AutoTEA

We demonstrate AutoTEA, which to our knowledge is
the first system for automatically adding dynamic clock-
frequency features to arbitrary FPGA designs. For
FPGAs, automated design processes are particularly
important as the zero cost of re-programming a device
encourages rapidly evolving designs.

Our AutoTEA system is based on the TEAtime method-
ology developed at the University of Rhode Island. In
TEAtime a ‘‘false critical-path’’ is inserted into a design
and continuously checked for errors in parallel with run-
ning the main design. This false critical-path is a one-bit
wide version of the longest flip-flop-to-flip-flop path in
the main design with additional delay. The idea is that
the false critical-path, with its extra delay, will fail before
the main design so clock-frequency can be adjusted based
on observing errors in the false critical-path.

We use TEAtime as a base for our automated system as
it does not require detailed interpretation or modification
of a design to which it is applied. All an automated version
of TEAtime needs to know is the construction of the lon-
gest flip-flop-to-flip-flop path. Modification of the design
is not necessary as the false critical-path and checker logic
just needs to be attached to a system which can adjust the
clock-frequency.

To facilitate automated operation, our AutoTEA sys-
tem diverges from the original TEAtime in the way it con-
structs a false critical-path. In the original TEAtime system
a false critical-path is created manually by constructing a
one-bit wide version of the real critical-path in a design.
This path is then adjusted to be longer than the real criti-
cal-path using results from detailed structural simulation.

In AutoTEA we construct our false critical-path using a
chain of inverters, the length of which is based on results
from automated timing analysis and optionally from
results of running on real hardware with sample inputs.
Using a chain of inverters both simplifies automated con-
struction of the false critical-path, and allows easy stress
testing in checker logic by simply alternating 1/0 inputs.

Our AutoTEA process for determining the number of
inverters necessary to achieve a delay which is as close as
possible to the real critical-path delay plus a configurable
margin is illustrated in Fig. 2. Our current implementation
uses a feed-back loop to converge onto a suitable false crit-
ical-path length. We use a loop as adding inverters to the
false critical-path and placing them using the Xilinx
place-and-route tools can cause unpredictable variations

Fig. 2. AutoTEA process for creating a false-critical path suitable for predicting error in arbitrary FPGA designs.

J.A. Bower et al. / Microprocessors and Microsystems 30 (2006) 388–397 393
due to other elements in the design. The termination condi-
tion for this loop is when changing the number of inverters
or timing constraints on the path does not yield an
improvement over previously generated paths. Optionally
the path can further be tuned using results from testing
the resulting bitfile in real hardware using methods similar
to LIMIT.

To incorporate our AutoTEA system into an FPGA
application all we need to do at the design level is to include
a reference to a black-box entity. This entity provides a
connection point to the AutoTEA error detection logic
and a place holder for the false critical-path that is expand-
ed after the main design has been place-and-routed. Inputs
to the black box consist of clock pins, reset and error sig-
nals. The error signal is asserted if any failures are detected
in the false critical-path and remains high until reset is
asserted.
To test our AutoTEA system, we run experiments to
determine if our generated false critical-paths are suitable
for adapting clock-frequency without allowing errors in
test circuits. We show an overview of our experimental
set-up in Fig. 3. As with our LIMIT system, we check all
outputs from our test circuit for errors. This allows us both
to discover if AutoTEA has been successful and to use our
AutoTEA facility of fine tuning the false critical-path based
on running in actual hardware.

We test that our false-critical path reacts appropriately
to environmental changes by actively changing the environ-
ment during execution over a 1 h period. We alter the envi-
ronment manually, based on our chosen environmental
conditions described in Section 4.3. We change conditions
once every 20 min and expect to see, for example, that
moving from warm to cold environments causes an
increase in clock-speed without introducing any errors.

Fig. 4. Comparison of experimentally determined and vendor estimated
optimal clock frequencies for test circuits under varied environmental
conditions. Note that heated DES exceeds the operating conditions of the
FPGA.

Fig. 3. Overview of AutoTEA experimental set-up to compare AutoTEA predicted and true optimal clock-frequencies for various test circuits.

394 J.A. Bower et al. / Microprocessors and Microsystems 30 (2006) 388–397
4.3. Common experimental set-up

For both our LIMIT and AutoTEA experiments we use
a common set of test circuits, environment conditions and
the same hardware platform.

Our hardware platform consisted of an RC1000 PCI
board with a Xilinx Virtex 1000 FPGA hosted in a stan-
dard desktop PC running the Linux operating system.

In our experiments FPGA clock-frequency is controlled
exclusively by a host-software-programmable oscillator on
the RC1000 board. While precise data on the accuracy of
the programmable clock generator were not available to
us, we were able to examine the board’s software driver
source code. From this we concluded that the oscillator
was accurate to at least 1 MHz, and in practise it would
normally be closer to 0.1 MHz with a settable range of
400 KHz–100 MHz.

By running the PC with its case removed we can vary
our environmental conditions for the FPGA between exter-
nally lamp heated to approximately 70 �C, fan cooled and
room temperature. We use fan cooled and room tempera-
ture conditions as these are the most common operating
conditions in practical use for FPGA devices. We also
use lamp heating to push the FPGA to its operating limits.

We use four carefully chosen designs for our test cir-
cuits, to give us a wide range of design characteristics:

• DCT – A 1D, 8-point DCT generated using the Xilinx
CoreGen utility. This circuit is tailored to the target
FPGA and thus achieves high performance.

• DES – An implementation of DES encryption from the
www.opencores.com website. Encryption oriented cir-
cuits are of interest as they by their nature have a high
amount of chaotic switching.

• MULT0 – A non-pipelined, single-cycle (32 · 32 fi
64 bit) multiplier generated with the JHDL hardware
description language. This low speed circuit demon-
strates the effects on dynamic frequency in circuits with
very long combinatorial paths. Some of our past work
suggests that long combinatorial paths may cause a
large amount of glitching which could severely hinder
the maximum safe clock-frequency [13].

• MULT1 – As MULT0 but with pipelining.
5. Results

5.1. LIMIT results

Figs. 4 and 5 show results from our continuously adapt-
ing LIMIT experiments, and Table 2 provides results from
our long-term stability experiments. Fig. 4 shows a summa-
ry of optimal clock-frequencies sampled in our continuous-
ly adapting experiments for different circuits, FPGA
locations, and environmental conditions. Fig. 5 shows a
detailed view of optimal clock-frequency over time for

http://www.opencores.com

Fig. 5. Optimal clock-frequency over time for a pipelined multiplier
running in four different locations on an FPGA.

J.A. Bower et al. / Microprocessors and Microsystems 30 (2006) 388–397 395
one of our test circuits, and is typical of results for the
other circuits in all environmental conditions. Table 2
shows the maximum clock-frequencies suitable for a 3 h
run we were able to achieve with a single instance of each
circuit and how long it took to find.

In addition to collecting data on optimal clock-fre-
quency in our continuously adapting experiments, we
also capture failed outputs. We use these failed outputs
to construct histograms of how often bits in the hard-
ware output are failing. Fig. 6 shows two typical failure
Table 2
Results of using LIMIT to dynamically determine clock-frequencies allowing

Circuit Static frequency
estimate (MHz)

Final stable dynamic
frequency (MHz)

Performance
improvement (

DES 42.6 72.45 70.07
DCT 42.95 80.02 86.31
MULT0 8.21 10.94 33.25
MULT1 46.68 81.13 73.80

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60

N
um

be
r

of
 e

rr
or

s

Bit position

Fig. 6. Histograms showing bit errors in computation outputs due to ove
patterns for DES and MULT0 instances. For the DES
hardware, failures are fairly uniform reflecting the uni-
form nature of a DES hardware implementation, and
the MULT0 errors are skewed, again reflecting the path
lengths in a hardware multiplier. In future we could use
this information to optimise these circuits for use in
dynamic clock-frequency system for example by putting
extra error detection logic on bits more likely to fail,
or by applying typical-case optimisations suitable for bet-
ter than worst-case design [9].

From our LIMIT experiments we make the following
observations:

• The benefits of a dynamic versus static clock-frequencies
for arbitrary FPGA designs are large; from 33.25 to
86.31%. This is particularly significant as these results
were achieved with no effort made to optimise our test
circuits.

• Environmental conditions do play a role in determining
the maximum safe operating frequency of the FPGA,
but the difference between a fan cooled and lamp heated
circuit is small at around 10%.

• Our continuously adapting experiments indicate that
location in an FPGA does not seem to make much of
a difference. While we do see a range in performance
for our different circuit instances, these do not appear
to correlate to FPGA location. They can instead be
attributed to random deviations in each instance caused
by place and root algorithms.
test circuits to operate for 3 h without error

%)
Time to find
stable frequency (min)

First dynamic
frequency (MHz)

Drop in
frequency (%)

20.88 76.56 5.37
4.55 81.27 1.53
1.53 10.94 0.00

30.03 84.38 3.85

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60

N
um

be
r

of
 e

rr
or

s

Bit position

r-clocking reflect circuit structure in DES (left) and MULT0 (right).

F
M

396 J.A. Bower et al. / Microprocessors and Microsystems 30 (2006) 388–397
• Our long-term stability experiments show that the major
changes in environment, which lower the maximum
optimal clock-frequency, seem to occur fairly quickly,
at most within 30 min.

• Both our long-term stability and continuously adapting
experiments show that optimal clock-frequencies are
fairly constant over time. Our long-term stability
experiments showed that even after several hours of con-
tinuous operation drops of less than 6% in optimal
clock-frequency are seen.
5.2. AutoTEA results

Fig. 7 shows graphs of optimal clock-frequency
found by binary search for the false and real critical-
paths in circuits to which AutoTEA is applied. For
these experiments, we enable AutoTEA to fine tune
the path length using feedback from both timing anal-
ysis and by automatically testing the design on real
hardware. AutoTEA is configured to target creating
false critical-paths 25% slower than the real critical path
for each test circuit. We empirically determined this
margin to provide a suitable safety margin for all test
ig. 7. AutoTEA optimal clock frequencies compared with true optimal f
ULT1(bottom-right). Note that heated DES exceeds the operating conditio
circuits given the lack of resolution for controlling crit-
ical path lengths using the Xilinx place-and-route
tools.

From our results we make the following observations:

• AutoTEA optimal false-path frequencies are always
below the optimal frequencies determined through test-
ing of the test circuits. In other words AutoTEA fre-
quencies are below those at which errors occur in the
test circuits.

• AutoTEA can react well to changes in environment.
Particularly in the DCT and MULT1 examples, we
can see that moving from normal to cool and cool to
hot environments causes safe increases and decreases
in clock-frequency, respectively.

• In most cases the AutoTEA false-path frequencies are
considerably above statically estimated frequencies for
the test circuits.

From these observations we can see that AutoTEA
shows promise for determining dynamic clock-frequencies
for FPGA applications to run at without error by taking
advantage of run-time conditions.
requencies for MULT0 (top-left), DCT (top-right), DES (bottom-left),
ns of the FPGA.

J.A. Bower et al. / Microprocessors and Microsystems 30 (2006) 388–397 397
6. Conclusion

In this paper, we show a methodology and implementa-
tions of FPGA systems with dynamic clock-frequencies.
AutoTEA enables automatic addition of dynamic clock-
frequency to arbitrary FPGA designs. As a consequence,
we exploit the performance benefits of dynamic clock-fre-
quencies over a static clock.

Future work includes extensions of our AutoTEA and
LIMIT systems to support voltage scaling [15] and ways
of further improving performance of applications using
dynamic clock-frequencies. Furthermore, dynamic recon-
figuration [16] can provide improvements of dynamic
clock-frequency systems in FPGAs. For example we can
use dynamic reconfiguration to move a circuit around
FPGA fabric to reduce the maximum temperature it reach-
es allowing a higher clock-frequency, and/or we could have
a circuit which reconfigures itself depending on data inputs
to optimise its maximum clock-frequency. Our AutoTEA
and LIMIT systems also provide a starting point for gener-
ating tighter static clock-frequency estimates for FPGA
designs by incorporating information from real run-time
performance of a device and/or application.

References

[1] V. Betz, J. Rose, A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs, Kluwer Academic Publishers, 1999, Section
2.2.5.

[2] D. Grunwald, P. Levis, K.I. Farkas, C.B. Morrey III, M. Neufeld,
Policies for Dynamic Clock Scheduling, USENIX Symposium on
Operating System Design and Implementation, October 2000,
pp.73–86.

[3] B. Colwell, The zen of overclocking, IEEE Computer vol. 37 (2004)
9–12.
[4] A.K. Uht, Achieving Typical Delays in Synchronous Systems via
Timing Error Toleration, University of Rhode Island, Tech. Rep.
032000-0100, March 2000.

[5] T. Austin, D. Blaauw, T. Mudge, K. Flautner, Making typical silicon
matter with Razor, IEEE Computer vol. 37 (2004) 57–65.

[6] T. Austin, DIVA: a dynamic approach to microprocessor verification,
Journal of Instruction Level Parallelism vol. 2 (2000).

[7] M. Olivieri, A. Trifiletti, A.D. Gloria, A low-power microcontroller
with on-chip self-tuning digital clock-generator for variable-load
applications, IEEE International Conference on Computer Design
(1999) 476.

[8] A.K. Uht, Going beyond worst-case specs with TEAtime, IEEE
Computer 37 (2004) 9–12.

[9] T. Austin, V. Bertacco, D. Blaauw, T. Mudge, Opportunities and
challenges for better than worst case design, in: Proceedings of the
ASP-DAC, Shanghai, China, January 2005.

[10] G.M. Link, N. Vijaykrishnan, Hotspot Prevention Through Runtime
Reconfiguration in Network-On-Chip, DATE ’05, Munich, March
2005.

[11] S.P. Mohanty, N. Ranganathan, Energy-efficient datapath scheduling
using multiple voltages and dynamic clocking, ACM Transactions on
Design Automation of Electronic Systems Vol. 10 (No. 2) (2005)
330–353.

[12] C. Weaver, F. Gebara, T. Austin, R. Brown, Remora: A Dynamic
Self-Tuning Processor, University of Michigan, Tech. Rep. CSE-TR-
460-02, July 2002.

[13] S.J.E. Wilton, S.S. Ang, W. Luk, The Impact of Pipelining on
Energy Per Operation in Field-Programmable Gate Arrays, Field
Programmable Logic and Applications, LNCS 3203, Springer,
2004, pp. 719–728.

[14] T.D. Burd, T.A. Pering, A.J. Stratakos, R.W. Brodersen, A dynamic
voltage scaled microprocessor system, IEEE Journal of Solid-State
Circuits 35 (11) (2000) 1571–1580.

[15] C.T. Chow, L.S.M. Tsui, P.H.W. Leong, W. Luk, S.J.E. Wilton,
Dynamic voltage scaling for commercial FPGAs, Proceedings of the
IEEE International Conference on Field-Programmable Technology
(2005) 173–180.

[16] J. Liang, R. Tesier, D. Goeckel, A dynamically-reconfigurable,
power-efficient turbo decoder, Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing Machines (2004).

	Dynamic clock-frequencies for FPGAs
	Introduction
	Previous work
	Our methodology for dynamic clock-frequency
	Error analysis
	Error handling
	Handling of dynamic clock-frequency
	Other considerations

	Implementations
	LIMIT
	Continuously adapting experiments
	Long-term stability experiments

	AutoTEA
	Common experimental set-up

	Results
	LIMIT results
	AutoTEA results

	Conclusion
	References

