
A Reconfigurable Simulation Framework for Financial Computation

Jacob A. Bower, David B. Thomas, Wayne Luk and Oskar Mencer
Department of Computing, Imperial College, 180 Queen’s Gate

London SW7 2AZ, UK
{jab00,dt10,wl,oskar}@doc.ic.ac.uk

Abstract

This paper presents a framework for the acceleration
of Monte-Carlo simulations using reconfigurable hardware.
Discrete-time random walk simulations are widely used in
the financial computation to calculate derivative prices and
evaluate portfolio risk, but increases in model complexity
and tighter time constraints now require large computer
farms to meet operational demands. We present a model
for accelerating such tasks with reconfigurable hardware,
using an architecture that exploits parallelism at multi-
ple levels, combining fine-grained pipelining, intra-device
multi-threading, and inter-device distributed processing.
The architecture adopts a modular design approach, allow-
ing components to be re-used across different applications,
while also allowing automatic design space exploration to
maximise performance within different devices. Using our
framework, we implement two different discrete-time ran-
dom walks representative of financial simulations, and these
show 71 times and 8 times speedup respectively when com-
pared to a C++ software and SSE vectorised implementa-
tions.

1 Introduction

As transistor sizes continue to shrink, Field Pro-
grammable Gate Arrays (FPGAs) benefit from increased
logic densities and increased performance. As a a re-
sult, FPGAs now have the ability to implement application-
optimised floating-point operations, allowing them to out-
perform contemporary high-performance microprocessors
[1], and so are becoming a viable platform for the accel-
eration of complex numerical applications. However, while
FPGAs exhibit potential for accelerating a wide range of
applications, their practical use in industry for accelerat-
ing complex arithmetic is currently limited. One reason for
this is that any eventual speed-up is often outweighed by
the large up-front design effort required when moving al-
gorithms into hardware, particularly in applications where

the algorithms are continuously evolving. For example, in
the banking sector new financial models and risk-evaluation
strategies are constantly developed, and only bring competi-
tive advantage if they can be used in hardware immediately.

In this paper, we present a general purpose framework
for accelerating Monte Carlo simulations of discrete-time
random walks. Our framework reduces the design effort for
simulations in this class, enabling rapid implementation of a
single simulation kernel with a well defined interface. From
these kernels we are able to extract parallelism at a number
of different levels including: running multiple simulations
in one kernel pipeline, multiple pipelines in one FPGA and
running multiple FPGAs in parallel, distributed over a net-
work.

We focus on Monte Carlo simulations as these are ex-
amples of “embarrassingly parallel” applications [2], mak-
ing them well suited to hardware implementation. FPGAs
are at an advantage for implementing Monte Carlo simu-
lations in hardware, as the diversity of simulation models
preclude a sufficiently general ASIC implementation. We
specifically target discrete-time random walks, as these are
of significance in financial computation. Financial compu-
tation is an attractive application domain for hardware ac-
celeration, as simulation/analysis needs to be performed in
a very short space of time during intense trading activities.
As such, rapidly increasing the rate of processing of these
simulations can be seen as an enabling technology as users
are able to react quicker to dynamic scenarios.

In this paper we present the following contributions:

• A framework for developing discrete-time, random
walk Monte Carlo simulations, which both encourages
component re-use, and simplifies the implementation
and optimisation of fine-grained and coarse-grained
parallelism.

• Application of the proposed framework to two simu-
lation applications representative of current financial
computing models.

• Performance results from an FPGA implementation,
showing speed ups of more than 8 times from a single

1



FPGA, compared to highly optimised software imple-
mentations.

For the remainder of this paper, our discussion will be
divided up as follows. First we discuss background in Sec-
tion 2. We present our Monte Carlo framework in Section 3,
discussing how parallelism is extracted both in hardware
and by distribution across networked FPGA host nodes. In
Section 4 we describe our implementations of Ho-Lee and
Vasicek models within our framework, performance results
from which are presented in Section 5. Finally in Sec-
tion 6 we conclude our work and suggest areas for further
research.

2 Background

Many simulations of real-world systems make use of the
Monte Carlo method. In a Monte Carlo simulation, a model
of a real-world system is repeatedly run with inputs derived
from appropriately distributed random numbers. Results
from a large number of these runs are combined, for exam-
ple by averaging, to infer probabilistic results of a system.
This method of simulation is advantageous as it allows anal-
ysis of systems which are either intractable to model fully
due to their size, or which are based on the occurrence of
probabilistic events.

In this paper we focus on random walk Monte Carlo
simulations, where a mathematical model is effectively
“walked” through a space, with the direction and distance
of each step derived from random inputs. Random walk
Monte Carlo simulations are commonly used in finance for
the pricing of derivatives [3], where random walks model
the movement of asset prices as time progresses.

The quality of results from a Monte Carlo system de-
pends primarily on the number of independent simulation
runs. As increasing numbers of independent trials are com-
bined, the calculated answer will approach the true answer.
Confidence intervals can be calculated from the standard
deviation of the answer, so when a desired precision is re-
quired, more simulation runs can be aggregated until the
standard deviation falls below the target precision. How-
ever, the error in results from Monte Carlo simulations de-
creases as 1/

√
N [4], so doubling the precision of the an-

swer will require four times as many simulation runs, mak-
ing the simulation speed critical. Fortunately, each simu-
lation run is completely independent, allowing them to be
executed in parallel.

FPGAs, with their increasing capacity and potential for
massively parallel computations, are obvious candidates for
accelerating simulations. Examples of such simulations ac-
celerated by FPGAs include modelling of radar [5], com-
munication [6], biological [7], physical [8] and financial
systems [9]. Also related to the study of Monte Carlo sim-

ulations is the subject of generating random numbers with
appropriate distributions for use in such simulations. Work
on the implementation of random number generators in FP-
GAs with varying degrees of speed, size, quality of random-
ness, and varying distributions include [10, 11, 12, 13].

In [9] and [8], the authors explore implementing Monte
Carlo simulations in FPGAs. However, both of these works
focus on optimisation of their specific target applications,
rather than on developing frameworks that can be re-used
in other applications. The authors also do not consider the
use of multiple FPGAs, which is a key requirement when a
single FPGA cannot provide sufficient performance to meet
application constraints.

In this paper we present a general Monte Carlo frame-
work, focusing on extracting parallelism arising from the
independent nature of Monte Carlo simulation runs, and the
pipelineability of the simulation steps.

3 Monte Carlo Framework

3.1 Overview

In this section we describe our framework for imple-
menting discrete-time random walk simulations in reconfig-
urable hardware such as FPGAs. This framework allows de-
signers to focus on just the simulation specific components,
with components common to all simulations provided by
the framework. In particular the framework encourages and
simplifies the use of three different levels of parallelism:

• Filling pipelined algorithm kernels with the data from
multiple independent simulations, allowing a form of
C-Slow [14] optimisation.

• Managing the execution of multiple pipelined simula-
tion cores in one device.

• Running multiple devices at once, distributed over a
network cluster.

At the core of any discrete-time Monte Carlo simulation
is an algorithmic kernel which models the behaviour of an
entity over a simulated period of time, such as the value
of an asset or changes in interest rates. A simulation pro-
gresses in fixed times steps through the range 0 ≤ t ≤ T ,
where T is the time horizon of the simulation. As a simula-
tion progresses it will iterate on some form of state, starting
with a fixed initial state, common to all simulation runs. The
nature of this state, and how it is transformed, will be sim-
ulation specific, though typically the transformation will be
performed by a single deterministic function. This function
takes as input the current state, one or more random num-
bers, and any global parameters, then calculates the next
state. We refer to a single evaluation of this function as

2



(a) Iteration Step (b) Iteration Manager (c) Multi-Iteration Manager

Figure 1: Monte Carlo financial simulation framework.

an ‘iteration step’ and the evaluation of this state sequence
over 0 ≤ t ≤ T as a ‘single simulation run’. We define a
‘full simulation’ as the combined results of a large number
of single simulation runs. The number of simulation runs
is specified by the user of the system, or is automatically
increased until the accuracy converges to some user-defined
accuracy.

Our framework abstracts this process into four compo-
nents:

Iteration Step. Algorithm specific hardware kernel re-
sponsible for advancing the state of a simulation by
a single time-step.

Iteration Manager. Generic hardware component which
is responsible for feeding into, and consuming data
from, the iteration step component.

Multi-Iteration Manager. Generic hardware component
which co-ordinates multiple iteration managers within
a single FPGA.

Network Distributor . Generic software allowing the in-
stantiation of the multi-iteration managers using mul-
tiple FPGA boards, distributed across multiple net-
worked computers, and combining the results of a full
simulation.

For the remainder of this section we will describe these
components and show how they fit together to make a gen-
eral purpose discrete-time random walk Monte Carlo frame-
work based on FPGAs.

3.2 Iteration Step

In our framework, the ‘iteration step’ component is the
container for implementing a simulation specific kernel.
Figure 1a shows a graphical outline of this component. The
iteration step component is the part of our framework which
must be tailored for each specific simulation. In Section 4
we show specific examples of what an iteration step may
involve, and how they can be implemented and optimised.

When implementing an iteration step kernel, pipelining
is required to achieve good performance in hardware. We
expect that iteration steps are a pure deterministic function
of input state, simulation constants, and random inputs, with
no data hazards, allowing the iteration step to be pipelined
to and arbitrary degree.

In our framework we take advantage of pipelined step
kernels, by filling alternate pipeline stages with indepen-
dent simulations. For example, a pipeline with a latency of
twelve cycles would ideally have twelve calculations from
twelve different simulation in progress at once. Hiding the
latency of the pipeline by executing multiple calculations is
often called a C-Slow pipeline, and is only possible because

3



the calculations are all independent, with no data hazards or
ordering constraints. Filling a pipeline with multiple con-
current simulation runs allows us to keep all stages in the
pipeline active, and thus extracting maximum parallelism
from a hardware kernel.

At the end of a kernel pipeline, we identify to which
simulation run each result belongs by flowing through an
opaque context identifier. This is combined with other ele-
ments to make the per-cycle inputs to our iteration step in
the form: < statet, stochastic inputs, context >. Within this
tuple, t is the iteration time-step, ‘state’ is algorithm specific
data being iterated on, ‘stochastic inputs’ are random num-
bers appropriately distributed for the simulation, and ‘con-
text’ is an input used by an ‘iteration manager’ (described
below) to distinguish in-flight simulations in the pipeline.
The per-cycle output of the iteration step components is of
the form < statet+1, context >.

As well as per-cycle inputs an iteration step may also
need, for example, a set of constant inputs which represent
interest rates or estimates of price volatility. The number
and meaning of these constants are simulation step specific,
but only need to be directly understood by the iteration step;
all other components can treat them opaquely. These inputs
will be fixed across a whole simulation, i.e. many hundreds
or thousands of simulation runs, and so do not need to be
included in the per-cycle simulation input.

3.3 Iteration Manager

The iteration step component for an algorithm by itself
only transforms statet to statet+1 . In order to provide ini-
tialisation, feedback and termination of separate simulation
runs in an iteration step pipeline, we define a component
called the ‘Iteration Manager’. This is responsible for gen-
erating initial input states for an algorithm specific iteration
step, advancing simulations in the pipeline over the range
0 ≤ t ≤ T , and finally accumulating outputs from single
simulation runs.

In order to allow maximum flexibility in the implemen-
tation of each iteration step implementation, we design our
iteration manager to be independent of the specific latency
of an iteration step. For this reason we require the ‘con-
text’ field in the inputs and outputs of our iteration step.
This technique removes the need to compute and take into
account static timing information about our iteration step.
Furthermore, it allows for more advanced optimisation tech-
niques such as returning results out-of-order and taking
many cycles for “difficult” calculations.

A structural illustration of our iteration manager is
shown in Figure 1b. Our iteration manager is primarily
composed of a loop, at the top of which is a process for se-
lecting the next per-cycle input to the iteration step pipeline.
When the iteration step is ready to accept a new input,

the manager selects between continuing an existing simu-
lation or starting a new one. If there is a feedback state:
statet, t < T waiting, this is selected, otherwise a new ini-
tial statei: state0 is created and a register, simsToRun, is
decreased. The simsToRun register is initially set to be
the total number of simulation runs to perform, and when it
eventually reaches zero, no more simulations will be started.

At the bottom of the iteration manager loop, the per-
cycle outputs are examined. If the state is stateT , the final
state in a simulation, the result will be accumulated as an
output and nothing is fed-back allowing a new simulation
to be started. If the state is some intermediate state, statet,
then output is not be affected and the state is fed-back into
the pipeline.

Inputs to the iteration manager consist of an initial value
for simsToRun, stochastic inputs, and iteration step spe-
cific constants. The only outputs consist of the current value
of simsToRun, so we can determine when a full simula-
tion is complete, and the accumulated results from all com-
pleted simulation runs. For our implementation, accumu-
lation is simply a sum of the final state values for simula-
tion runs. At the end of a full simulation, this sum can be
used to generate an average by dividing it by the total num-
ber of simulation runs, the value of which is user-specified
and hence statically known. The actual division operation
is performed in software (described in Section 3.5) to save
hardware resources. The register used in accumulation is
wide enough to account for the maximum accumulatable
value for the planned number of simulation runs.

3.4 Multi-Iteration Manager

A single iteration manager is only capable of advancing
at most one simulation per clock cycle. This means that
completing simsToRun simulations of T steps will take at
least simsToRun×T+k cycles. In most cases there will be
enough area to implement two or more iteration managers
in a single FPGA. If there is enough space to accommodate
Z iteration managers, then we can reduce the number of
cycles taken to:

simsToRun× T + k

Z
(1)

Our ‘multi-iteration manager’ component, shown in Fig-
ure 1c, splits a request for simsToRun simulations into
batches of simsToRun/Z and divides them between iter-
ation managers. As the iteration managers update their out-
put accumulators, these are then accumulated together in
the same manner to provide an aggregate result. The exter-
nal interface for the multi-iteration manager is identical to
the standard iteration manager, except it needs to receive Z
sets of stochastic inputs.

4



Figure 2: Distributing simulations across multiple boards
and computers.

3.5 Multi-FPGA Distribution

As well as extracting multiple levels of parallelism from
our simulations in a single FPGA, we also consider the
case where we have multiple FPGAs. Figure 2 shows
our model for running simulations across multiple FPGA
boards hosted in computer nodes attached to a network.

In our model a simulation is started from a single ‘initi-
ating’ node. Software on this node activates other config-
ured nodes on the network, causing them to upload FPGA
bit-streams and starting simulations running with user spec-
ified parameters and run lengths. Nodes hosting the execu-
tion boards eventually receive the accumulated sums from
all the local full simulations performed in FPGAs. These
sums are then passed back to the initiating node which col-
lects the total of the results from all machines. The initiating
node then combines these to produce a final answer.

It is not a necessity that the execution environments for
our simulation runs be homogeneous. Individual nodes in a
network may have multiple FPGA boards with multiple FP-
GAs with in them. It is also possible to combine the results
of software implementations of the same simulation with
the results computed in FPGAs using this infrastructure.

The lack of a requirement for homogeneity in our pro-
posed distribution model allows a smooth integration of FP-
GAs into an environment where simulations are needed. For
example, in our prototype distribution system, we instanti-
ate processes on networked hosts using remote execution
over SSH. The application we develop to automate the dis-
tribution of a full simulation from an initiating node takes
a list of hosts suitable for execution, and details of FPGA

hardware if present. Hence any machine running an SSH
daemon is capable of contributing to a simulation, but those
with FPGAs contribute considerably more.

4 Simulation Algorithms

In this section we discuss two algorithms we have im-
plemented to explore the benefits of our proposed finan-
cial framework: Vasicek [15] and Ho-Lee [16]. These are
two examples of discrete-time random walk simulations, in-
spired by forms of analysis used in the finance industry.
We implement both of these algorithms in our Monte Carlo
framework by creating an ‘Iteration Step’ for each one us-
ing Celoxica’s Handel-C tool [17]. Handel-C is also used
for implementing the higher levels of our hardware frame-
work. We also implement software versions of both algo-
rithms which we hand vectorise with SIMD instructions tar-
geting the Intel Xeon architecture. We compare the perfor-
mance of software and FPGA implementations in Section 5.

4.1 Ho-Lee

Our first simulation kernel is the Ho-Lee model:

xt+1 = xt + c0 × xt + c1 × rt (2)

The simple nature of this equation makes it straight for-
ward to implement in hardware requiring only multiplica-
tion and division units. For the same reason it is also effi-
ciently performed in SIMD processors. We provide both
fixed (signed, 16.16 precision) and floating-point (IEEE
single-precision) versions of this simulation as iteration step
kernels in our framework. For our fixed and floating point
units, we use the implementations provided by Celoxica.

4.2 Vasicek

The second simulation we implement is the Vasicek
model:

xt+1 = xt + c0 × e(c1×xt) + c2 × e(c3×rt) (3)

The Vasicek iteration step presents two main challenges.
Firstly, the exponential function has only recently become
feasible to evaluate in hardware, so there are no standard
implementations or libraries to use. Secondly, the use of
exponential presents range and accuracy problems within
the evaluation of the formula. This is less of a problem
when using a floating-point representations, but in fixed
point it becomes difficult to balance the competing concerns
of range and accuracy, particularly when the constants used
in the Vasicek formula can affect both so much. For this

5



reason we implement only a floating-point version of the
Vasicek iteration step.

In order to deal with a lack of pre-existing standard li-
braries for computing the exponential function, we provide
our own implementation. In our implementation we use
range reduction by breaking a single exponential into the
product of two exponentials which are easier to compute:

ex ⇒ ebkxc/k+(x−bkxc/k)

⇒ ebkxc/k︸ ︷︷ ︸
Integer exponent

× ex−bkxc/k︸ ︷︷ ︸
Fractional exponent

(4)

We use two different methods for computing the frac-
tional and integer exponents. For the integer exponent we
use a ROM of pre-computed values, and for the fractional
part we use a degree 6 polynomial approximation.

For computation of exponent in our software Vasicek
simulation, we use optimised math libraries provided by In-
tel [18].

4.3 Stochastic Input Generation

By the definition of the Monte Carlo method, we re-
quire a source of random number inputs for both our hard-
ware and software simulations. For our hardware imple-
mentation, we use a random number generator previously
developed in our research-lab based on the Box-Müller
method [11]. For our software implementation we use an
implementation based on the Wallace method [19]. We use
the Wallace method in software as this has been shown to
achieve high-performance in instruction processors.

5 Results

In evaluating the Vasicek and Ho-Lee simulations cre-
ated within our framework, we primarily focus on perfor-
mance gains achieved versus equivalent software simula-
tions. For these comparisons we use a normalised measure-
ment value: ‘steps/second’. We define a ‘step’ as a single
iteration of a simulation kernel, for example a single evalua-
tion of (3). So, for our fully pipelined iteration step kernels,
this leads to one step being completed every cycle for each
pipeline instantiated.

Our performance results for both vectorised and pure-
C++ software implementations of the Ho-Lee and Vasicek
simulations are shown in Table 1. We obtain our perfor-
mance results by running the software on a workstation with
a 2.66GHz Xeon processor.

Figures 3, 4 and 5 show performance results for our hard-
ware simulations versus software. Figures 6, 7 and 8 show
resource usages and clock-rates for our hardware imple-
mentations. As our framework allows repetition of simula-
tion pipelines within an FPGA, the size of our target device

has a strong influence on maximum speed-up. For this rea-
son we present maximum speed-up results for a number of
different FPGA devices with varying logic resource capac-
ities. We consider all devices in the Xilinx Spartan-3 and
Virtex-II series. However it should be noted that for this
work we only use a maximum of 8 simulation pipelines in
any one device due to tool-chain limitations.

Of our performance results, the highest speed-up over
vectorised software we achieve is 8.29 times, seen in Fig-
ure 3 for 8 instances of a fixed-point Ho-Lee pipeline on a
Spartan3. Interestingly, the speed-up for hardware floating-
point Ho-Lee is more modest at only 3.6 times. The main
reason for the limited speed-up in the floating-point imple-
mentation is the high-performance of the vectorised soft-
ware Ho-Lee implementation. Thus the only way we can
achieve a speed-up in hardware is through including more
instances as is achievable in the fixed-point version. The
floating-point version, however, consumes too many FPGA
resources to allow such replication.

For our Vasicek hardware implementation, which is
floating-point only, we manage to achieve a maximum
speed-up of 7.1 times. While this is not as high as for our
fixed-point Ho-Lee simulation, this speed-up is achieved
with a smaller number of repetitions and using the same
level of numeric precision as the software version. We at-
tribute this to our hardware exponential function perform-
ing better than even the Intel optimised software equivalent.
Indeed, if we compare our hardware Vasicek to our unopti-
mised software (using a standard exp implementation), we
get our highest speed-up of 71.8 times.

Also in our Vasicek simulations, we see an example of
a situation where increasing the number of repetitions actu-
ally causes a decrease in performance. This can be seen in
Figure 5 our 6 Vasicek instances in VirtexII run slower than
just using 5. Correspondingly in Figure 8 we see a drop in
clock-speed combined with the largest area usage of all the
designs. It seems that at this size, FPGA resources are too
constrained to keep the clock-rate up.

For our fixed-point implementation we even can obtain a
small increase in performance even with a very limited size
Spartan3 device (xc3s400).

In our resource graphs we note that the designs use quite
a significant number of the LUTs for shift-registers. For
example in our Virtex-II, 8 times Ho-Lee instance design,
10.8% of LUTs are configured as shift registers. This use
pattern arises due to heavily pipelined nature of this design.

A final point, not apparent in our graphs, is that one of
the main areas for resource constraints in our designs is for
hardwired block multipliers. In order to allow more designs
in each device, we instruct our synthesis tools to only use
multipliers in the random number generators.

6



Figure 3: Ho-Lee fixed-point FPGA implementation performance.

Figure 4: Ho-Lee floating-point FPGA implementation performance.

Figure 5: Vasicek floating-point FPGA implementation performance.

7



Algorithm Vectorised MSteps/second
Ho-Lee No 10.9
Ho-Lee Yes 53.2
Vasicek No 4.6
Vasicek Yes 46.0

Table 1: Performance of software only simulations running
on a 2.66GHz Xeon processor.

Figure 6: Resource usage and clock-rate of Ho-Lee
floating-point hardware.

Figure 7: Resource usage and clock-rate of Ho-Lee fixed-
point hardware.

Figure 8: Resource usage and clock-rate of Vasicek
floating-point hardware.

6 Conclusion

This paper demonstrates that FPGAs can profitably ac-
celerate financial simulations. A general purpose frame-
work is designed for implementing simulations of discrete-
time random walks using the Monte Carlo method. Using
this framework we implement hardware kernels for Ho-Lee
and Vasicek simulations. We also create optimised soft-
ware of the same simulations and compare the performance
of these with that of our hardware. Through this compar-
ison we find that we are able to accelerate Ho-Lee simu-
lations 8.3 times compared to our optimised software us-
ing 8 fixed-point simulation instances in a Spartan3 FPGA.
We also achieve a speed-up of 7.2 times for Vasicek sim-
ulations using single-precision floating-point in hardware.
Furthermore, our hardware Vasicek implementation runs
71.8 times faster than a pure C++ software implementation.
This speed-up over unoptimised software is also significant,
since even industrial implementations do not always sup-
port SSE-based optimisations. For example parallelism in
highly data dependent simulation kernels may be limited
by the number of general purpose processors available, and
may be difficult to accelerate using vector instructions. We
show that with a hardware implementation we can run as
many simulation instances as FPGA resources allow, and
that C-Slow scheduling can be used to further parallelise a
data-dependent simulation. We also describe how an FPGA
accelerated simulation can be integrated into a heteroge-
neous distributed execution environment, comprising both
FPGAs and software processors using commodity remote

8



execution software.
While our framework helps to reduce the complexity of

producing discrete-time random walk Monte Carlo simula-
tions, we still need to find ways of automating the optimi-
sation of algorithmic kernel cores. An example is to auto-
matically generate optimised transcendental functions like
ex, which we have shown are needed in these kinds of algo-
rithms. Our framework itself also has significant potential
for generalisation to other classes of Monte Carlo simula-
tions.

Acknowldedgements

The support of UK Engineering and Physical Sciences
Research Council, Morgan Stanley, Celoxica and Xilinx is
gratefully acknowledged.

References

[1] K. Underwood, “FPGAs vs. CPUs: trends in peak
floating-point performance,” in International sympo-
sium on Field programmable gate arrays, pp. 171–
180, ACM Press, 2004.

[2] J. Basney, R. Raman, and M. Livny, “High throughput
Monte Carlo,” in SIAM Conference on Parallel Pro-
cessing for Scientific Computing, 1999.

[3] P. Wilmott, Paul Wilmott Introduces Quantitative Fi-
nance. Wiley, 2001.

[4] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery, Numerical Recipes in C: The Art of Sci-
entific Computing. New York, NY, USA: Cambridge
University Press, 1992.

[5] R. Andraka and R. Phelps, “An FPGA based proces-
sor yields a real time high fidelity radar environment
simulator,” in Conference on Military and Aerospace
Applications of Programmable Devices and Technolo-
gies, 1998.

[6] J. Chen, J. Moon, and K. Bazargan, “A reconfigurable
FPGA-based readback signal generator for hard-drive
read channel simulator,” in IEEE Design Automation
Conference, pp. 349–354, 2002.

[7] M. Yoshimi, Y. Osana, T. Fukushima, and H. Amano,
“Stochastic simulation for biochemical reactions on
FPGA,” in International Conference on Field Pro-
grammable Logic and Applications, pp. 105–114,
2004.

[8] C. Cowen and S. Monaghan, “A reconfigurable
Monte-Carlo clustering processor (MCCP),” in IEEE

Workshop on FPGAs for Custom Computing Ma-
chines, pp. 59–65, 1994.

[9] G. L. Zhang, P. H. W. Leong, C. H. Ho, K. H. Tsoi,
D.-U. Lee, R. C. C. Cheung, and W. Luk, “Recon-
figurable acceleration for Monte Carlo based finan-
cial simulation,” in International Conference on Field-
Programmable Technology, pp. 215–224, 2005.

[10] N. B. Liberati and F. Martini, “A multi-point dis-
tributed random variable accelerator for Monte Carlo
simulation in finance,” in International Conference on
Intelligent Systems Design and Applications, pp. 532–
537, 2005.

[11] D.-U. Lee, W. Luk, J. D. Villasenor, and P. Y. K. Che-
ung, “A gaussian noise generator for hardware-based
simulations,” IEEE Trans. Comput., vol. 53, no. 12,
pp. 1523–1534, 2004.

[12] D. B. Thomas and W. Luk, “Efficient hardware gener-
ation of random variates with arbitrary distributions,”
in IEEE Symposium on FPGAs for Custom Computing
Machines, 2006.

[13] D. B. Thomas and W. Luk, “High quality uniform ran-
dom number generation through LUT optimised linear
recurrences,” in International Conference on Field-
Programmable Technology, IEEE Computer Society,
2005.

[14] N. Weaver, Y. Markovskiy, Y. Patel, and
J. Wawrzynek, “Post-placement C-slow retiming
for the Xilinx Virtex FPGA,” in International
symposium on Field programmable gate arrays,
pp. 185–194, ACM Press, 2003.

[15] O. Vasicek, “An equilibrium characterisation of the
term structure,” in Journal of Financial Economics,
vol. 5, pp. 177–188, 1977.

[16] T. Ho and S. Lee, “Term structure movements and
pricing interest rate contingent claims,” in Journal of
Finance, vol. 41, pp. 1011–1030, 1986.

[17] Celoxica, “Handel-C,” http://www.celoxica.com/.

[18] Intel Math Kernel Library. Reference Manual.

[19] C. Wallace, “Fast pseudorandom generators for nor-
mal and exponential variate,” in ACM Transactions on
Mathematical Software, vol. 22, pp. 119–127, 1996.

9


