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ABSTRACT

This paper explores a vision of the design process in which components can optimize and verify themselves
to improve efficiency, re-use, and confidence in correctness – the three design challenges identified by the
International Technology Roadmap for Semiconductors. We illustrate what would take place for self-
optimization and self-verification before and after deployment of the design, and present the benefits and
challenges for the proposed approach.

1. INTRODUCTION

A good design is efficient and meets requirements. Optimization enhances efficiency, while verification
demonstrates that requirements are met. Unfortunately, many existing designs are either inefficient,
incorrect, or both.

Optimization and verification are recognised to be of major importance at all levels of abstraction
in design. The 2005 International Technology Roadmap for Semiconductors listed “cost-driven design
optimization” and “verification and testing” as two of the three overall challenges in design; the remaining
challenge is “re-use”.

What would a future be like in which these three challenges are met? Let us imagine that building
blocks for use in design are endowed with the capability of optimizing and verifying themselves. A new
design can be completed in the following way.

1. Characterize the desired attributes of the design that define the requirements, such as its function,
accuracy, timing, power consumption, and preferred technology.

2. Develop or select an architecture which is likely to meet the requirements, and explore appropriate
instantiations of its building blocks.

3. Decide whether existing building blocks meet requirements; if not, either start a new search, or
develop new optimizable and verifiable building blocks, or adapt requirements to what can be
realized.

4. After confirming that the optimized and verified design meets the requirements, organize the opti-
mization and verification steps to enable the design to become self-optimizing and self-verifying.

5. Generalize the design and the corresponding self-optimization and self-verification capabilities to
enhance its applicability and re-usability.
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A key consideration is to be able to preserve self-optimization and self-verification in the design process:
starting from components with such properties, the composite design is also self-optimizing and self-
verifying. In the next few sections, we include more information about this approach.

2. OVERVIEW

Optimization can be used to transform an obvious but inefficient design into one that is efficient but
no longer obvious. Verification can then show, for instance, that the optimization preserves functional
behaviour subject to certain pre-conditions. A common error in design is to apply optimizations disre-
garding such pre-conditions. Verification can also be used to check whether a design possesses desirable
properties, such as safety and security, to a particular standard.

Optimization and verification, when combined with a generic design style, supports re-use in three
main ways. First, an optimized generic design provides abstraction from details, enabling designers to
focus on the available optimization options and their effects. Second, a generic design offers choices at
multiple levels of abstraction, from algorithms and architectures to technology-specific elements. Third, a
verified optimization process improves confidence in the correctness of its optimized designs. Correctness
must be established before a design can be re-used. In the event of errors, one can check whether the
verification is incorrect, or whether the design is applied in a context outside the scope of the verification.

We take a broad view of self-optimization and self-verification. One way is to think of a design –
which can include both hardware and software – and its characterization about the key properties that an
implementation should possess. Such properties include functional correctness, type compatibility, absence
of arithmetic underflow or overflow, and so on. The characterization can include prescriptions about
how the design can be optimized or verified by specific tools locally or remotely. Various mechanisms,
from script-driven facilities to machine learning procedures, can be used in the self-optimization and
self-verification processes, making use of context information where available. Designers can focus on
optimizing and verifying particular aspects; for instance, one may wish to obtain the smallest design for
computing AES encryption on 128-bit data streams with a 512-bit key at 500MHz.

The proposed design flow involves self-optimization and self-verification before and after deployment
(Table 1). Before deployment, compilation produces an initial implementation and its characterization.
The characterization contains information about how the design has been optimized and verified, and also
about opportunities for further optimization and verification; such opportunities can then be explored
after deployment at run time for a particular context to improve efficiency and confidence of correctness.

Table 1. Context for pre-deployment and post-deployment.

Pre-deployment (Section 3) Post-deployment (Section 4)

focus designer productivity design efficiency
context design tool environment, often static operation environment, often dynamic
acquire context from parameters affecting tool performance from data input e.g. sensors
optimize/verify optimize/verify initial post-deployment design optimize according to situation
planning plan post-deployment optimise/verify plan to meet post-deployment goals
external control frequent infrequent
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Fig. 1. Design effort: the impact of re-use.

The self-optimization of a design depends on context. Before deployment, the context is the design tool
environment; the context can be acquired by identifying parameters that affect design tool performance.
While automated facilities, possibly self-improving, attempt to figure out what combinations of libraries
and tools would produce a design that best meets the requirements, designers can optionally control the
tools to ensure such self-optimization and self-verification proceed in the right direction. In contrast,
after deployment such external control is usually less frequent, for instance if the design is part of a
spacecraft. To summarize, pre-deployment tasks are mainly strategic, and try to proactively determine
possible courses of action that might take place at run time; post-deployment tasks are mainly tactical,
and must choose between the set of possible actions to react to the changing run-time context.

Our approach has three main benefits. First, it enhances confidence in design correctness and reli-
ability by automating the verification process. Second, it improves design efficiency by automating the
optimization process and exploiting run-time adaptivity. Third, it raises productivity by enabling re-use
of designs and their optimization and verification.

However, adopting systematic design re-use – especially when self-optimization and self-verification
are involved – can require more initial effort than doing a one-off design. The designer needs to organize,
generalize and document the designs appropriately. Only after some time, design re-use would become
worthwhile (Figure 1). Moreover, there can be large overheads involved in supporting optimization and
verification after deployment. In the long term, however, those who invest in capabilities for design re-use
and design adaptability are likely to achieve substantial improvement in design efficiency and productivity.

3. PRE-DEPLOYMENT

Before deployment, a designer has the characterization of a desired design, and has access to building
blocks and their characterization. The task is to develop an architecture that defines how selected building
blocks are instantiated and composed to produce an initial design that either meets the requirements,
or can be further optimized to do so, after deployment at run time. Post-deployment optimization and
verification have to be planned carefully to avoid becoming an unaffordable overhead.

We assume that, at compile time before deployment,

1. the available computing resources are adequate to support the design and the tools, but
2. there is a limit on how much optimization and verification can take place since, for instance, some

data values useful for optimization are only known at run time, and it is impractical to compute all
possibilities for such values.

As a simple example, given that one of the two operands of an n-bit adder is a constant whose value is
only known after deployment at run time, we wish to optimize the adder by constant propagation. It is,
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Fig. 2. Comparing cost and volume for FPGA and ASIC technologies.

however, impractical to pre-compute the configuration of all 2n possibilities, unless n is a small number.
Fortunately, if we target a bit-slice architecture, then it may suffice to pre-compute only two configurations
for each of the n bits so that, at run time when the value is known, the appropriate configuration can be
placed at the right location at the right time [26].

Designers may have to prioritize or to change their requirements until a feasible implementation
is found. For instance, one may want the most power-efficient design that meets a particular timing
constraint, or the smallest design that satisfies a given numerical accuracy. Other factors, such as safety
or security issues, may also need to be taken into account.

Given that pre-deployment optimization is to produce an optimized design that would, where appro-
priate, be further optimized after deployment, the following are some examples of optimizations that can
take place before deployment.

1. Choose a circuit technology in which the design would be implemented. The two common tech-
nologies are Application-Specific Integrated Circuit (ASIC) and Field-Programmable Gate Array
(FPGA); the choice of technology depends on volume and flexibility (Figure 2). For instance, cell-
based ASIC tends to be cheaper at large volume since they have large non-recurring engineering
cost, while FPGA is the other way round with structured ASIC somewhere in between. While ASIC
technology can be used to implement adaptive instruction processors with, for instance, custom in-
struction extensions [4] or a reconfigurable cache [12], all the options for reconfiguration have to be
known before fabrication. Adaptive instruction processors can also be implemented in FPGA tech-
nology [13],[35], which allows them much more flexibility at the expense of speed and area overheads
in supporting reconfigurability.

2. Choose the granularity and synchronization regime for the configurable units. Current commercial
FPGAs are mainly fine-grained devices with one or more global clocks, but other architectures are
emerging: there are coarse-grained devices containing an array of multi-bit ALUs (Arithmetic Logic
Units) executing in parallel [2],[14], as well as architectures based on self-synchronizing technology
to enhance scalability [8]. Generally fine-grained devices have a better chance to be tailored to
match closely with what is required. For instance, if a 9-bit ALU is needed, 9 bit-level cells in an
FPGA would be configured to form that 9-bit ALU. For a coarse-grained device containing cells
with 8-bit ALUs, two such cells would be needed. However, fine-grained devices tend to have a large
overhead in speed, area, power consumption and so on, since there are more resources that can be
configured. Coarse-grained devices, in contrast, have lower overheads at the expense of flexibility.

3. For instruction processors with support for custom instructions [4],[13], choose the granularity of
custom instructions to achieve the right balance between speed and area. Coarse-grained custom
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Fig. 3. Variation of speedup and aggregate miss rate against the number of processors for the Arvand
multiprocessor system targeting the XC2V6000 FPGA.

instructions are usually faster but require more area than fine-grained ones. For instance, if the same
result can be achieved using: (a) one coarse-grained custom instruction, or (b) 50 fine-grained custom
instructions, then (a) is likely to be more efficient since there are fewer instruction fetch/decode, and
there are more opportunities to customize the instruction to do exactly what is needed. However,
since the more coarse-grained an instruction, the more specific it can become, there would be fewer
ways for re-using a coarse-grained custom instruction than a fine-grained one.

4. Choose the amount of parallelism and hardware/software partitioning to match performance or size
constraints by determining, for instance, the number of processing elements, the level of pipelining,
or the extent of task-sharing for each processing element. Various factors, such as the speed and size
of control logic and on-chip memory, and interfaces to other elements such as memory or sensors,
would also need to be taken into account. As an example, Figure 3 shows how speedup varies
with the number of processors targeting an FPGA for a multiprocessor architecture specialized for
accelerating inductive logic programming applications [15]. Since the amount of FPGA on-chip
memory is fixed, increasing the number of processors reduces the amount of cache memory for each
processor; hence the linear speedup until there are 16 processors. After this optimal point, adding
more processors reduces the speedup since the cache for each processor becomes too small.

5. Choose data representations and the corresponding operations. Trade-offs in adopting different
kinds of arithmetic representations are well known: for instance redundant arithmetic tends to
produce faster designs since no carry-chain is required, at the expense of size. Since fine-grained
FPGAs support designs with any word-length, various static and dynamic word-length optimization
algorithms can be used for providing designs with the best trade-off between performance, size, power
consumption, and accuracy in terms of, for instance, signal-to-noise ratio [10]. Models and facilities
to support exceptions, such as arithmetic overflow and underflow, should also be considered [21].

6. Choose placement strategies for processing and memory elements on the physical device, such as
those interacting frequently are placed close to one another to improve performance, area and power
consumption. It may be possible to automate the optimization of placement by a combination
of heuristics and search-based autotuners [3] that generate and evaluate various implementation
options; such methods would need to take into account various architectural constraints, such as
the presence of embedded computational or memory elements [5].
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Each example above has aspects that would benefit from verification, from high-level compilation [6]
to flattening procedures [22] and placement strategies [23]. There are verification platforms [29] enabling
consistent application of verification facilities such as symbolic simulators, model checkers and theorem
provers. Such platforms show promise in supporting self-verification for complex designs, but much
remains to be done to verify designs involving various technologies and across multiple levels of abstraction.
Also, many of these platforms and facilities may be able to benefit from automatic tuning [17].

One important pre-deployment task is to plan self-optimization and self-verification after deployment.
This plan would depend on how much run-time information after deployment is available. For instance,
if some inputs to a design are constant, then such constants can be propagated through the design by
boolean optimization and retiming. Such techniques can be extended to cover placement strategies for
producing parametric descriptions of compact layout [22]. Another possibility is to select appropriate
architectural templates to facilitate run-time resource integration [25].

Before deployment, if verification already covers optimizations and all other post-deployment opera-
tions, then there is no need for further verification. However, if certain optimizations and verifications are
found useful but cannot be supported by the particular design, it may be possible for such optimizations
and verifications to take place remotely, so that the optimized and verified design would be downloaded
securely into the running system at an appropriate time, minimizing interruption of service.

4. POST-DEPLOYMENT

The purpose of optimization is to tailor a design to best meet its requirements. Increasingly, however,
such requirements no longer stay the same after the design is commissioned; for instance, new standards
may need to be met, or errors may need to be fixed. Hence there is a growing need for upgradable designs
that support post-deployment optimization. Besides upgradability, post-deployment optimization also
enables resource sharing, error removal and adaptation to run-time conditions – for instance selecting
appropriate error-correcting codes depending on the noise variation.

Clearly any programmable device would be capable of post-deployment optimization. As we described
earlier, fine-grained devices have greater opportunities of adapting themselves than coarse-grained devices,
at the expense of larger overheads.

In the following we focus on two themes in post-deployment optimization: situation-specific optimiza-
tion and autonomous optimization control. In both cases, any un-trusted post-deployment optimizations
should be verified by light-weight verifiers; possible techniques include proof-carrying code checkers [34].
Such checkers support parameters that capture the safety conditions for particular operations. A set of
proof rules are used to establish acceptable ways of constructing the proofs for the safety conditions.

As mentioned in the preceding section, should heavy-duty optimizations and verifications become de-
sirable, it may be possible for such tasks to be carried out by separate trusted agents remotely and down-
loaded into the operational device in a secure way, possibly based on digital signatures which can verify
senders’ identity. Otherwise it would be prudent to include a time-out facility to prevent non-termination
of self-optimization and self-verification routines that do not produce results before completion.

Besides having a time-out facility, post-deployment verification should be capable of dealing with other
forms of exceptions, such as verification failure or occurrence of arithmetic errors. There should be error
recovery procedures, together with techniques that decide whether to avoid or to correct similar errors
in the future. For some applications, on-chip debug facilities [16] would be useful; such facilities can
themselves be adapted to match the operational and buffering requirements of different applications.

Situation-specific optimization. One way to take advantage of post-deployment optimization in a
changing operational environment is to continuously adapt to the changing situation, such as temperature,
noise, process variation, and so on. For instance, it has been shown [31] that dynamic reconfiguration
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Fig. 4. Optimal reconfiguration schedule for upper bound performance measure, SPECviewperf bench-
mark 9. The dotted and solid lines show respectively the branch probabilities of the inner and outer loop
over time.
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Fig. 5. Possible variation of instantaneous power consumption over time. The two narrow spikes indicate
power consumption during two reconfigurations for run-time optimization.

of a Viterbi decoder to adapt the error-correcting convolutional codes to the variation of communication
channel noise conditions can result in almost 70% reduction in decoder power consumption, with no loss
of decode accuracy.

Figure 4 shows a reconfiguration schedule that optimally adapts to the program phase behaviour of
the SPECviewperf benchmark 9 [28]. A program phase is an interval over which the working set of
the program remains largely constant; our purpose is to support a dynamic optimisation regime which
makes use of program phase information to optimize designs at run time. The regime consists of a
hardware compilation scheme for generating configurations that exploit program branch probability [27]
and other opportunities to optimize for different phases of execution, and a run-time system which manages
interchange of configurations to maintain optimization between phase transitions. The idea is to accelerate
the hardware for branches that occur frequently in a particular program phase; when the beginning of the
next program phase is detected, the hardware would be reconfigured to optimize the new program phase.

In addition to improving performance by exploiting, for instance, program phase behaviour, post-
deployment optimization also has potential to improve power consumption. Figure 5 shows a possible
variation of power consumption over time. Comparing to a static design, a post-deployment optimizable
design can be configured to a situation-specific design with the lowest possible power consumption for
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that situation, although there could be power surges when the device is being reconfigured. Techniques
have been proposed for FPGAs that would automatically adjust their run-time clock speed [7], or exploit
dynamic voltage scaling [9]; related methods have been reported for microprocessors [11]. Such techniques
would be able to take advantage of run-time conditions after deployment, as well as adapting to effects
of process variation in deep-submicron technology.

A useful method for supporting situation-specific optimization is to integrate domain-specific cus-
tomisations into a high-performance virtual machine, to which both static and dynamic information from
post-deployment instrumentation is made available. Such information can be used in various situations
for self-optimisation and self-verification, such as optimizing the way hardware or software libraries are
used based on special properties of the library code and context from post-deployment operation.

Autonomous optimization control. “Autonomic computing” [19] has been proposed for systems that
support self-management, self-optimization, and even self-healing and self-protection. It is motivated by
the increasing complexity of computer systems which require significant efforts to install, configure, tune
and maintain. In contrast, we focus on the design process that can support and benefit from self-optimizing
and self-verifying components.

An evolving control strategy for self-optimization can be based on event-driven just-in-time reconfigu-
ration methods for producing software code and hardware configuration information according to run-time
conditions, while hiding configuration latency. One direction is to develop the theory and practice for
adaptive components involving both hardware and software elements, based on component metadata de-
scription [18]. Such descriptions characterize available optimizations, and provide a model of performance
together with a composition metaprogram that uses component metadata to find and configure the opti-
mum implementation for a given context. This work can be combined with current customizable hardware
compilation techniques [32], which make use of metadata descriptions in a contract-based approach, as
well as research on adaptive software component technology.

Another direction is to investigate high-level descriptions of desirable autonomous behaviour, and how
such descriptions can be used to produce a reactive plan. A reactive plan adapts to a changing environment
by assigning an action towards a goal for every state from which the goal can be reached [30]. Dynamic
reconfiguration can be driven by a plan specifying the properties a configuration should support.

Other promising directions for autonomous optimization control include those based on machine learn-
ing [1], inductive logic programming [15], and self-organizing feature maps [24]. Examples of practical
self-adaptive systems, such as those targeting space missions [20], should also be studied to explore their
potential for widening applicability and for inspiring theoretical development. It would be interesting to
find an appropriate notion of verifiability for these optimization methods.

5. ROADMAP AND CHALLENGES

In the short term, we need to understand how to compose self-optimizing and self-verifying components,
such that the resulting composite design is still self-optimizing and self-verifying. A key step is to provide
both theoretical and practical connections between relevant design models and representations, as well
as their corresponding optimization and verification procedures, to ensure consistency between semantic
models and compatibility between interfaces of different tools.

It seems a good idea to begin by studying self-optimizing and self-verifying design in specific application
domains. Experience gained from such studies would enable the discovery of fundamental principles and
theories concerning the scope and capability of self-optimizing and self-verifying design that transcend
the particularities of individual applications.

Another direction is to explore a platform-based approach for developing self-optimizing and self-
verifying systems. Promising work [29] has been reported in combining various tools for verifying complex
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designs; such work provides a basis on which further research on self-optimization and self-verification
can be built. Open-access repositories that enable shared designs and tools would be useful; in particular,
the proposed approach would benefit from, and also contribute to, the verified software repository [6],
currently being developed as part of the UK Grand Challenge project in dependable systems evolution.

Clearly much research remains to be done to explore the potential for self-optimizing and self-verifying
design. Progress in the following areas would contribute to enhancing self-optimization and self-verification
for future development.

* Techniques for specifying and analyzing requirements of self-optimizing and self-verifying systems,
and methods for automating optimization and verification of operations and data representations.
Relevant optimization techniques include scheduling, retiming, and word-length optimization, while
relevant verification techniques include program analysis, model checking and theorem proving.
Their effective tuning and combination, together with new methods that explore, for instance,
appropriate arithmetic schemes and their impact, would enable efficient designs to be produced
with reduced effort.

* Composable generic descriptions of design and context, together with their optimisation and verifi-
cation characterization, at various levels of abstraction. Composition is a convenient way of re-use,
but it may not be straightforward other than for those which adopt simple communication regimes
such as streaming. In particular, before composing heterogeneous components, they may need to be
transformed to support a common communication and synchronisation infrastructure. System-level
design composition is challenging, since not only the designs themselves are composed, but also their
corresponding optimization and verification procedures.

* Co-optimization and co-verification before and after deployment. The more work is done before
deployment, the more efficient the post-deployment design for a given application tends to become,
but at the expense of flexibility. Strategies for getting the right balance between pre-deployment
and post-deployment optimization and verification will be useful.

* So far we focus on designing a single element which may operate autonomously. The criteria for
optimality and correctness become more complex for a network of autonomous elements, especially if
the control is also distributed. It would be illuminating to study theoretical and practical connections
between the optimality and correctness of the individual elements, and the optimality and correctness
of the network as a whole.

* Design re-use would only become wide-spread if there are open standards about the quality of
the re-usable components as well as the associated optimization and verification processes. Such
standards cover a collection of methods for verifying functional and performance requirements,
including simulation, hardware emulation and formal verification, at different levels of abstraction.

* There is a clear need for a sound foundation to serve as the basis for engineering effective self-
optimization and self-verification methodologies that closely integrate with design exploration, pro-
totyping and testing. The challenge is that adaptability, while improving flexibility, tends to com-
plicate optimization and verification.

6. SUMMARY

This paper projects a vision of design with self-optimizing and self-verifying components, to address the
design challenges identified by the International Technology Roadmap for Semiconductors. Tasks for self-
optimization and self-verification before and after deployment are described, together with a discussion
of possible benefits and challenges. Making progress in theory and practice for self-optimization and
self-verification would contribute to our goal: enabling designers to produce better designs more rapidly.
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