Self-Optimising and Self-Verifying Design:
a Vision

Wayne Luk

Department of Computing
Imperial College

Stamatis Vassiliadis Symposium
28 September 2007



Motivation

o 2005 International Technology Roadmap for
Semiconductors: overall design challenges

— cost-driven design optimisation
— verification and test
— re-use

e approach to address all 3 challenges?

— key elements
— challenges
— summary



Approach: key elements

optimise and verify: hardware + software
— meet requirements efficiently and demonstrably

self-optimising and self-verifying design (SOSV)
— preserve property in design composition

self?

— aware of context

— capable of planning

— effective external control

2 stages
— pre-deployment: building design, compile time
— post-deployment: operational, run time




Pre- and post-deployment

Pre-deployment Post-deployment

focus designer productivity design efficiency

aim optimize/verify initial optimize according to
post-deployment design situation

context design tool environment, operation environment,
often static often dynamic

acquire context from parameters affecting from data input
tool performance e.g. Sensors

planning plan post-deployment plan to meet post-
optimise/verify deployment goals

external control frequent infrequent



Re-use

e high-level generic design
— requirements + context: multiple designs
— optimise: options + parameters + abstraction levels

o facilitate design composition
— preserve self-optimising and self-verifying
— modularity of building blocks + interfaces

o platform-based evolution
— re-use un-verified design: risky
— automate re-verification after changes
— platform for re-use: from aguto to se/f, helpfully



Pre-deployment: overview

e available computing resources

— components + pre-context: locate and tune tools
— current context: optimise resource + error recovery

e designer
— adapt components: requirements + post-context
— choose control: automation of search strategies
— decide: re-use or re-invent

e challenges
— productive interaction: designer + tools
— avoid combinatorial explosion
— maximise re-use: incremental design



Pre-deployment: example of choices

e circuit technology: eg ASIC or FPGA

e input/output: options

e memory: hierarchy + options

e interconnect: e.qg. bus, switch, network-on-chip
e granularity: configurable unit, custom instruction
e synchronisation: e.g. clock domains, self-timed

e parallelism: processors, hardware/software

e data representation optimisation

e post-deployment optimisation/verification



Example: number of processors

Head cache size

4k 2k 1k
30 - . —
Speedup —+— =
Miss rate & B
25 F -
20
.
E ;
o 15 | E
Q. |
N L |
10 [}D
= " E
O L ] ] ] ] ] |
5 10 15 20 25 30

From: Fidjeland & Luk 05 Number of processors

1000

100
2
=
E

10 o
v}
OD
o
OD
<

1

0.1



Post-deployment: situation-specific

e optimization and verification opportunities
— design upgrade
— run-time conditions, e.g. noise, process variation
— program phase optimisation
e optimisation and verification process
— light-weight: on-site, e.g. proof-carrying code
— heavy-weight: remotely, verified by signature
e run-time system
— deals with exceptions
— error diagnosis facilities



branch probakbhilitw
— -

Example: program phase optimisation

e program phase: working set remains constant
e reconfigure to speed up frequent branches

2 447 4447 447 447 447 44T 447 447 4T 44T a4t 42 47 417 43 47 41347 “ 0 44412

0.8

(=]
| LIl ittt
i
]
-
-r:r_.. —
T
—_—
—
—

:IJ T T L] T =I: ] T T ] I.:IEI T T L T ED ] T 100 L] T J.;Ih J L] T Ll ] :;I:
time (10Mpixel intervals)

(=]

From. Styles and Luk 05

10



Autonomous systems

o control strategy

— make decisions to optimise itself
— model of world: planning and action

— understand trade-offs: e.g. reconfigure or not
e event-driven just-in-time reconfiguration
— component meta-data description
— assemble + tune partially-optimised components
— hide reconfiguration latency
o other possibilities
— machine learning
— self-organising feature map

11



Example: dynamic power optimisation

power consumption

4

power surge while self-optimisingy/verifying

static design

reconfigurable
design

time

12



Challenges: theory + practice for:

productive automate: evolutionary vs disruptive
SOSV design: specify + analyse requirements
composable description: design + context
multi-level capture: domain-specific constraints
open standard: design, optim/verify programs




Summary

o self * (optimising+verifying) = trusted re-use
— unify: autonomic, self-test, dynamic optim., RTR
— better design + more productive

e self-optimising self-verifying design platform
— FPGA-based systems: large + small
— autonomous system-on-chip + network of ASOCs
— applications: ubiquitous, dependable, secure, robust

e new generation of designers

— building blocks + tools: made smarter
— specify, analyse, adapt: requirements + search

14



