
1

Self-Optimising and Self-Verifying Design:
a Vision

Wayne Luk
Department of Computing

Imperial College

Stamatis Vassiliadis Symposium
28 September 2007

2

Motivation
• 2005 International Technology Roadmap for

Semiconductors: overall design challenges
– cost-driven design optimisation
– verification and test
– re-use

• approach to address all 3 challenges?
– key elements
– challenges
– summary

3

Approach: key elements
• optimise and verify: hardware + software

– meet requirements efficiently and demonstrably
• self-optimising and self-verifying design (SOSV)

– preserve property in design composition
• self?

– aware of context
– capable of planning
– effective external control

• 2 stages
– pre-deployment: building design, compile time
– post-deployment: operational, run time

4

Pre-deployment Post-deployment

focus designer productivity design efficiency
aim optimize/verify initial optimize according to

post-deployment design situation
context design tool environment, operation environment,

often static often dynamic
acquire context from parameters affecting from data input

tool performance e.g. sensors
planning plan post-deployment plan to meet post-

optimise/verify deployment goals
external control frequent infrequent

Pre- and post-deployment

5

Re-use
• high-level generic design

– requirements + context: multiple designs
– optimise: options + parameters + abstraction levels

• facilitate design composition
– preserve self-optimising and self-verifying
– modularity of building blocks + interfaces

• platform-based evolution
– re-use un-verified design: risky
– automate re-verification after changes
– platform for re-use: from auto to self, helpfully

6

Pre-deployment: overview
• available computing resources

– components + pre-context: locate and tune tools
– current context: optimise resource + error recovery

• designer
– adapt components: requirements + post-context
– choose control: automation of search strategies
– decide: re-use or re-invent

• challenges
– productive interaction: designer + tools
– avoid combinatorial explosion
– maximise re-use: incremental design

7

Pre-deployment: example of choices
• circuit technology: eg ASIC or FPGA
• input/output: options
• memory: hierarchy + options
• interconnect: e.g. bus, switch, network-on-chip
• granularity: configurable unit, custom instruction
• synchronisation: e.g. clock domains, self-timed
• parallelism: processors, hardware/software
• data representation optimisation
• post-deployment optimisation/verification

8

Example: number of processors

From: Fidjeland & Luk 05

9

Post-deployment: situation-specific
• optimization and verification opportunities

– design upgrade
– run-time conditions, e.g. noise, process variation
– program phase optimisation

• optimisation and verification process
– light-weight: on-site, e.g. proof-carrying code
– heavy-weight: remotely, verified by signature

• run-time system
– deals with exceptions
– error diagnosis facilities

10

Example: program phase optimisation

From: Styles and Luk 05

• program phase: working set remains constant
• reconfigure to speed up frequent branches

11

Autonomous systems
• control strategy

– make decisions to optimise itself
– model of world: planning and action
– understand trade-offs: e.g. reconfigure or not

• event-driven just-in-time reconfiguration
– component meta-data description
– assemble + tune partially-optimised components
– hide reconfiguration latency

• other possibilities
– machine learning
– self-organising feature map

12

Example: dynamic power optimisation
power surge while self-optimising/verifying

13

Challenges: theory + practice for:
• productive automate: evolutionary vs disruptive
• SOSV design: specify + analyse requirements
• composable description: design + context
• multi-level capture: domain-specific constraints
• open standard: design, optim/verify programs

14

Summary
• self * (optimising+verifying) = trusted re-use

– unify: autonomic, self-test, dynamic optim., RTR
– better design + more productive

• self-optimising self-verifying design platform
– FPGA-based systems: large + small
– autonomous system-on-chip + network of ASOCs
– applications: ubiquitous, dependable, secure, robust

• new generation of designers
– building blocks + tools: made smarter
– specify, analyse, adapt: requirements + search

