
Unifying FPGA Hardware Development

Jacob A. Bower, Wei Ning Cho and Wayne Luk
Department of Computing, Imperial College, 180 Queen's Gate, London SW7 2AZ, UK

{jabOO,wncO4,wl} @doc.ic.ac.uk

Abstract

In current FPGA development environments complex
projects often end up in an ad-hoc tangle of program-
ming systems; examples include Perl, Makefiles, and Ver-
ilog and/or VHDL. To combat this we develop an approach
to FPGA development in which a single specification is
used to combine: high- and low-level description of cus-
tom hardware, parameterisation of existing IP and project
build. In this paper we present an abstract overview of our
unified approach and a prototype implementation called
YAHDL, composed ofa set oflibraries written in the object-
oriented software language Ruby. To explore YAHDL's
effectiveness we apply it to an existing project, creating
FPGA hardware designs for floating-point Monte Carlo
simulations. With this case-study we show it is possible
to use YAHDL to simplify the generation of application
specific instances of our Monte Carlo architectures while
achieving performance in the 200-300MHz range.

1. Introduction

Ever since their introduction, FPGAs have offered the
tantalising prospect of an alternate platform for computa-
tion somewhere in between the flexibility of software and
the raw parallelism of hardware. Today this prospect seems
ripe to explode into practical reality, with current FPGAs
already having sufficient resources for applications utilis-
ing extensive floating-point operations and running in the
hundreds of MHz [15].

However, before FPGAs can take off as a platform
for general computation in the real-world, a new class of
"FPGA engineers" is required to program them. An FPGA
engineer's task is to both understand a specific application
and map it into an FPGA. To achieve the mapping part of
this process in a realistic time-frame with a maintainable
and high-performance result, an FPGA engineer will rely
on libraries of pre-made and possibly third-party Intellec-
tual Property (IP) such as floating-point units, memory and
host processor interfaces etc. This IP needs to be highly
parametrised and easily composable in order to maximise
applicability and allow optimal performance for a specific

application instance.
Unfortunately current FPGA development environ-

ments lack a systematic approach to creating hardware sys-
tems composed of a diverse range of IP. At the heart of
this problem is a heavy reliance on the Verilog and VHDL
HDLs for creating synthesisable hardware. These HDLs
only provide very low-level parameterisation features in the
form of variable width I/O ports, conditional and repeated
entity instantiation. Often for highly-custom applications
parameterisation at a higher-level is required, for example
instantiation of components based on a high-level domain-
specific specification or entities with interfaces which au-
tomatically vary depending on the other entities to which
they are connected. Furthermore VHDL and Verilog have
no direct support for working with IP that has to be dy-
namically re-generated by external programs depending on
parameterisation.

Many projects work around the limitations of current
VHDL and Verilog-based FPGA environments by using
external programming systems. It is not uncommon in
complex projects, particularly those involving high-level
parameterisation or design-space exploration, to find HDL
source is generated and built using ad-hoc combinations of
external programming systems such as Perl, C++, Make-
files, etc. The problem with such ad-hoc approaches is
that systems can become difficult to understand, modify or
maintain.

Our solution to the current ad-hoc treatment of the com-
plete FPGA design process is to adopt a unified approach
to FPGA development environment. In our approach, we
use a single specification to combine high- and low-level
description of custom hardware, project build and parame-
terisation of existing IP regardless of implementation lan-
guage or system. The contributions of our approach include
the following:

* An abstract overview of our unified approach based on
specification of, and build for, a hardware hierarchy
with 'internally' and 'externally' generated IP. (Sec-
tion 3)

* An implementation of our approach called YAHDL.
This implementation allows hardware build and de-
sign using both internally specified structural designs

1-4244-1472-5/07/$25 00 © 2007 IEEE rPT7 2007rw

and external static or dynamically generated IP in
VHDL, Verilog or blackbox-netlist formats. (Sec-
tion 4)

* A case-study showing YAHDL can be used to cre-
ate floating-point based designs running in the 200-
300MHz range on a Xilinx Virtex 5 device. This case-
study is based on and compared to previous work cre-
ating Monte Carlo simulations in FPGAs. (Section 5)

We begin our discussion by first considering existing
work tackling parametrised FPGA development below in
Section 2, and conclude our work in Section 6 with a sum-
mary and discussion of future work.

2. Existing Work

The lack of intrinsic support for creating and composing
parametrised FPGA designs has already been the focus of
much previous work. Of particular interest are projects ex-
ploring the creation of new hardware design languages or
programming systems for FPGAs.

Some authors have approached this problem by creat-
ing dedicated hardware description languages for FPGA
design. At the lowest-level, systems have been devel-
oped which primarily allow extensive meta-programming
of structural hardware design. Examples of these languages
include: Ruby [7] Pebble [8], Quartz [14], and Conflu-
ence [5]. Other languages allow specification of FPGA de-
signs in a behavioural fashion where the underlying imple-
mentation is determined by a compiler such as SAFL [12]
and to some extent Handel-C [3]. These custom hardware
languages focus exclusively on the problem of describing
parametrised hardware designs for synthesis. Constructs
for automating the integration of external IP and other ex-
ternal build issues are left widely unaddressed.

Rather than creating dedicated hardware description
languages, some authors have created libraries for exist-
ing software languages forming programs which when run
generate hardware designs. Such libraries can be consid-
ered Domain-Specific Embedded Languages (DSELs) [6]
for hardware design. The main advantage of this approach
is extensive meta-programming of a design is provided
through already existing language constructs. Examples of
Hardware-DSELs include: JHDL [1] (Java), PamDC [11]
(C++), PyHDL [17] (Python interface to PamDC) and my-
HDL [4] (Python).

Some authors find that DSELs for hardware description
allow complex systems to be built [13]. This extra com-
plexity is obtained by leveraging the general purpose na-
ture of a software language to implement wider applica-
tion functionality whilst remaining tightly coupled to ac-
tual hardware design. For example, ASC [10] (A Stream

1- Simulation imlto
lResults

1- I

IpDeignh Implementation

L Post-implementation ,

Analysis

r: Build process

[IJ Application input/output

Figure 1. High-level build flow requirement for our
unified FPGA development environment.

Compiler) built on-top of PamDC allows the generation of
a complete FPGA platform from a minimal specification of
core stream-based functionality. A considerable range of
systems have also been built on JHDL supporting features
from run-time reconfiguration [2] to generation of hard-
ware design through a web-based interface [16].

3. Our Approach

While previous work focuses on creating parametrised
hardware IP, little is done to add intrinsic support for build-
ing complex FPGA systems which include IP created with
multiple languages and methods. In this section we de-
scribe our approach to creating an FPGA development en-
vironment allowing: hardware design, IP integration and
project build within a single unified specification.
We begin by presenting the motivation for our work

from which we derive a set of requirements. We then give
an abstract overview of our environment based on these re-
quirements.

3.1. Motivation and Requirements

The key potential FPGA advantage for computation
compared to software processors is hardware-level par-
allelism and optimisation without the cost of creating a
custom ASIC. However implementing high-performance
computation hardware, even in ASIC, is non-trivial. As
such to develop custom high-performance systems in a rea-
sonable time-frame it is necessary to compose a system
from pre-made high-performance IP. As an FPGA design
can be highly application specific, this IP must be highly-
parametrised to maximise applicability while enabling spe-
cific optimisations.

Once we have a library of FPGA IP at our disposal, we
need a way of composing applications with it. Such com-
position consists of both the instantiation of parametrised
IP and custom logic to implement their interaction for a

specific application. Furthermore to fully leverage FP-
GAs customisation advantage, the composition process it-
self must also be parameterisable to allow tailoring not only
to an application but also to specific instances of that appli-
cation. Parametrised composition also allows design-space
exploration, for example balancing possible hardware de-
signs with actual performance that can be achieved from
available FPGA devices.

In addition to specifying the composition of a system
we also need to specify the build of this system. While for
simple systems this can be achieved with a GUI, a scripted
build is beneficial for more complex systems. Scripted
build is particularly of benefit to: systems partially or
fully generated from a high-level specification, automated
design-space exploration and parametrised generation of
third-party IP.

Our experience has shown that implementation of com-
plex systems including the features above usually involves
an ad-hoc combination of external programming systems,
for example Perl, TCL and Makefiles etc. This ad-hoc ap-
proach has many problems, including: scripts can become
coupled to specific tools or IP generators even though oth-
ers are available (e.g. XST vs. Synplify Pro), large ad-hoc
scripts which have evolved over time become difficult to
maintain, and system-level parameterisation becomes awk-
ward to automate as distributed design elements need to
interact.

From the combination of the features required for creat-
ing high-performance FPGA systems outlined above, and
from our experience in achieving these systems using cur-
rent tools, we derive the following central requirements for
a new FPGA development environment:

* Easy integration of existing static or generated IP, re-
gardless of their underlying design system.

* Meta-programmable hardware design allowing cus-
tom logic, composition and parameterisation of hard-
ware blocks.

* A scripted build-environment enabling the flow out-
lined in Figure 1 in which simulation is used for val-
idation and implementation may be iteratively im-
proved.

* All of the above captured in a single coherent pro-
gramming system.

3.2. Abstract FPGA Environment

Central to our FPGA development environment require-
ments is the use of a single meta-programmable specifica-
tion capturing all features of FPGA development. We be-
lieve fundamentally these goals are best achieved by cre-

External Node

Internal Node

Node Interface
Node with hardware
defined structurally.
Middle child generated
multiple times with
loop.

Node Interface Node Interface
Node implemented with Node with hardware Noded
state-machine language. defined structurally. extern

vMhi e rst vlogic

end x _A

Figure 2. Example hardware hierarchy express-
ible in our proposed DSEL.

ating such a specification as a Domain Specific Embed-
ded Language (DSEL). In other words, using an existing
software language augmented with libraries of methods for
designing FPGA-based systems. We propose the use of
a DSEL, rather than a dedicated language because we see
generation, parameterisation and integration of IP as a com-
bined software and hardware design problem. Using an ex-
isting software language as a base language for a our spec-
ification enables us to tackle the software part of this prob-
lem. Furthermore, as shown in Section 2, the feasibility
of creating FPGA designs using a DSEL is demonstrated
by existing systems such as JHDL, PamDC, myHDL and
pyHDL.

In order to meet our requirements of easy integration of
external IP and custom hardware generation, we propose
the bulk of our DSEL functionality revolves around creat-
ing a hierarchy exemplified in Figure 2. This figure repre-
sents a meta-programmed specification for hardware using
a typical hierarchical approach with the added novelty that
nodes are classified as either Internal or External.

In our hierarchy, internal nodes allow us to create cus-
tom meta-programmed hardware generated using structural
hardware design primitives in our DSEL similar to exist-
ing systems such as PamDC or JHDL. Due to the soft-
ware nature of internal nodes they may also use or create
further specialised constructs using the base DSEL soft-
ware language enabling higher-level design. The execu-
tion of these higher-level constructs can eventually invoke
low-level constructs resulting in actual hardware genera-
tion. Figure 2 shows an internal node with a brief high-level
state-machine description as an example of this.

External nodes in our hierarchy provide our mechanism
for integrating third-party IP. These external nodes can ei-
ther be references to external hardware source code not
specified directly in our DSEL for example VHDL or Ver-
ilog files, or a specification to invoke an external program to
generate hardware for this node. Combining these external
nodes with those created internally is our key to achieving

unified integration of new and existing IPs.
To achieve our requirement of a scripted build process,

we propose the remainder of our DSEL focus on imple-
menting and controlling a Build Manager for processing
our hierarchy of Internal and External nodes. The basic
task of this build manager is to implement the flow shown
in Figure 1. To implement this flow in an abstract sense, our
build manager will have two phases of operation: Hard-
ware Generation and System Build. During hardware gen-
eration, our build manager will traverse through our DSEL
created hierarchy, generating hardware as it passes each
node. For an external node this hardware generation will
result in the build manager receiving a list of external files
needed to implement its branch of the hierarchy. These ex-
ternal files must be in a format the build manager knows
how to integrate, for example a common HDL or a black-
box netlist. If the external implementation of this node is
not encapsulated in a format the build-manager can work
with directly (for example in an another HDL language
like Confluence or Handel-C), then an external node may
execute an external program to generate appropriate files
(such as Handel-C compilation to Verilog). After the build
manager has fully traversed a hierarchy it will then enter
its System Build phase in which all internal and externally
generated IP are compiled together using standard tools for
simulation or synthesis and place-and-route etc.

To implement scriptability, our build manager must it-
self be implemented in the language forming our DSEL.
Automation/scriptability of the build manager then arises
through its pragmatic invocation and parameterisation us-
ing the base language for our DSEL. For example, auto-
mated design space exploration can be achieved by invok-
ing the build manager multiple times with appropriately
parametrised hierarchy instances. In this way we can re-
alise the feed-back loop shown in Figure 1. In order to
ensure a full specification of all build processes, it is is im-
portant that our build manager and node implementations
completely incorporate functionality to invoke and gener-
ate any necessary input files for external processes.

4. Environment Implementation

In order to realise our FPGA development environ-
ment we have created a DSEL called YAHDL (Yet An-
other Hardware Design Library) using the dynamic object-
oriented software language Ruby' [9]. Our current imple-
mentation includes the following functionality:

1. Classes for creating a hierarchical hardware design in-
cluding internal and external nodes.

'Not to be confused with the declarative hardware description lan-
guage also called Ruby.

class Adder < HDesign
Constructor with width parameter
def initialize (in width)

Call default constructor for HDesign
super ()
n-bit inputs
hlnput in width, "in a"
hlnput in width, "in b"
(n+])-bit output
hOutput (in width + 1), "out"
Store width in an instance variable
@in width = in width

end
end

Listing 1. Interface definition for an n-bit adder.

2. Classes for describing internal nodes using structural
design with output in either Verilog or VHDL.

3. A configurable build manager with modules for tar-
geting Xilinx FPGAs.

We choose Ruby as our base software language as it
has a number of language features which allow a neat im-
plementation of our DSEL. Specifically we take advantage
of Ruby's: Text processing capabilities to generate HDLs
and configuration files, functions for scripting/managing
external processes, object-orientation (we map nodes in our
hardware hierarchy directly onto Ruby objects), and opera-
tor overloading to simplify specification of internal nodes.
In general we also believe Ruby has a simple, familiar and
clean syntax which helps keep specifications in our DSEL
clear.

In YAHDL, we compose a hardware hierarchy using
Ruby objects implementing classes descended from a base
HDesign class. This HDesign class includes methods
for specifying node I/O interface ports which are common
to both internal and external nodes. Listing 1, shows an
example class descended from HDesign implementing an
interface for a variable-width adder node. From the list-
ing, keywords hInput and hOutput are Ruby function
calls to methods implemented in the HDesign base class.
These methods create named I/O ports for parent nodes and
internal logic to connect to. For external nodes I/O ports
must match top-level ports in external hardware sources.
As I/O ports are created using regular Ruby method calls
they can be generated using standard Ruby control flow
constructs such as for-loops, and if-statements. In the List-
ing 1 example, the width in bits of the adder I/O ports is
controlled by a parameter passed to the class constructor.

In YAHDL, composition of a hierarchy is implic-
itly driven by internal nodes instantiating child in-
ternal or external nodes as part of a structural de-

Possible design for Adder example
@out[] = HAdd.new(@in a, @in b)

Adder via overloaded operators
@out[] @in a + @in b

Registered adder
(assumes a clk input)
hRegister (@in width + 1), "reg", @clk
@reg[] @in a + @in-b
@outl[] = @reg

A 4-bit counter using Adder instance
hRegister 4, "reg", @clk
add inst = hComponent Adder. new(4)
add inst.in a[] = 1
add inst . in b [] @reg
@reg[] = add inst . out [0..3]
(Count can be read from @reg)

Listing 2. Examples of structural hardware con-
structs for internal nodes

sign. Internal nodes are implemented by extending a
sub-class of HDesign called HDesignStructural.
HDesignStructural includes a number of meth-
ods for creating structural hardware designs consist-
ing of: wires, Boolean logic, basic integer arithmetic
units and child HDesign instances. Classes extending
HDesignStructural must provide a method called
design as an execution entry point for generating their
internal hardware during a build managers design traversal
process.

Low-level hardware generation within internal node
design methods is implemented by forming a graph
of objects implementing classes descended from a base
HLogicNode class. Examples of these logic elements in-
clude: combinatorial logic elements (HAdd, HXor, etc.),
and registers (HRegi ster). To improve the readability of
graph construction we take advantage of Ruby's operator
overloading. Some examples of creating structural hard-
ware are shown in Listing 2. In order to generate files for
use in synthesis or simulation a pretty-printer is called by
the build manager to translate graphs of HLogicNodes
into a target format. Currently we provide Verilog and
VHDL pretty-printers the choice of which is specified glob-
ally with a build manager parameter.

In YAHDL we create external nodes by instanti-
ating classes descending from a HDesignBlackBox
class, itself a HDesign descendant. Implementations
of HDesignBlackBox must provide a method called a
doBuild which returns a list of files to be used by the
build manager during its system build phase. In this way an

class AdderExternal < HDesignBlackBox
def initialize

super ()
hlnput 4, "in a"
hlnput 4, "in b"
hOutput 5, "out"

end
def doBuild(build manager)

return [HVHDLFile . new (" adder4 . vhd")]
end

end

Listing 3. Example external node referencing a 4-
bit adder in an external static VHDL file.

class AdderExternal < HDesignBlackBox
Constructor as in Listing 1
def doBuild (build mngr)

Lists of input and output files
used by the build manager
infiles = []
outfiles = ["adder.edf"]
command = "addgen -wJ" + @in widths
Use build manager to run a command
build mngr.run(command, infiles , outfiles)
Return list with output netlist
return [HEDIFFile . new (" adder. edf")]

end
end

Listing 4. Example external node invoking an ex-
ternal adder generator.

external node can either become just a reference to external
HDL or pre-compiled netlists by returning their file-names
directly from the doBu il d method. Alternatively exter-
nal nodes can generate source files or netlists by invoking
external programs in their doBu i 1d implementation. List-
ings 3 and 4 show two examples of external nodes: a fixed
4-bit adder in a static VHDL file and a parametrised adder
in EDIF format generated by an external program called
'addgen'.

In YAHDL we provide a basic build manager class im-
plementing the design traversal and system build function-
ality described in Section 3.2. On construction this build
manager object is parametrised with further classes which
implement vendor specific or user controlled facets of the
build process. Current parameters include: target output
format for internal designs, HDL synthesis tool and bit-
file implementation tool-flow. Currently we have support
for Verilog and VHDL for output internal designs, XST
and Synplify Pro as HDL synthesis tools and standard ISE
tools for bitfile implementation (ngdbuild, map, par, etc.).
We choose to use VHDL and Verilog as targets for our in-

device = HXilinxV2Part .new(6000, "ffl152")
design root = Adder.new(4)
makeXSTNetlist(device, design root)

Listing 5. Example build with XST only.

ternal designs as this allows us to leverage the optimisa-
tion features already present in synthesis tools supporting
these languages. All facets of external tool invocation for
build are codified within YAHDL/Ruby. This includes au-
tomated generation of any data, script and configuration
input files needed to drive these programs. For example
project scripts for synthesis tools and constraint files for
place-and-route etc.

To simplify the use of our build-manger we have cre-
ated a set of utility methods for common instantiations
including: complete bitfile generation, HDL synthesis to
black-box net-list, and HDL generation only. These utility
methods all take the root of a hardware design hierarchy
and some require additional parameters, for example target
FPGA for bitfile generation. Listing 5 shows an example
of building a black-box netlist (.ngc file) with Xilinx XST
targeting a Virtex II device for a 4-bit adder for a design
based on the example interface in Listing 1.

In addition to implementing the basic features from our
abstract FPGA environment, our build manager has addi-
tional functionality for managing external processes exe-
cuted by external nodes. Listing 4 includes an example of
how our build manager is used to invoke an external pro-
cess by specifying the command to run, input files and ex-
pected output files. The build manager uses this informa-
tion to try and minimise build-times by only running identi-
cally parametrised external programs once. The build man-
ager achieves this by keeping a database of external com-
mands executed including hashes of their input files. This
database by default persists across build manager execu-
tions. An external program will be run only if one of the
input files has a different hash or the command parameters
have changed. This is an important feature as it can greatly
reduce the number of external build processes which need
to be called when using design-space exploration or when
certain types of generated nodes are used repeatedly in a
large system.

5. Case Study

To evaluate our FPGA development approach we use
YAHDL to re-create an architecture previously developed
for accelerating floating-point, Monte-Carlo based finan-
cial applications [15]. In this section we review our Monte-
Carlo architecture and compare our original implementa-
tion with our new version using YAHDL.

L Jll I ULiV

mSecic Kerne

*Resul ts Manager

Figure 3. Architecture for Monte Carlo simulation.

5.1. Monte-Carlo Architecture Overview

Monte-Carlo simulations are ideal candidate for FPGA
implementation as they have high computational complex-
ity, require little communication bandwidth, and have a reg-
ular structure. To explore this potential, we develop an ar-
chitecture targeted at FPGAs for creating a specific form of
Monte-Carlo simulations commonly found in financial ap-
plications. The focus of our architecture is a combination
of maximising re-usability while allowing high processing
throughput.

The form of Monte-Carlo simulation we optimise for is
characterised by a simulation kernel of the form: xi+l =
f(xi,g,R). In this kernel, x is some form of state which is
iteratively updated by a function f. This f function is de-
terministic with no internal state, and each application of f
depends only on: the current value of x, global constants
g and a set of IID (Independent, Identically Distributed)
random numbers R which are freshly generated per appli-
cation. Many simulations conforming to this pattern can be
implemented in hardware with hazard-free pipelines with
no feed-back other than the state being iterated upon.
We both hide and take advantage of hardware pipelines

needed for these simulations using an architecture shown
in Figure 3. At the centre of this architecture is a simula-
tion specific implementation of f which we call the 'Sim-
ulation Kernel'. We maximise the utilisation of simulation
kernels by filling them with concurrently running indepen-
dent simulations in a C-Slow style with independent sim-
ulation iterations in alternate pipeline stages. We further
maximise performance for a single FPGA device by encap-
sulating simulation kernels in self-contained 'Simulation
Managers' which can be easily replicated within a single
FPGA device. Final results from all independent simula-
tions are accumulated by a shared 'Results Manager' which
computes the result of the overall Monte-Carlo simulation.
Set-up of a simulation and final results acquisition is per-
formed over a 'Global Bus'.

Table 1. YAHDL Monte-Carlo hardware results.

5.2. Implementations Comparison

Previously to implement our Monte-Carlo framework
we used a combination of: Handel-C, Xilinx CoreGen
and Makefiles. While the majority of our design was im-
plemented in Handel-C, it was primarily constructed us-

ing structural composition with almost none of Handel-
C's behaviour inference being used. Despite this, we

used Handel-C as its macro features allowed us to heavily
parametrise our design. Our Makefiles provided a front-
end interface to compilation, allowing us to specify a tar-
get device, amount of pipeline replication, and selection of
simulation kernel implementation.

The main area in which our YAHDL and original im-
plementations differ is in the generation of our Simulation
Kernels. In our original approach we manually invoke Xil-
inx CoreGen and individually create floating-point units as

needed for our kernels. We then create a separate Handel-
C design for each of our different kernels, instantiating our

CoreGen units using a series of macro expressions. Our
macro expressions join the CoreGen units together form-
ing streaming pipeline data-paths implementing our Simu-
lation Kernels.

While our original implementation is sufficient to
demonstrate the effectiveness of our Monte Carlo archi-
tecture it has two major conceptual limitations which limit
its applicability to real-world industry. The first limitation
is our Handel-C simulation kernels bear little resemblance
at the source level to the functions they implement. In a

real-world scenario it would be impractical for us to ex-

pect anyone inexperienced with Handel-C to directly cre-

ate or modify kernel designs for our framework. The sec-

class LogNormalWalk < HEquationDesign
def initialize (operator factory)

super(operator factory)
hVariable "x"
hVariable "R"
hParameter "mu"
hParameter "sigma"
hResult "x prime"

end
def design
@x prime [] =@x

(1 + @mu + (@sigma @R))
end

end

Listing 6. Example YAHDL simulation kernel spec-
ification.

ond limitation is any changes needed to our floating-point
units require us to re-run CoreGen. Particularly without
the use of an external programming system it would be
very tedious for us to perform a design space-exploration
of the effects of varying floating-point unit precision. Such
a study would require re-running CoreGen manually for all
floating-point operator and precision combinations.

Our YAHDL implementation simultaneously addresses
the low-level nature of simulation kernel design for our

architecture and the necessity to manually run CoreGen.
We achieve this by creating a new class of internal node
for YAHDL called HEquationDesign, including meth-
ods for specifying simulation kernels at a high-level.
This high-level specification uses operator overloading to
more closely match kernel hardware design to the de-
sired operation. These specifications are also indepen-
dent of underlying number format or precisions details. A
HEquationDesign example is shown in Listing 6 and
implementing the kernel: f(xi+) = xi x (1 + + oR),
where xi is an iteration variable, and a are simulation
constants (set via our architecture global bus) and R is a

random number input.
Our HEquationDesign class implementation is

itself a YAHDL internal node which extends the
HDesignStructural class. During a build manager

Hardware Generation phase high-level designs captured
with out HEquationDesign class are compiled to struc-
tural YAHDL using a simple As Soon As Possible (ASAP)
scheduling algorithm generating a stream pipeline. During
this compilation, an 'operator factory' is used to generate
arithmetic units. Choice of operator factory is a param-

eter passed to the constructor of a HEquationDesign.
Currently we only have one type of operator factory which
generates arithmetic units using external nodes which call
CoreGen to generate floating-point units. The build of

Circuit | Area (Slices) T Speed (MHz) FPUs

8-bit exponent, 24-bit mantissa
DualVAR 4718 254 13
GARCH 6349 203 11
RndJump 4011 242 9
LogNormal 2244 262 7

6-bit exponent, 17-bit mantissa
DualVAR 4156 232 13
GARCH 5776 209 11
RndJump 3794 255 9
LogNormal 2008 323 7

6-bit exponent, 8-bit mantissa
DualVAR 3899 254 13
GARCH 5189 216 11
RndJump 3603 241 9
LogNormal 1641 329 7

these units is handled by our YAHDL build manager, ensur-
ing CoreGen is only invoked once across all design builds
when new operators or precision is required. Precision for
our current operator factory is user specifiable but is con-
stant per implementation.

The rest of the hardware in our YAHDL implementation
mirrors our previous Handel-C implementation. For the
most part, our structural design is simply re-implemented
in YAHDL using regular internal nodes descended from
our HDe s ignSt ructural class. No other external build
scripts or parameters are needed, with everything specific
to our design specified in Ruby using YAHDL methods.
We believe this is a significant improvement compared to
our original combination of Makefiles and a relatively un-
conventional use of Handel-C in which its behavioural fea-
tures are not used.

In Table 1 we show place-and-route results for Monte-
Carlo simulations implemented with our YAHDL frame-
work targeting a Xilinx xc5vsx50t-3. These results are
comparable to the results we attained in our original work
which showed FPGAs could be used to accelerate these
simulations by on average 80 times compared to optimised
software running on a 2.66GHz Xeon. We also utilise our
YAHDL description's improved ability to vary floating-
point precision, to acquire results across a range of floating-
point sizes. Within our variations we note when reducing
floating-point precision, slice utilisation is clearly reduced,
but the effect on clock frequency is less apparent.

6. Conclusion

In this paper we present an abstract FPGA application
development environment based on a single specification
which unifies integration and build of custom hardware
designs. Central to this specification is a description of
hardware based on a hierarchy of 'internal' and 'external'
nodes, and a build system to implement this hierarchy. We
demonstrate the practicality of our approach by creating
an implementation of our environment called YAHDL. We
apply YAHDL to an existing project for creating floating-
point based Monte Carlo simulations in FPGA, and are able
to simplify the specification of these simulations, increase
flexibility of the design and eliminate the need for ad-hoc
external programming systems for build.

In future we plan to further explore the extent to which
FPGA application development can be encapsulated in a
single unified description. Particularly we will soon be ad-
dressing the issue of how to effectively use YAHDL to drive
simulation of FPGA hardware designs. We plan to achieve
this by enabling YAHDL to invoke and take control of ex-
isting commercial simulation packages using tools such as
the Verilog Procedural Interface (VPI) simulation/software
communication standard. We also hope to further explore

how YAHDL can simplify the use of advanced FPGA ap-
plication features including dynamic reconfiguration.

Acknowledgment. The support by the UK Engineering
and Physical Sciences Research Council and Dr David
Thomas is gratefully acknowledged.

References

[1] P. Bellows and B. Hutchings. JHDL - An HDL for reconfig-
urable systems. In IEEE Symposium on FPGAs for Custom
Computing Machines, pp.175 - 184, 1998.

[2] P. Bellows and B. Hutchings. Designing run-time reconfig-
urable systems with JHDL. J. VLSI Signal Process. Syst.,
Vol. 28, No. 1-2, pp.29-45, 2001.

[3] Celoxica. Handel-C. http://www.celoxica.com/products/dk/,
2006.

[4] J. Decaluwe. MyHDL: a python-based hardware description
language. Linux J., Issue 127, page 5, 2004.

[5] T. Hawkins. Confluence, http://funhdl.org/, 2006.
[6] P. Hudak. Modular domain specific languages and tools.

Intl. Conf on Software Reuse, pp.134-142, 1998.
[7] W. Luk, S. R. Guo, N. Shirazi, and N. Zhuang. A framework

for developing parameterised FPGA libraries. In Intl. Conf
on Field Programmable Logic, pp.24-33, 1996.

[8] W. Luk and S. McKeever. Pebble: A language for
parametrised and reconfigurable hardware design. In Intl.
Conf on Field Programmable Logic and Applications,
pp.9-18, 1998.

[9] Y. Matsumoto. Ruby In A Nutshell. O'Reilly, 2001.
[10] 0. Mencer. ASC: A stream compiler for computing with

FPGAs. IEEE Transactions on CAD of ICs and Systems,
Vol. 25, No. 9, pp.1603-1617, 2006.

[11] 0. Mencer, M. Morf, and M. J. Flynn. PAM-Blox: High
performance FPGA design for adaptive computing. IEEE
Symposium on FPGAs for Custom Computing Machines,
pp.167-174, 1998.

[12] A. Mycroft and R. Sharp. Hardware/software co-design
using functional languages. Intl. Conf: on Tools and Al-
gorithms for the Construction and Analysis of Systems,
pp.236-251, 2001.

[13] B. E. Nelson and B. L. Hutchings. Using general-purpose
programming languages for FPGA design. IEEE Conf: on
Design Automation, pp.561-566, 2000.

[14] 0. Pell and W. Luk. Quartz: A framework for correct and ef-
ficient reconfigurable design. IEEE Conf on Reconfigurable
Computing and FPGAs, pp. 14, 2005.

[15] D. B. Thomas, J. A. Bower, and W. Luk. Hardware architec-
tures for monte-carlo based financial simulations. Intl. Conf
on Field-Programmable Technology, pp.77-380, 2006.

[16] M. J. Wirthlin and B. McMurtrey. IP delivery for FPGAs
using applets and JHDL. IEEE Conf: on Design Automation,
pp. 2-7, 2002.

[17] P. Haglund and 0. Mencer, W. Luk, and B. Tai. Hardware
Design with a Scripting Language. Intl. Conf on Field-
Programmable Technology, pp.1040-1043, 2003.

