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Abstract—We present an automated methodology for producing
hardware-based random number generator (RNG) designs for
arbitrary distributions using the inverse cumulative distribution
function (ICDF). The ICDF is evaluated via piecewise polynomial
approximation with a hierarchical segmentation scheme that
involves uniform segments and segments with size varying by
powers of two which can adapt to local function nonlinearities.
Analytical error analysis is used to guarantee accuracy to one
unit in the last place (ulp). Compact and efficient RNGs that can
reach arbitrary multiples of the standard deviation can be
generated. For instance, a Gaussian RNG based on our approach
for a Xilinx Virtex-4 XC4VLX100-12 field-programmable gate
array produces 16-bit random samples up to 8 2 . It occupies 487
slices, 2 block-RAMs, and 2 DSP-blocks. The design is capable of
running at 371 MHz and generates one sample every clock cycle.

Index Terms—Algorithms implemented in hardware, automatic
synthesis, Chebyshev approximation and theory, computer arith-
metic, elementary function approximation, error analysis, gate ar-
rays, piecewise polynomial approximation.

I. INTRODUCTION

RANDOM numbers are key components in large scale
simulations across many applications including com-

munications [1], ray tracing [2], and financial modeling [3].
Clearly, the quality of random numbers plays a central role in
ensuring that simulation results are meaningful. Although the
most commonly used random number distributions are uniform
and Gaussian, there are many cases in which random samples
drawn from log-normal, exponential, Rician, Rayleigh, or other
distributions are of interest. In the communications field, for
example, noise models are highly dependent on the specific
propagation environment, and are quite often non-Gaussian in
nature. Thus, there is a need for fast and accurate methods for
generating samples corresponding to distributions appropriate
for the target environment and application.
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While there is a long and rich history of work relating to
nonuniform random number generation [4], the overwhelming
majority of this paper has targeted software implementations
where high precision is easily accessible. However, the higher
speed offered by hardware for simulation applications ranging
from communications to finance has stimulated growing in-
terest in hardware-based random number generators. This has
led to reevaluation of many of traditional random number gen-
erator (RNG) methods in light of the constraints on precision
and data flow regularity that characterize typical hardware plat-
forms. For example, in software the best methods for Gaussian
number generation are rejection-acceptance methods such as
the Ziggurat method [5]. These methods can offer extremely
high quality random numbers, but produce output samples con-
ditionally, meaning that while the average output rate is known,
the time-local output rate varies. This can lead to complications
in applications that require new random number samples at
specific clock intervals [6]. Thus, hardware implementations
typically target methods that produce outputs at deterministic
intervals.

In the last few years, there has been a growing body of
literature specifically addressing hardware RNGs, with most
of the attention focused on Gaussian random numbers. For
Gaussian random variables many researchers have employed
the Box–Muller method [7], which transforms pairs of uni-
formly distributed variables into pairs of Gaussian distributed
variables and produces outputs at a deterministic rate. One of
the earliest hardware designs using the Box–Muller method
is described by Boutillon et al. [8], who utilize function
approximation followed by application of the central limit
theorem to reduce the effects of the function approximation
errors. The design in [8] generates random samples up to

and the corresponding implementation on an Altera Flex
10K1000EQC240-1 field-programmable gate array (FPGA)
produced (using FPGA technology available in 2002) 24.5
million samples per second. Xilinx [9] has released an intel-
lectual property (IP) core and Fung et al. [10] implemented an
application-specific integrated circuit (ASIC) chip based on the
architecture by Boutillon et al. [8]. The former has a throughput
of 245 million samples per second on a Xilinx Virtex-II
XC2V1000-6 FPGA, whereas the latter has a throughput of
182 million samples per second on a 0.18- m ASIC. Alimo-
hammad et al. [11] have implemented a Box–Muller-based
design on a Xilinx Virtex-II XC2V4000-6 FPGA. Their design
has a throughput of 132 million Gaussian random samples per
second up to . The Box–Muller method was also the basis
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Fig. 1. Inverse cumulative distribution function of the Gaussian distribution.

for a recent design [12], which generates 16-bit samples up to
, while guaranteeing accuracy to one ulp and achieving

an output rate of 750 million samples per second on a Xilinx
Virtex-4 XC4VLX100-12 FPGA.

There have been very few publications on hardware methods
enabling the targeting of general (as opposed to Gaussian) dis-
tributions. One example is the work of Thomas and Luk [13],
which presented an RNG design methodology for arbitrary dis-
tributions by combining multiple distributions to form a com-
posite distribution. When applied to Gaussian random numbers,
this approach is able to generate 193 million samples per second
up to on a Xilinx Virtex-II XC2V4000-6 FPGA.

In this paper, we introduce a general RNG design generator
that produces hardware designs for generating random numbers
from arbitrary distributions using the inversion method [14].
The inversion method for generating nonuniform random num-
bers [15] utilizes the inverse cumulative distribution function
(ICDF) to convert a sample of a uniform random variable over

to a sample from the desired PDF through .
Thus, the challenge in ICDF hardware development lies in
creating an efficient and accurate circuit design for evaluating
the function . For example, Fig. 1 shows the ICDF
of the Gaussian distribution, where is a uniform random
number and is a sample from the Gaussian distribution. Such
ICDFs are generally nonlinear in the sense of having regions
with high first or higher order derivatives. Hardware designs
using the ICDF inversion technique have previously been
implemented by McCollum et al. [16] and Chen et al. [17]. In
[16], a Gaussian ICDF is implemented via linear interpolation
with evenly-spaced data points. This implementation leads to
a large table size of 262 kB. In [17], a precalculated ICDF
inversion table using on-chip memory is utilized to transform
uniform random numbers into nonuniform random numbers.
This approach requires a 1-MB RAM for a 16-bit input/16-bit
output lookup table.

The primary contributions of this paper are a rigorous and
automated framework and the associated tools for generation
of hardware RNGs for arbitrary distributions via the inver-
sion method. Techniques including analytical error analysis,
bit-width optimization, hierarchical segmentation, and piece-
wise polynomial approximation are used in combination to
guarantee accuracy of one ulp while also offering area- or
latency-optimized designs. The resulting hardware architec-
tures are verified through FPGA implementation of designs

Fig. 2. Design flow of our approach.

for Gaussian, exponential, and log-normal distributions. The
combination of generality, automation, and memory-efficient
designs makes the method presented here suitable for a wide
range of simulation environments and applications.

The rest of this paper is organized as follows. Section II
provides an overview of the proposed RNG design generator.
Section III describes the application of hierarchical segmen-
tation to approximate the ICDFs. Section IV presents the
hardware architecture of the inversion-based RNG and its com-
ponents. Section V covers the bit-width optimization technique
used in the design generator. Section VI evaluates results of this
paper and compares them against existing work. Concluding
remarks are given in Section VII.

II. OVERVIEW

Fig. 2 shows the design flow and the design parameters of the
RNG design generator is discussed here. The following design
specifications are required for the design generator: target dis-
tribution, bit-width of the input , and precision of the output .
Since the input bit-width determines how closely values of 0 and
1 can be approached, it influences the range of possible output
random numbers for distributions with one-sided or two-sided
tails of infinite length. The output precision decides the number
of fractional bits used in representing the generated random
sample.

The design generator divides the ICDF into segments for
piecewise polynomial approximation using a nonuniform seg-
mentation scheme. Chebyshev coefficients [18] are used for the
polynomials. The generated coefficients and the segmentation
information for a given ICDF are stored in ROM0 and ROM1,
respectively (see Fig. 3).

The design generator also determines the minimum number
of bits required for each signal in the datapath, while conforming
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Fig. 3. Overview of the RNG architecture based on the inversion method.

to the random sample precision requirement from the design
specifications. Finally, synthesizable VHDL code suitable for
ASIC or FPGA realizations is produced using the ROM contents
and the generated bit-widths. The entire design generation is
conducted within MATLAB and is fully automated.

Fig. 3 gives an overview of the general RNG architecture
based on the inversion method. When the signal goes high,
the uniform random number generator (URNG) is initialized to
generate uniform random numbers from its predefined seeds.
Using the URNG output, the address decoding logic extracts

, , and . is used for indexing the segmentation table
ROM0, is used together with the ROM0 output for indexing
the polynomial coefficients in ROM1, and is used in the poly-
nomial evaluation.

The methods described here are demonstrated with the fol-
lowing three distributions:

(1)

(2)

(3)

where 1) is the ICDF of the Gaussian distribution with mean
and standard deviation ; 2) is the ICDF of the

exponential distribution with ; and 3) is the ICDF of
the log-normal distribution with and . As shown
in Fig. 1, the Gaussian distribution is symmetric, in implemen-
tation the absolute value of the first half of the Gaussian ICDF

is approximated. For the reconstruction of the full
distribution, a random bit is then used for the sign of the gener-
ated Gaussian sample. The exponential and log-normal distribu-
tions do not exhibit this symmetry property, and so are evaluated
directly across the entire range of interest.

III. HIERARCHICAL SEGMENTATION OF ICDFS

The most commonly used segmentation method is the uni-
form scheme, where all segment lengths are equal [19]–[22]
and the segment count is typically limited to powers of two.
The major difficulty of the proposed RNG is to approximate
the ICDF of a given distribution. Although the uniform scheme
leads to simple coefficient address computation, nonuniform
segmentation enables segment lengths to be customized to the
local function characteristics. We apply the hierarchical seg-
mentation method (HSM) [23] to efficiently approximate ICDFs
according to the behavior of the distributions.

HSM provides four basic segmentation schemes, denoted by
US, , , and , respectively. In US, segments
are uniformly sized. In , the segment sizes increase by
powers of two from the beginning of the input interval to the
end of the interval, while in the segment sizes decrease
by powers of two from the beginning to the end of the interval. In

, segment sizes increase by powers of two until the mid-
point of the interval and then decrease by powers of two until
the end is reached. This method is hierarchical because the seg-
mentation can be applied recursively: in the first pass, the entire
interval is subdivided using one of the previous four schemes
into smaller segments, then in the second pass, each segment
can be further subdivided, again using any of the four schemes.
During the second pass for the framework in this paper, the seg-
mentation is fixed to US.

The core of the segmentation algorithm requires four param-
eters: the input interval, the polynomial degree to be used for
the piecewise polynomial approximation, and the desired max-
imum absolute error at the output. For each segment of the
first pass (outer segmentation), the Chebyshev coefficients for
the approximating polynomial are computed. If the Chebyshev
approximation error is too high, the number of segments
of the second pass (inner segmentation) is incremented by suc-
cessive powers of two until the of all inner segments are
less than or equal to the required error . This process is per-
formed for all outer segments.

Let the bit-width of be . Using the two-level HSM seg-
mentation, the input , which has bits, is divided into three
partitions, , , and . and are used to index the outer
and inner segmentation, while is used for polynomial arith-
metic.

For the first partition , it is necessary to compute the
segment address by detecting the number of leading zeros for
segments beginning with a zero, and detecting the number of
leading ones for segments beginning with a one. Consider the
case when , the outer segmentation is , ,
and . As illustrated in Fig. 4, it is possible to construct
a maximum of five outer segments and five inner segments.

gives the number of bits used for indexing the segments
in the first partition. It is determined by our design generation
tool, which makes use of a linear search algorithm to calculate
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Fig. 4. Segment ranges in binary representation for B = 7, P2S outer
segmentation, B = 4, and B = 1. The four bits corresponding to x are
highlighted in bold. The bits to the left of the shadowed digit correspond to x̂ .

the minimum number of segments for the coefficient table
ROM1. Let be the set of bits that remain constant (i.e., the
bits left of the shadowed digit in Fig. 4) within a given segment.
The next partition uses the adjacent bits to the right of .
The number of bits corresponding to the second level depends
on the value of , since determines the value of .

The absolute value of the derivative at the interval end points
is used to drive the choice of the outer segmentation scheme.
High derivatives at one or both ends trigger the use of ,

, or ; in the case where both derivatives are small
then uniform segmentation is used. , , and
are required for , , and , respectively. Fig. 5 shows the
resulting segmentations for degree-2 piecewise approximations
with the error requirement fixed at 0.3 and the input fixed
at 24 bits. A total of 80, 88, and 111 segments are required for

, , and , respectively. The HSM schemes offer an effec-
tive way to match the segment size according to the nonlinear
regions of a function.

The proposed design generator produces two tables: ROM0
which is needed for ROM1 address computation and ROM1
which holds the polynomial coefficients for each segment.
ROM0 stores the and the offset corresponding to each
outer segment. The offset is simply the number of rows in
ROM1 prior to the row in ROM1 corresponding to the current
outer segment. The hierarchical segmentation allows mini-
mization of the number of segments for approximating highly
nonlinear functions such as ICDFs considered here.

Table I shows a comparison of the number of segments
for uniform and hierarchical segmentation for different error
requirements for . The HSM approach greatly reduces the

Fig. 5. Inversion plots for f using the P2S segmentation, f using the
P2S segmentation, and f using the P2S segmentation for the degree-2
piecewise polynomial approximations with the error requirement fixed at
0.3�2 and the input fixed at 24 bits. The black and grey vertical lines
represent the boundaries for the outer segmentation and inner segmentation,
respectively.

TABLE I
VARIATION OF THE NUMBER OF SEGMENTS WITH ERROR REQUIREMENTS

FOR UNIFORM AND HIERARCHICAL SEGMENTATION OF THE

FUNCTION f WITH 16 BITS INPUT

number of segments due to its variable nature of the segment
sizes. In Table II, the effect of changing the input bit-width
on the number of segments is examined. With increasing
input bit-width, the segment count increases slowly for the
HSM scheme while it increases exponentially for the uniform
scheme.

IV. INVERSION-BASED RNG ARCHITECTURE

Fig. 6 shows the architecture of the inversion-based RNG
using the Gaussian case as an example. The architecture con-
sists of a first stage containing a uniform RNG; a second stage
containing an address decoding unit together with the segmen-
tation table ROM0, a bit selection unit, and a unit; and a
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TABLE II
VARIATION OF THE NUMBER OF SEGMENTS AGAINST DIFFERENT INPUT

BIT-WIDTH WITH ERROR REQUIREMENT ACCURATE TO 2 FOR

UNIFORM AND HIERARCHICAL SEGMENTATION OF THE FUNCTION f

Fig. 6. Hardware architecture for generating Gaussian random numbers based
on the inversion and the HSM method using degree-d approximation. ROM0
contains information on the hierarchical segmentation, while ROM1 contains
the polynomial coefficients for each segment. The grey “Q” squares perform
quantization at run-time.

third stage consisting of a piecewise polynomial evaluation unit
incorporated with the coefficient table ROM1.

The first stage of the architecture uses the Tausworthe uni-
form-random number generator (URNG) [24], which is chosen

Fig. 7. Architecture of the Tausworthe URNG in Fig. 6. The output uniform
random number is a 32-bit data.

TABLE III
MAXIMUM RANDOM NUMBER VALUE BY USING

DIFFERENT INPUT BIT-WIDTHS

for generating the uniform random number due to its superior
properties relative to LFSRs. Note that the Tausworthe URNG
is a stretching function that extends a short seed, and hence
its outputs are technically pseudo-random. As shown in [6],
Tausworthe URNGs provide superior randomness when eval-
uated using the Diehard random number test suite [25]. Three
LFSR-based URNGs exist in each Tausworthe URNG in order
to enhance the equi-distribution property of the generated uni-
form random number. It has a large periodicity of
which is sufficient for the purpose of this paper. As noted in
Section I, one random bit from the URNG is used to select the
sign of the final Gaussian random number which has 5 integer
bits and 11 fractional bits. Fig. 7 shows the circuitry of the Taus-
worthe URNG component. The output from the first stage is an

-bit uniform random number according to the input bit-width
.
The two specifications of this Gaussian random number gen-

erator (GRNG) are a periodicity of 10 and 16-bit two’s com-
plement fixed-point random samples. This GRNG is adequate
even for the most ambitious simulation applications such as the
evaluation of low-density parity check codes in very low bit
error rate [1]. For a population of 10 Gaussian samples, up to

needs to be represented. Since results in
for the Gaussian ICDF, 52 bits are allocated for . Table III
shows the maximum value of the generated random number by
changing the input bit-widths. The top 52 bits and the last one bit
from concatenating the two URNGs are extracted for the input
and the sign control of the design.
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Fig. 8. Illustration of the bit selection unit in Fig. 6. The second barrel shifter
is removed when the constant B design is used. SHL refers to a left barrel
shifter.

In the second stage, the unit computes the outer segment
address for a given . The number of bits required to represent

is determined by in ROM0. These values are calculated
by the design generator and are prestored in ROM0. The offset
data represents the starting coefficient address of each outer seg-
ment. Adding this offset address with the value of enables
locating the corresponding coefficient address in ROM1. Note
that the size of ROM0 is negligible because its depth is limited
by the number of outer segments.

The bit selection unit shown in Fig. 8 has two versions: one
with variable and the other with constant . For the vari-
able design, the first barrel shifter is used to remove the
leading bits. The second left barrel shifter is used to sep-
arate the remaining bits into and . For the constant
design, the left barrel shifter is used to remove the variable
bits, since only the bits are used for and the remaining
bits would represent . Since all outer segments use the same
number of inner segments, this simplification increases the total
number of segments resulting in a larger ROM1 size. However,
the address decoding unit complexity is reduced because the
second barrel shifter is no longer needed.

In the third stage, the polynomial evaluation is performed
using Horner’s rule

(4)

where is the input, is the polynomial degree, and are
the polynomial coefficients. is used instead of for the poly-
nomial evaluation to reduce the size of the operators; this re-
quires the coefficient transformation technique [12] and is
further quantized to . This provides the approximation of the
first half of the Gaussian distribution. In order to obtain the com-
plete Gaussian distribution, one uniform random bit is used to
select between the output signal of stage 3 and its negated ver-
sion.

V. BIT-WIDTH OPTIMIZATION

Bit-widths of signals are important parameters that designers
can tweak to improve the quality of a design in terms of area, la-
tency, and throughput. The goal is to use the minimal bit-widths
to each signal, while respecting error constraints at the output.
Two’s complement fixed-point arithmetic is used. Given a signal

, its integer bit-width is denoted by and its fractional
bit-width (FB) is denoted by , i.e., the total signal bit-width

. We adopt the MiniBit technique described
in [26] optimized for polynomial-based function evaluation.

For IB determination, the local minima/maxima and the min-
imum/maximum input values of each signal are examined in
order to compute the dynamic range. The local minima/maxima
can be found by computing the roots of the derivative. Once the
dynamic range has been found, the required IB can then be com-
puted. In the proposed RNG generator, piecewise polynomial
approximations are being used, where the polynomial evalua-
tion circuit needs to be shared among different sets of coeffi-
cients. The IB for each signal is found for every segment and
stored in a vector. Since the signal needs to be wide enough to
avoid overflow for the data with the largest dynamic range, the
largest IB in the vector is used.

FB determination begins by considering the three main error
sources that exist when evaluating functions in digital arith-
metic: 1) the inherent approximation error ; 2) quantization
error ; and 3) the error of the final output rounding step, which
can cause a maximum error of 1/2 ulp. In the results presented
here, we allocate a maximum of 0.3 ulp for and the rest
for , which has been found to give a well balance between
these two error sources. This explains why the error requirement
has been set to 0.3 in Section III. Truncation can cause
a maximum error of (1 ulp), while round-to-nearest can
cause (1/2 ulp). To achieve faithful rounding where re-
sults are accurate to within one ulp, round-to-nearest must be
performed at the output signal which is required in this paper.
For the other internal signals, truncation is used since it has a
better delay and area characteristics over round-to-nearest.

The addition and multiplication error expressions [26] are
applied to every operator and a condition to achieve faithful
rounding is generated for the output signal. Note that the error at
a signal is denoted by . For the polynomial evaluation unit
(stage 3 in Fig. 6), the input to the polynomial evaluation is
assumed to have no error, i.e., . Since equals 52 in
this example, can be potentially large, which can lead to
increase burden on the arithmetic operators. To overcome this
problem, is quantized to for the polynomial evaluation to
reduce the size of the operators. We describe the FB analysis
using a degree-1 approximation case:

(5)

(6)

The error at the signal is given by

(7)
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where is the quantization error at . The quantization
error is . The error at the output is given by

(8)

For faithful rounding, the maximum output error needs
to be less than or equal to 1 ulp, i.e.,

(9)

Using (7)–(9) gives

(10)

Similarly for degree-2 polynomial, we get

(11)

For , , and in (10) and (11), their absolute maximum
values are used.

Equations (10) and (11) are optimization problems, where the
goal is to find the FBs that minimize a given cost function while
satisfying the previous inequalities [26]. To solve this optimiza-
tion problem, adaptive simulated annealing (ASA) [27] is used
with the circuit area of the operators and tables supplied as the
cost function.

Table IV shows the signal bit-widths found by ASA when
evaluating accurate to 11 fractional bits with degree-1 and
degree-2 approximations. This table also shows the number of
segments and the size of ROM1 using variable and using
constant . By quantizing the input to , significant bit-
width reduction can be obtained. For instance, for the degree-2
design using constant , is quantized to and the number
of bits is reduced from 48 to 20. is 48 bits because of the
minimum sum of and is 4 bits. This quantization step
can potentially save hardware, since for example in this design,
the output is allowed to be significantly less precise than the
input .

VI. EVALUATION AND RESULTS

The implementation results presented in this section are re-
alized on a Xilinx Virtex-4 FPGA. The three major resources
inside the FPGAs are: 1) configurable blocks known as slices
which have two four-input look-up tables, multiplexers, carry

TABLE IV
NUMBER OF SEGMENTS AND BIT-WIDTHS FOR EVALUATING THE GAUSSIAN

ICDF FUNCTION f ACCURATE TO 11 FRACTIONAL BITS WITH QUANTIZED

INPUT ~x . THE BIT-WIDTHS IN THE BRACKETS INDICATE THE IBS AND THE FBS

Fig. 9. Error plot in ulp using 2 randomly selected samples for degree-2 ap-
proximation to function f accurate to 11 fractional bits and 5 integer bits with
53 input bits and the bit-widths from Table IV incorporated. The black curve in-
dicates the inherent approximation error � , while the grey curve indicates the
error with finite precision effects. Over 95% of the outputs are exactly rounded:
the remaining 5% are faithfully rounded.

logic, and two registers; 2) DSP-blocks which can perform an
18-bit by 18-bit multiplication followed by a 48-bit addition;
and 3) block-RAMs which can store a maximum of 18 kb of
data, using specific data bits and memory depths.

In examining the quality of the samples, we consider the dif-
ferences between the samples produced by the hardware and the
corresponding samples that would be produced using an ICDF
approximation with floating point accuracy. This is motivated
by the knowledge that the underlying inversion method delivers
perfect samples assuming infinite precision. Thus, the extent
to which the output samples deviate from this ideal is directly
determined by the accuracy of the hardware evaluation. Fig. 9
shows an ulp error plot of 2 randomly selected samples for
degree-2 approximation. Results show that 95% of the samples
are exactly rounded (i.e., accurate to 1/2 ulp). Fig. 10 shows
the PDF of the generated random numbers for each of the three
distributions for a population of ten million. Fig. 11 shows the
PDF between and for a population of one million for
the Gaussian distribution. In both cases, the generated random
numbers closely follow the true PDF of the associated distribu-
tion.

For the results shown in Figs. 12–17, the RNGs are imple-
mented combinatorially using slices only with constant
and synthesized using Synplicity Synplify Pro 8.4. Xilinx ISE
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Fig. 10. PDFs of the generated random numbers from the proposed architecture for a population of ten million samples for three distributions. The black solid
line indicates the ideal PDF of each distribution.

Fig. 11. PDF of the generated random numbers from the proposed architecture
for a population of one million samples between 7� and 8:2�. The black solid
line indicates the ideal Gaussian PDF.

Fig. 12. Area comparisons for variable output precisions and the input is fixed
at 24 bits.

8.1.02i is used for place-and-route with maximum effort. Note
that precision refers to the number of fractional bits.

Figs. 12 and 13 show the area and latency variations using de-
gree-2 approximations with the input fixed at 24 bits. The area
and latency increase with precision due to the increasing ROM1
and operators in the polynomial evaluation unit. is the slowest
and uses the most area due to its larger number of segment re-
quirement and more complex address decoding ( , rather
than or ).

Fig. 13. Latency comparisons for variable output precisions and the input is
fixed at 24 bits.

Fig. 14. Area comparisons of different degree approximations to f .

Figs. 14 and 15 show area and latency comparisons of dif-
ferent polynomial degrees for with 24 bits input. For preci-
sions below 12 bits, degree-1 is the most area-efficient, while
precisions between 12 and 16 bits and above 16 bits, degree-2
and degree-3 are the most area-efficient.

Figs. 16 and 17 examine the area and latency variations with
different input bit-widths and precision fixed at 11 bits. The gen-
eral trend for all three distributions is increasing because we
need a larger URNG in the input and thus more bits for the ad-
dress decoding circuit and the polynomial evaluation unit.

To demonstrate pipelined high-throughput designs, GRNGs
are implemented using all three types of FPGA resources (slices,
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Fig. 15. Latency comparisons of different degree approximations to f .

Fig. 16. Area comparisons for variable input bit-widths and the precision is
fixed at 11 bits.

Fig. 17. Latency comparisons for variable input bit-widths and the precision is
fixed at 11 bits.

DSP-blocks, and block-RAMs). Table V inspects the resource
allocation of the various parts of the GRNG using degree-2 ap-
proximation. Results show that the address decoding cir-
cuit consumes the largest portion of the hardware resources. The
three major components in the address decoding circuit are the
leading zero detector (LZD), the leading one detector (LOD),
and the barrel shifters. For the LZD and LOD, the method pro-
posed by Oklobdzija [28] is used. For the logical barrel shifters,
the method proposed by Pillmeier et al. [29] is used.

TABLE V
HARDWARE RESOURCE USAGE OF THE PROPOSED GRNG FOR DEGREE-1

APPROXIMATIONS TO f USING VARIABLE AND CONSTANT B

Fig. 18. Area, clock speed (i.e., throughput), and latency variation with number
of pipeline stages for 16-bit GRNG with 53-bit input and 11-bit output preci-
sion using degree-1 approximation with constantB and quantized x . Block-
RAMs and DSP-blocks available on the Virtex-4 device are utilized.

Fig. 18 shows the area, clock speed (i.e., throughput), and
latency variation with the number of pipeline stages. The de-
sign uses degree-1 approximation with constant and 11
fractional bits. We insert pipeline registers into the design ac-
cording to the post place-and-route timing analysis. These addi-
tional registers breakdown the critical path improving the clock
speed, but also induce an area penalty. As Fig. 18 shows, with
17 pipeline stages, the design reaches a maximum clock speed
of 371 MHz, which is limited by the critical path between the
output registers of the block-RAMs and the input of the DSP-
blocks inside the Xilinx Virtex-4 FPGA. The addition of further
pipeline stages leads to diminishing returns in terms of the per-
formance/area ratio. Fig. 19 shows the distribution of pipelining
registers for the design using degree-1 approximation and con-
stant .

Table VI compares the proposed GRNG against a recent im-
plementation [12], which is the fastest GRNG reported in liter-
ature. Both designs generate faithfully rounded 16-bit random
numbers (5 integer bits and 11 fractional bits) up to . This
table shows that the proposed design using degree-1 approxi-
mation with constant has the best performance/area ratio.
Moreover, it has greatly reduced the hardware resource usage
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Fig. 19. Pipeline register distribution of the GRNG design using degree-1 approximation with constant B . SHL refers to a left barrel shifter and Z refers to
one pipeline stage.

TABLE VI
COMPARISONS OF DIFFERENT HARDWARE GAUSSIAN RANDOM NUMBER GENERATORS IMPLEMENTED ON A XILINX

VIRTEX-II XC2V4000-6 (V2) FPGA AND A XILINX VIRTEX-4 XC4VLX100-12 (V4) FPGA

TABLE VII
HARDWARE IMPLEMENTATION RESULTS OF THE GRNG USING DEGREE-1

APPROXIMATION WITH CONSTANT B USING DIFFERENT TYPES OF FPGA
RESOURCES [BLOCK-RAMS (BRAMS) AND DSP-BLOCKS (DSPS)]

ON A XILINX VIRTEX-4 XC4VLX100-12 FPGA

of block-RAMs and DSP-blocks. The reduction in hardware re-
sources is partially due to the fact that a single function eval-
uation is required for the inversion method, whereas multiple
function evaluations are needed in [12].

Table VII explores the area and speed tradeoffs of designs
using different types of hardware resources. For instance, a
lookup table can be implemented using block-RAM or dis-
tributed-RAM based on slices. The design using only slices
requires more than three times the number of slices than the
GRNG design utilizing all three FPGA resources. Also, the area
and speed penalty of using slices to implement tables instead
of block-RAMs is particularly high. Hence, dedicated FPGA
resources such as block-RAMs and DSP-blocks should be used
for area-efficient high-performance designs.

VII. CONCLUSION

We have presented an automated methodology for producing
hardware-based nonuniform RNG designs using the inversion
method. The designs are capable of generating random num-
bers from arbitrary distributions provided that the ICDFs is
known. The ICDF is approximated via piecewise polynomial

approximation and hierarchical segmentation techniques. This
enables random samples corresponding to arbitrary distribu-
tions to be produced by providing the approximation circuit
with samples from a uniform random number generator. The
approach is demonstrated using three distributions: Gaussian,
exponential, and log-normal using fixed-point arithmetic, and
offers designers a range of tradeoffs involving latency, area,
and precision.
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