
An Overview of
Low-Power Techniques for Field-Programmable Gate Arrays

Julien Lamoureux and Wayne Luk
{jlamoure, wl}@doc.ic.ac.uk

Imperial College London

Abstract
This paper provides an overview of low-power

techniques for field-programmable gate arrays (FPGAs). It
covers system-level design techniques and device-level
design techniques that have targeted current commercial
devices. It also describes current research on circuit-level
and architecture-level design techniques. Recent studies on
power modelling and on low-power computer-aided design
(CAD) are also reported. Finally, it proposes future work
that would enable the use of FPGA technology in
applications where power and energy consumption is
critical, such as mobile devices.

1. Introduction
Field-programmable gate arrays are ideal for adaptive

systems, since they are reconfigurable and can be
programmed to implement any digital logic. Applications
of such FPGA-based adaptive systems include face image
recognition [22], on-line failure recovery [49], and analysis
of firefly synchronisation [62].

The main drawback of FPGAs is that they are less
efficient than application-specific integrated circuits
(ASICs) due to the added circuitry needed to make them
reconfigurable. In a recent study [29], FPGAs are
estimated to be 3-4 times slower, 5-35 times larger, and
7-14 times less energy efficient than ASICs depending on
the application and the flexibility of the FPGA.

Traditionally, FPGA research focused on reducing the
speed and area overhead [9]. In recent years, however,
much of the focus has shifted to improving the energy
efficiency. This shift is due to process scaling and
increased demand for low-power applications. Although
process scaling reduces the energy needed to perform a
given computation (since wires and transistors are smaller),
it increases power dissipation per unit area and therefore the
overall power for a given die size [24]. At the same time,
demand for low-power applications is increasing due to the
proliferation of hand-held devices and increasing energy
costs. For hand-held and other battery operated devices,
reducing power increases battery life. For non-mobile

devices, reducing power consumption lowers operating,
packaging, and cooling system costs.

There are many ways to make FPGAs more energy
efficient. The various techniques can be divided into five
categories: process, circuit, architecture, system, and
computer-aided design (CAD). Process techniques refer to
the use of new low-power process technologies offered by
the semiconductor manufacturers. Circuit techniques refer
to the transistor-level implementation of the logic and
routing resources. Architecture techniques refer to
functionality of the logic, I/O, and memory resources and
the connectivity between these resources. System
techniques refer to high-level low-power techniques such as
dynamic voltage control, turning resources off when they
are not being used, and run-time reconfiguration. Finally,
CAD refers to enhancements made to the mapping tools
which are used to configure the FPGA.

This paper is organized as follows. Section 2 describes
the basic structure of an FPGA and summarizes the sources
of power dissipation. Section 3 and Section 4 cover
respectively system-level design techniques and device-
level design techniques, both of which target mainly current
commercial devices. Section 5 describes circuit-level and
architecture-level design techniques for experimental
devices. Section 6 and Section 7 present recent research
respectively on power modeling and on low-power
computer-aided design (CAD). Finally, Section 8
summarizes the paper and proposes future work.

2. FPGA Architecture and Power Dissipation
This section reviews the basic structure of an FPGA,

focusing on what makes FPGAs power-hungry. FPGAs are
made up of a large number of configurable logic blocks,
which implement the logic part of digital circuits, and a
configurable routing fabric, which implements the
connections between the logic blocks. Modern FPGAs also
have embedded fixed logic components, such as memories
and arithmetic logic units. These embedded components
are typically aligned with the logic tiles, and are often
arranged in rows or columns. Figure 1 provides an abstract
view of an FPGA with programmable logic and embedded
fixed-function components.

NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3166-3/08 $25.00 © 2008 IEEE
DOI 10.1109/AHS.2008.71

332

NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3166-3/08 $25.00 © 2008 IEEE
DOI 10.1109/AHS.2008.71

338

NASA/ESA Conference on Adaptive Hardware and Systems

978-0-7695-3166-3/08 $25.00 © 2008 IEEE
DOI 10.1109/AHS.2008.71

338

Authorized licensed use limited to: Imperial College London. Downloaded on September 14, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

FPGAs dissipate more static power than ASICs for a
number of reasons. FPGAs use a large amount
configuration memory to control every programmable
routing switch and logic function in the FPGA. Each
configuration bit dissipates static power. Another reason is
that the programmable logic blocks are implemented using
lookup-tables, which have significantly more transistors
than the corresponding logic gates in an ASIC. Similarly,
FPGA routing resources use significantly more transistors
than in ASICs because of the large number of multiplexers
needed to make the routing flexible.

FPGAs also dissipate more dynamic power than ASICs.
In both an ASIC and FPGA, connections between gates are
associated with some amount of parasitic capacitance due
to the metal wire used to implement the connection as well
as the driver and driven transistors. However, as described
above, a connection in an FPGA also contains a large
number of programmable switches. These switches
significantly increase the parasitic capacitance on the wire
segments and charging and discharging this parasitic
capacitance consumes dynamic power.

Figure 2 shows a breakdown of core power consumption
in a commercial 90-nm FPGA [61]. The figure shows that
the routing resources dissipate the greatest amount of
power, followed by logic and clock network resources.
This study also reports that dynamic power accounts for
62% of the total power, while static power accounts for
38%. There is also recent work which considers FPGAs
with embedded memories; such memories are found to
account for 14% of core dynamic power [56].

3. Low-Power System-Level Design
This section describes various low-power design

techniques that have been applied to current FPGA

technology by application developers. We classify these
techniques into three categories: basic techniques,
techniques involving run-time reconfigurability, and
techniques for soft processors.

Figure 2: Breakdown of core power consumption
in Xilinx Spartan-3 devices [61].

First, we provide five examples of basic techniques

introduced below.
(a) It is usually preferable to use coarse-grained

embedded blocks rather than the fine-grained configurable
logic blocks in an FPGA, since the former are more power-
efficient than the latter for the same function [29]. However
one needs to ensure that in doing so, power consumption
for routing would not increase significantly.

(b) Pipelining is a simple and effective way of reducing
glitching, and hence minimising power consumption. It is
found that, at a given clock speed, pipelining can reduce the
amount of energy per operation by between 40% and 90%
for applications such as integer multiplication, CORDIC,
triple DES, and FIR filters [65].

(c) Word-length optimisation can be applied to obtain
the best trade-off in speed, area, power consumption,
flexibility, and accuracy. One approach is to study the
sensitivity of outputs in a design to small errors due to
rounding or truncation of internal variables for fixed-point
hardware implementation. Improvements in power
consumption of up to 98% (mean 87%) have been achieved
for adaptive filters and polynomial evaluations [17].

(d) Clock gating can be used to reduce dynamic power
consumption by disabling the clock for the inactive regions
to prevent signal transitions. It can be combined with
word-length optimisation (see (c) above) so that the
circuitry in an operator is gated when not in use [47].

 (e) Dynamic voltage scaling can be used to adapt the
supply voltage to the FPGA as the temperature changes, to
minimise power consumption. It has been shown that
power reduction between 4% and 54% can be achieved for
various arithmetic circuits [16].

 Second, we provide two examples of low-power
techniques involving run-time reconfigurability; the use of
such reconfigurability has already been reported [49][62].

Figure 1: A generic FPGA with embedded

components.

333339339

Authorized licensed use limited to: Imperial College London. Downloaded on September 14, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

(a) Word-length optimisation can be combined with run-
time reconfiguration so that the smallest design is adopted
at a given time, as long as the energy reduction in execution
is greater than the energy overhead for reconfiguration [48].

(b) Run-time reconfiguration can be applied to change a
design in order to adapt to run-time conditions. For instance
when a communication channel becomes more noisy, a
more powerful but less energy efficient turbo coder can be
used to maintain a fixed bit error rate, and vice versa [40].
Such run-time adaptation can further benefit from devices
that support partial reconfiguration [46].

Third, we provide two examples of low-power
techniques for FPGA-based soft processors; the use of such
processors in adaptive systems has been reported [58].

(a) Based on an iterative improvement method,
instruction set extensions to the MicroBlaze soft processor
have been proposed [10]. Up to 40% reduction in energy
and 12% reduction in peak power have been reported.

(b) Combined application of power-aware scheduling
and instruction recoding techniques can be used to optimise
a soft processor at multiple levels of abstraction. Dynamic
power reduction of up to 74% has been obtained [18].

4. Device-Level Design: Commercial Devices
The latest FPGA devices from vendors such as Altera

and Xilinx incorporate various low-power device-level
technologies. This section reviews some of these
technologies.

At the device level, Altera and Xilinx both utilize triple
gate oxide technology, which provides a choice of three
different gate thicknesses, to trade-off between performance
and static power [3][67]. In earlier technologies, only two
thicknesses were available. Transistors with thicker oxide
were used for the large, higher voltage tolerant transistors
in the I/O blocks and the thinner ones were used
everywhere else. The new medium thickness oxide
transistors provide slightly less performance than thin oxide
transistors, but leak significantly less. In the latest FPGAs,
these are used in the configuration memory and the
switches that are controlled by this memory. Since the
configuration memory remains static during the operation
of the device, the oxide thickness does not affect the
performance of the corresponding switches. To reduce
dynamic power, FPGA vendors use a low-k dielectric
between metal layers, which reduces the parasitic
capacitance. This, in addition to smaller device geometries,
reduces the average node capacitance and, correspondingly,
dynamic power. Dynamic power of the core of the FPGAs
can be reduced further by lowering the supply voltage
because dynamic power has a quadratic relationship (CV2f)
with the supply voltage. Xilinx reduces the core supply
voltage from 1.2V (in Virtex 4 FPGAs) to 1.0V (in Virtex 5
FPGAs), which cuts core power significantly. Similarly,
the core supply voltage of Altera Stratix III FPGAs can be
selected (by the user) to be either 1.1V, for high
performance, or 0.9V, for lower power consumption.

Altera and Xilinx have also made a number of
architecture-level changes to their latest devices to reduce
static and dynamic power. Both vendors have recently
increased the size of the LUTs (lookup tables) within the
logic blocks [2][67]. By increasing the size of the basic
logic elements, from 4-input LUTs to 6 and 7-input LUTs,
both static and dynamic power are reduced since more logic
is implemented within each LUT and less routing is needed
between the LUTs. This reduces power since LUTs are
implemented using smaller transistors (compared to
transistors in the routing resources), which leak less and
dissipate less dynamic power. Both vendors have also
modified their routing architectures to increase the number
of neighbouring logic blocks that can be reached in only
one or two hops (each routing segment used counts as one
hop). Using more 1-hop routes reduces the average
capacitance of the routes, which improves both power and
performance. Other architecture-level features that reduce
overall power are the embedded memories, adders, and
multipliers. Although each of these functions can be
implemented using the programmable logic fabric, its
implementation as a fixed-function embedded block is more
power-efficient since circuitry to make it flexible is not
needed, and it can be turned off when not used.

Finally, a number of low-power techniques have also
been incorporated into the commercial FPGA CAD tools.
Detailed power models have been integrated within the
Altera Quartus II [2] and Xilinx ISE CAD tools [66]. Both
vendors provide a spreadsheet utility to make early power
predictions before the design is complete and a detailed
power model that can be used when the design is complete.
Early power estimates are based on estimated resource
usage, I/O types, clock requirements, clock frequencies, and
environmental conditions. The detailed power models
provide estimates after the application has been placed,
routed, and simulated. The estimations from the detailed
power models are more accurate than those from the early
power models, since detailed capacitance, leakage, and
switching activity information is known for each node in
the application circuit. In the case where simulation results
are not available, only basic probability-based (vectorless)
activity estimation is available and the accuracy of the
power estimates is significantly reduced. This is especially
true for sequential circuits. Power-aware CAD techniques
have also been incorporated into the commercial CAD
flows. In Quartus II, power is minimized during
technology mapping, placement, and routing by minimizing
the capacitance of high-activity signals using techniques
similar to those described in the previous section. Power is
also minimized by optimizing the mapping to the embedded
memories, as described in [56], and, similarly, by
optimizing the mapping to the embedded DSP blocks. In
ISE, power is minimized during placement and routing by
minimizing the capacitance of high-activity signals.
Dynamic power dissipation is further minimized by
strategically setting the configuration bits within partially
used (some inputs are not used) LUTs to minimize
switching activity. Both CAD tools also ensure that all

334340340

Authorized licensed use limited to: Imperial College London. Downloaded on September 14, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

unused logic blocks, embedded blocks, routing resources,
and clock network resources are turned off to save power.

Combining the above techniques, Altera reports that
Stratix III FPGAs are over 50% more power efficient than
Stratix II FPGAs [2]. Similarly, Xilinx reports that Virtex-
5 FPGAs consume over 35% less dynamic power than
Virtex-4 FPGAs, with even greater savings when embedded
components are used [67]. Xilinx also points out that low-
leakage techniques are already incorporated in their Virtex-
4 FPGAs, resulting in 70% lower static power consumption
when compared with competing FPGAs.

A low-power alternative to SRAM-based FPGAs is
flash-based FPGA technology. Flash-based FPGAs, such
as Actel’s IGLOO devices, are inherently more efficient
because flash-based memory dissipates significantly less
leakage power compared to SRAM memory. For instance,
Actel reports that their low-power FPGAs dissipate 4 times
less leakage power than their nearest competitors [1].

5. Circuit- and Architecture-Level Design
The architecture and the circuit-level implementation of

the FPGA is key in reducing power, since it directly affects
the efficiency of mapping applications to FPGA resources,
and the amount of circuitry to implement these resources.

A number of studies have investigated low-power
FPGA architecture design. Energy-efficient FPGA routing
architectures and low-swing signalling techniques to reduce
power are described in [21][43]. In [55], a new FPGA
routing architecture that utilizes a mixture of hardwired and
traditional programmable switches is proposed, which
reduces static and dynamic power by reducing the number
of configurable routing elements. In [7], a novel FPGA
routing switch with high-speed, low-power, or sleep modes
is presented. The switch reduces dynamic power for non
timing critical logic and standby power for logic when it is
not being used. In [41], power-gating is applied to the
switches in the routing resources to reduce static power;
duplicate routing resources, that use either high or low Vdd,
are used to reduce dynamic power. In [30], energy-efficient
modules for embedded components in FPGAs are
introduced to reduce power by optimizing the number of
connections between the module and the routing resources,
and by using reduced supply voltage circuit techniques. In
[27], several power reduction techniques, such as register
file elimination and efficient instruction fetch, are proposed
for a coarse-grain reconfigurable cell-based architecture; up
to 3.6 times lower energy than an ARM7 device, and up to
6 times lower energy than a C55X DSP, is reported.

Although significant improvements have already been
made, many opportunities to further reduce power in
FPGAs remain. The rest of this section describes two
recent improvements: minimization of FPGA glitch power,
and efficient FPGA clock network design.

The first improvement concerns FPGA glitch reduction.
Glitching occurs when values at the inputs of a LUT toggle
at different times due to uneven propagation delays of those
signals. If the arrival times are far enough apart, spurious

transitions can be produced at the LUT output, as shown in
Figure 3(a). A recent study suggests that glitching accounts
for 31% of dynamic power dissipation in FPGAs [33].

Figure 3: Example of delay insertion to eliminate
glitching.
 The study proposes a method for minimizing glitching
which involves adding configurable delay elements to the
inputs to each logic element in the FPGA (Figure 4). After
place and route, detailed timing information is used to
configure these delay elements so as to align the arrival
times at the inputs of each logic element. This eliminates
glitches as long as the arrival times can be aligned closely
enough, as shown in Figure 3(b).

Figure 4: FPGA logic block with configurable
delay elements.

The amount of glitching that can be eliminated depends
on several factors. Specifically, the resolution, maximum
delay, location, and amount of the programmable delay
elements all have an affect on glitch elimination and
overhead. It was found that, on average, the proposed
technique eliminates 87% of the glitching, which reduces
overall FPGA power by 17%, while the added circuitry
increases the overall FPGA area by 6% and critical-path
delay by less than 1%.

A 17% reduction in power is significant. Moreover, the
method can be applied to all commercial FPGAs, and
requires only minor changes to the CAD flow or the rest of
the architecture. The gains are roughly independent of

335341341

Authorized licensed use limited to: Imperial College London. Downloaded on September 14, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

those that can be obtained using process enhancement
techniques. However, there may be some overlap in these
gains with those that can be obtained using a power-aware
CAD flow, since by reducing the activity of high-activity
signals, there may be less “low-hanging fruit” available for
the power-aware CAD flow.

The second recent improvement concerns low-power
clock network design. New FPGAs are sophisticated
enough to implement large system-level applications.
These applications often have many clock domains. As an
example, consider a communications application connected
to several I/O ports. Each port might have its own clock,
meaning the circuitry connected to each port must be
controlled by a separate clock. FPGA vendors support such
applications through the use of programmable clock
networks that are flexible enough to support a wide range
of applications, yet have low skew.

These clock networks have a significant impact on
power since they connect to each flip-flop on the FPGA and
toggle every clock cycle. In [61], the clock network in a
current FPGA is shown to account for 19% of dynamic
power (Figure 2). Moreover, depending on how flexible it
is, the clock network can impose constraints that affect how
applications can be placed within the FPGA. As an
example, current FPGAs are divided into regions which can
support a limited number of different clock domains. For
applications with many clock domains, these constraints
could force domains to be placed farther apart than they
would otherwise be if the clock network is more flexible.

Recent work [34][35] examines the trade-off between
the flexibility of FPGA clock networks and overall power
consumption. This research has three parts. First, a
parameterized framework for describing a wide range of
FPGA clock networks. Second, a comparison of clock-
aware placement techniques to determine their
effectiveness: since clock networks impose hard constraints
on the placement of logic blocks within the FPGA, a good
clock-aware placement algorithm must obey these
constraints and also optimize for speed, routability, and
power consumption. Several techniques for combining
these objectives are evaluated, in terms of their ability to
find a placement that is fast, energy efficient, and legal.
Third, experiments to determine what makes an efficient
FPGA clock network. It is found that FPGA clock networks
with more flexibility near the sources (pads or internal
sources) and less flexibility near the sinks (flip-flops) are
more efficient in terms of overall power consumption. Also
dividing FPGA into clock regions that can be driven by
global or local clock sources significantly reduces the area
and power dissipation of the clock network.

Both the parameterized clock network framework and
the clock-aware placement techniques have been
incorporated into the popular VPR CAD tool [9] and is
publicly available. The significance of this work is thus
two-fold: (1) techniques that help FPGA vendors to provide
more efficient clock networks, and (2) a new approach for

architectural exploration that helps to guide future
researchers.

6. FPGA Power Modelling
Accurate power modelling is important in low-power

FPGA design for a number of reasons. First, application
designers need detailed power estimates to ensure their
application meets various power budgets. Second, power-
aware FPGA CAD tools require detailed power estimates in
order to minimize power. Third, FPGA designers who
development new FPGA architectures and CAD tools need
power estimates to evaluate new low-power techniques.

A number of FPGA power models have recently been
presented in the literature. In [50], a detailed power model
that estimates static and dynamic power of the logic,
routing, and clock network for a range of FPGAs with
different architecture parameters is described. For static
power, the model uses a first-order analytical technique
which calculates leakage based on transistor size and
various technology-specific parameters. For dynamic
power, the model uses transistor-level capacitance
information from the VPR place and route tool [9] and
switching activity information obtained using vectorless
activity estimation techniques. In [36], a similar FPGA
power model estimates static and dynamic FPGA power by
calculating the power for each clock cycle using simulated
switching activity information, instead of vectorless
techniques. This power model has been enhanced to support
FPGAs with a programmable supply voltage [37] and
programmable threshold voltages [38]. In [13][25][52],
high-level FPGA power models that use macro-models to
estimate power are described. These models characterize
the power consumption of various FPGA components, such
as adders, multipliers, and programmable logic, for low-
power high-level synthesis or design space exploration.

One of the main challenges in power modelling is
activity estimation, which involves determining how often
each node in the FPGA toggles. This activity information
is needed in order to calculate how much dynamic power an
application dissipates when it operates. Estimating
activities is challenging because there are large a number of
nodes within each circuit and complex interactions between
the nodes which are difficult to model.

One approach is vectorless activity estimation which
involves estimating the switching activity of each node
based on the switching activities of the inputs and the logic
function of that node. The advantage of vectorless activity
estimation is that it is typically fast and does not require
input vectors. The disadvantage is that it is less accurate
than simulation because it typically does not consider the
complex interactions between nodes.
 Vectorless techniques that model these complex inter-
actions have been proposed [44][45][52][59][60]. In
general, however, there is trade-off between speed and
accuracy. Some vectorless techniques are even slower than
brute force simulation. A recent study [32] compares some
vectorless techniques to determine which are fast enough to

336342342

Authorized licensed use limited to: Imperial College London. Downloaded on September 14, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

be used in FPGA CAD flow. Specifically, the aim of the
study is to identify the most accurate techniques that do not
noticeably slow down the FPGA design flow. These
techniques and two novel techniques are then integrated
into a new publicly available activity estimation tool called
ACE-2.0.

7. Low-Power FPGA CAD
FPGA CAD tools, which map an application to the

FPGA programmable fabric, can also have a significant
impact on power consumption. This mapping generally
occurs in five stages: high-level synthesis, technology
mapping, clustering, placement, and routing. Each stage
can be optimized to improve the final implementation.

Power-aware high-level synthesis algorithms for FPGAs
are presented in [12][15]. In [12], power is reduced by
minimizing the total power of the operations and the size of
the multiplexers that connect them. The algorithm
described in [15] targets FPGAs with programmable power
supplies and minimizes power by assigning low-Vdd to as
many operations as possible given resource and timing
constraints. Low-power technology mapping algorithms
are presented in [5][8][14][19][31][39][63][64]. In general,
these algorithms minimize power by absorbing as many
high-activity nodes as possible when the gates are packed
into LUTs and/or by minimizing node-duplication, which
tends to increase the amount of interconnect between the
LUTs. Low-power clustering techniques have been
described in [11][23][31][54]. These algorithms minimize
power by absorbing as many small (low fan-out) and high-
activity nets as possible when the LUTs are packed into
clusters (logic blocks). Absorbing small nets tends to
reduce number of inter-cluster nets (which dissipate the
most power) and absorbing high-activity nets further
reduces power. Low-power place and route techniques
were presented in [28][31][53][57], which minimize power
by reducing the distance between logic blocks connected by
high-activity wires (during placement) and by routing high-
activity wires as directly as possible (during routing). In
[8], leakage power is minimized by choosing low-leakage
LUT configurations. Finally, in [56], power-aware
algorithms for mapping logical memories to the physical
FPGA embedded memories were described. The
algorithms minimize dynamic power consumed by
embedded memories by evaluating a range of possible
mappings and selecting the most power-efficient choice.

8. Conclusions and Future Work
 Significant improvements have been made to improve
power and energy efficiency of FPGAs. This paper
describes many of these improvements, which range from
low-level process and circuit design techniques through to
high-level CAD techniques. While further improvements
will likely be made at all levels, there seems to be
significant potential for power savings at the system level.
 At the system level, power reduction can be obtained by
optimizing management and scheduling of system

resources. As an example, programmable logic devices
(PLD) such as FPGAs can be used to reduce power
dissipation in mobile applications by effective exploitation
of “deep-sleep” mode in mobile processors. When the
processor is not needed, a programmable logic device can
be used to monitor external resources, such as battery
gauges, sensors, and interrupts, and determine when the
host processor (or other devices) should be brought out of
deep-sleep mode. Although the host processor itself can be
used to monitor the external resources, it could be 10-100
times less efficient since it uses more power (when it is not
in deep-sleep) when compared to a small system monitor
implemented in a PLD [4]. As another example, FPGAs can
be used as coprocessors to perform compute intensive tasks
more efficiently than in software. Because it is flexible, the
hardware implementation of the coprocessor can be
optimized for the given task and even for specific input
parameters such as media format.
 Research targeting these system-level power tradeoffs is
required. In the previous example, there is a trade-off
between the power savings that can be achieved by not
using the host processor and the cost of initializing the PLD
and the processor when tasks are passed from one to the
other. Several factors can affect the power savings,
including the scheduling of tasks to maximize the duration
that the processor can sleep and minimizing the cost of
configuring the programmable logic device. Moreover, as
programmable logic devices become more sophisticated,
many of these system-level issues can be effectively
addressed by FPGA technology. FPGAs with embedded
processors and soft-processors are already available [19].
This introduces similar system-level tradeoffs and the
potential for significant power savings.
 Research targeting low-power system-level benchmarks
is also required. To our knowledge, current academic
benchmarks do not support this type of research.
Specifically, benchmarks are needed that perform
complicated tasks and provide realistic input stimuli
reflecting how the applications are used. These should
include description of when and how often different
computations are required, as well as realistic input data
that must be processed by the application. Benchmarks
involving adaptive systems are of particular interest, since it
appears promising to study how functional adaptation can
be extended to cover power and energy reduction.
Acknowledgement. The support of Canadian Natural
Science and Engineering Research Council, UK
Engineering and Physical Research Science Council,
European Commission FP6 project hArtes, Agility Design
Solutions, Celoxica and Xilinx is gratefully acknowledged.

References
[1] Actel, “IGLOO Handbook,” 2008.
[2] Altera, “Quartus II Handbook,” Vol. 2, Chapter 9, 2007.
[3] Altera, “Quartus II Handbook,” Vol. 3, Chapter 10, 2007.
[4] Altera Corp., “Cut power 100X using CPLD coprocessors in

Portable Applications,” Webcast, Dec. 2007.

337343343

Authorized licensed use limited to: Imperial College London. Downloaded on September 14, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

[5] M.J. Alexander, “Power optimization for FPGA look-up
tables,” Proc. ACM Int. Symp. on Physical Design, pp. 156-
162, 1997.

[6] J.H. Anderson and F.N. Najm, “Power-aware technology
mapping for LUT-based FPGAs,” Proc. IEEE Int. Conference
on Field-Prog. Technology, pp. 211-218, 2002.

[7] J.H. Anderson and F.N. Najm, “A novel low-power FPGA
routing switch,” Proc. IEEE Custom Integrated Circuits
Conf., pp. 719-722, 2004.

[8] J.H. Anderson, F.N. Najm, and T. Tuan, “Active leakage
power optimization for FPGAs,” IEEE Trans. on Computer-
Aided Design, vol. 25, no. 3, pp. 423-437, March 2006.

[9] V. Betz., J. Rose, and A. Marquardt, “Architecture and CAD
for deep-submicron FPGAs,” Kluwer Academic Publishers,
1999.

[10] P. Biswas et al, “Performance and energy benefits of
instruction set extensions in an FPGA soft core,” Proc. Int.
Conf. on VLSI Design, pp. 651-656, 2006.

[11] D. Chen and J. Cong, “Delay optimal low-power circuit
clustering for FPGAs with dual supply voltages,” Proc. Int.
Symp. on Low Power Electronics and Design, pp. 70-73,
2004.

[12] D. Chen, J. Cong, and Y. Fan, “Low-power high-level
synthesis for FPGA architecture,” Low Power Electronics and
Design, pp. 134-139, 2003.

[13] D. Chen, J. Cong, Y. Fan, and Z. Zhang, “High-level power
estimation and low-power design space exploration for
FPGAs,” Proc. Asia South Pacific Design Automation Conf.,
pp. 529-534, 2007.

[14] D. Chen, J. Cong, F. Li, and L. He, “Low-power technology
mapping for FPGA architectures with dual supply voltages,”
Proc. ACM Int. Symp. on Field-Prog. Gate Arrays, pp. 109-
117, 2004.

[15] D. Chen, J. Cong, and J. Xu, “Optimal module and voltage
assignment for low-power,” Proc. Asia South Pacific Design
Automation Conf., pp. 850-855, 2005.

[16] C.T. Chow et al, “Dynamic voltage scaling for commercial
FPGAs,” Proc. IEEE Int. Conf. on Field Prog. Technology,
2005.

[17] G. Constantinides, “Word-length optimization for different-
iable nonlinear systems,” ACM Trans. on Design Automation
of Electronic Sys., vol. 11, no. 1, pp. 26-43, 2006.

[18] R. Dimond, O. Mencer and W. Luk, “Combining instruction
coding and scheduling to optimize energy in system-on-
FPGA,” Proc. IEEE Symp. on Field-Prog. Custom
Computing Machines, IEEE Computer Society Press, 2006.

[19] A.H. Farrahi and M. Sarrafzadeh, “FPGA technology
mapping for power minimization,” Proc. Int. Workshop on
Field-Prog. Logic and Applications, pp. 167-174, 1994.

[20] B.H. Fetcher, “FPGA embedded processors: revealing true
system performance,” Proc. Embedded Sys. Conf., ETP-357,
2005.

[21] V. George, H. Zhang, and J. Rabaey, “The design of a low
energy FPGA,” Proc. Int. Symp. on Low Power Electronics
and Design, pp. 188-193, 1999.

[22] K. Glette, J. Torresen and M. Yasunaga, “Online evaluation
for a high-speed image recognition system implemented on a

Virtex-II Pro FPGA,” Proc. NASA/ESA Conf. on Adaptive
Hardware and Sys., pp. 463-470, IEEE, 2007.

[23] H. Hassan, M. Anis, A. El Daher, and M. Elmasry, “Activity
packing in FPGAs for leakage power reduction,” Proc.
Design Automation and Test in Europe, pp. 212-217, 2005.

[24] International Technology Roadmap for Semiconductors,
2005.

[25] T. Jiang, X. Tang, and P. Banerjee, “Macro-models for high
level area and power estimation on FPGAs,” Proc. ACM
Great Lakes Symp. on VLSI, pp. 162-165, 2004.

[26] B. Kapoor, “Improving the accuracy of circuit activity
measurement,” Proc. ACM Design Automation Conf., pp.
734-739, 1994.

[27] S. Khawam et al, “The reconfigurable instruction cell array,”
IEEE Trans. on VLSI Sys., vol. 16, no. 1, pp. 75-85, 2008.

[28] B. Kumthekar, and F. Somenzi, “Power and delay reduction
via simultaneous logic and placement optimization in
FPGAs,” Proc. Design Automation and Test in Europe, pp.
202-207, 2000.

[29] I. Kuon and J. Rose, “Measuring the gap between FPGAs and
ASICs,” IEEE Trans. on Computer-Aided Design, vol. 26,
no. 2, pp. 203-215, Feb. 2007.

[30] E. Kusse and J. Rabaey, “Low-energy embedded FPGA
structures,” Proc. Int. Symp. Low Power Electronics and
Design, pp. 155-160, 1999.

[31] J. Lamoureux and S.J.E. Wilton, “On the Interaction between
Power-Aware CAD Algorithms for FPGAs,” Proc. IEEE Int.
Conf. on Computer Aided Design, pp. 701-708, 2003.

[32] J. Lamoureux and S.J.E. Wilton, “Activity estimation for
Field-Programmable Gate Arrays,” Proc. Intl. Conf. on Field-
Prog. Logic and Applications, pp. 87-94, 2006.

[33] J. Lamoureux, G.G. Lemieux, and S.J.E. Wilton, “GlitchLess:
dynamic power minimization in FPGAs through edge
alignment and glitch filtering,” to appear in IEEE Trans. on
Very Large Scale Integration Systems, 2008.

[34] J. Lamoureux and S.J.E. Wilton, “FPGA clock network
architecture: flexibility vs. area and power,” Proc. ACM Int.
Symp. on Field-Prog. Gate Arrays, pp. 101-108, 2006.

[35] J. Lamoureux and S.J.E. Wilton, “Clock-aware placement for
FPGAs,” Proc. Int. Conf. on Field-Prog. Logic and
Applications, pp. 124-131, 2007.

[36] F. Li, D. Chen, L. He, and J. Cong, “Architecture evaluation
for power-efficient FPGAs,” Proc. ACM Int. Symp. on Field-
Programmable Gate Arrays, pp. 175-184, 2003.

[37] F. Li, Y. Lin, and L. He, “FPGA power reduction using
configurable dual-Vdd,” Proc. Design Automation Conf., pp.
735-740, 2004.

[38] F. Li, Y. Lin, L. He, and J. Cong, “Low-power FPGA using
pre-defined dual-Vdd/dual-Vt fabrics,” Proc. ACM Int.
Symp. on Field-Prog. Gate Arrays, pp. 42-50, 2004.

[39] H. Li, S. Katkoori, and W.-K. Mak, “Power minimization
algorithms for LUT-based FPGA technology mapping,”
ACM Trans. on Design Automation of Electronic Sys., vol. 9,
no. 1, pp. 33-51, 2004.

[40] J, Liang, R. Tessier and D. Goeckel, “A dynamically
reconfigurable power efficient turbo coder,” Proc. IEEE

338344344

Authorized licensed use limited to: Imperial College London. Downloaded on September 14, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

Symp. on Field-Prog. Custom Computing Machines, IEEE
Computer Society Press, pp. 91-100, 2004.

[41] Y. Lin, F. Li, and L. He, “Routing track duplication with fine-
grained power-gating for FPGA interconnect power
reduction,” Proc. Asia South Pacific Design Automation
Conf., pp. 645-650, 2005.

[42] R. Marculescu, D. Marculescu, and M. Pedram, “Switching
activity analysis considering spatiotemporal correlations,”
Proc. IEEE Int. Conf. Computer-Aided Design, pp. 294-299,
1994.

[43] M. Meijer, R. Krishnan, and M. Bennebroek, “Energy
efficient FPGA interconnect design,” Proc. Conf. on Design
and Test in Europe, pp. 1-6, 2006.

[44] J. Monteiro and S. Devadas, “A methodology for efficient
estimation of switching activity in sequential logic circuits,”
Proc. ACM/IEEE Design Automation Conf., pp. 12-17, 1994.

[45] F. Najm, “Low-pass filter for computing the transition density
in digital circuits,” IEEE Trans. on Computer-Aided Design,
vol. 13, no. 9, pp. 1123-1131, 1994.

[46] J. Noguera and I.O. Kennedy, “Power reduction in network
equipment through adaptive partial reconfiguration,” Proc.
Int. Conf. on Field Prog. Logic and Applications, IEEE, pp.
240–245, 2007.

[47] W.G. Osborne, W. Luk, J.G.F. Coutinho and O. Mencer,
“Power and branch aware word-length optimisation,” Proc.
IEEE Symp. on Field-Prog. Custom Computing Machines,
IEEE Computer Society Press, 2008.

[48] W.G. Osborne, W. Luk, J.G.F. Coutinho and O. Mencer,
“Reconfigurable design with clock gating,” Proc. Int. Symp.
on Systems, Architectures, Modelling and Simulation, 2008.

[49] K. Paulsson, M. Hubner and J. Becker, “Strategies to on-line
failure recovery in self-adaptive systems based on dynamic
and partial reconfiguration,” Proc. NASA/ESA Conf. on
Adaptive Hardware and Sys., IEEE, pp. 288-291, 2006.

[50] K.K.W. Poon, S.J.E. Wilton, and A. Yan, “A detailed power
model for field-programmable gate arrays,” ACM Trans. on
Design Automation of Electronic Systems, vol. 10, no. 2, pp.
279-302, April 2005.

[51] A. Raghunathan, S. Dey and N. K. Jia, “Register transfer
level power optimization with emphasis on glitch analysis
and reduction,” IEEE Trans.on Computer-Aided Design, vol.
18, no. 8, pp. 1114-1131, 1999.

[52] A. Reimer, A. Schulz, and W. Nebel, “Modeling
macromodules for high-level dynamic power estimation of
FPGA-based digital designs,” Proc. Int. Symp. on Low Power
Electronics and Design, pp. 151-154, 2006.

[53] K. Roy, “Power-dissipation driven FPGA place and route
under timing constraints,” IEEE Trans. on Circuits and Sys.,
vol. 46, no. 5, pp. 634-637, 1999.

[54] A. Singh, G. Parthasarathy, and M. Marek-Sadowski,
“Efficient circuit clustering for area and power reduction in
FPGAs,” ACM Trans. on Design Automation of Electronic
Systems, vol. 7, no. 4, pp. 643-663, 2002.

[55] S. Sivaswamy, G. Wang, C. Ababei, K. Bazargan, R. Kastner,
and E. Bozargzadeh, “HARP: hard-wired routing pattern
FPGAs,” Proc. Int. Symp. on Field-Prog. Gate Arrays, pp. 21-
29, 2005.

[56] R. Tessier, V. Betz, D. Neto, A. Egier, and T. Gopalsamy,
“Power-Efficient RAM mapping algorithms for FPGA
embedded memory blocks,” IEEE Trans. of Computer- Aided
Design, vol. 26, no. 2, pp. 278-289, Feb 2007.

[57] N. Togawa et al, “A simultaneous placement and global
routing algorithm for FPGAs with power optimization,” Proc.
Asia Pacific Conf. on Circuits and Sys., pp. 125-128, 1998.

[58] J. Torresen and J. Jakobsen, “An FPGA-implemented
processor architecture with adaptive resolution,” Proc.
NASA/ESA Conf. on Adaptive Hardware and Sys., IEEE, pp.
386-389, 2006.

[59] C.Y. Tsui et al, “Exact and approximate methods for
calculating signal and transition probabilities in FSMs,” Proc.
ACM/IEEE Design Automation Conf., pp. 18-23, 1994.

[60] C.Y. Tsui, M. Pedram, and A.M Despain, “Efficient
estimation of dynamic power consumption under a real delay
model,” Proc. IEEE Int. Conf. Computer-Aided Design, pp.
224-228, 1993.

[61] T. Tuan, A. Rahman, S. Das, S. Trimberger, and S. Kao, “A
90-nm low-power FPGA for battery-powered applications,”
IEEE Trans. on Computer-Aided Design, vol. 26, no. 2, pp.
296-300, Feb. 2007.

[62] A. Upegui and E. Sanchez, “Evolving hardware with self-
configurable connectivity in Xilinx FPGAs,” Proc.
NASA/ESA Conf. on Adaptive Hardware and Sys., IEEE, pp.
153-162, 2006.

[63] C-C. Wang and C-P Kwan, “Low power technology mapping
by hiding high-transition paths in invisible edges for LUT-
based FPGAs,” Proc. IEEE Int. Symp. on Circuits and Sys.,
pp. 1536-1539,1997.

[64] Z-H. Wang, E-C. Liu, J. Lai, and T-C. Wang, “Power
minimization in LUT-based FPGA technology mapping,”
Proc. ACM Asia South Pacific Design Automation Conf., pp.
635-640, 2001.

[65] S.J.E. Wilton, S-S. Ang, and W. Luk. “The impact of
pipelining on energy per operation in field programmable
gate arrays”. In Proc. Field Prog. Logic and Applications,
LNCS 3203, pp. 719–728, 2004.

[66] Xilinx, “Optimizing FPGA power with ISE design tools,”
Xcell Journal, Issue 60, pp. 16-19, 2007.

[67] Xilinx, “Power Consumption in 65nm FPGAs,” 2007.

339345345

Authorized licensed use limited to: Imperial College London. Downloaded on September 14, 2009 at 00:10 from IEEE Xplore. Restrictions apply.

