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Abstract—This paper describes an integer-linear-programming
(ILP)-based system called Custom Hardware Instruction Proces-
sor Synthesis (CHIPS) that identifies custom instructions for
critical code segments, given the available data bandwidth and
transfer latencies between custom logic and a baseline processor
with architecturally visible state registers. Our approach enables
designers to optionally constrain the number of input and output
operands for custom instructions. We describe a design flow to
identify promising area, performance, and code-size tradeoffs. We
study the effect of input/output constraints, register-file ports,
and compiler transformations such as if-conversion. Our exper-
iments show that, in most cases, the solutions with the highest
performance are identified when the input/output constraints are
removed. However, input/output constraints help our algorithms
identify frequently used code segments, reducing the overall area
overhead. Results for 11 benchmarks covering cryptography and
multimedia are shown, with speed-ups between 1.7 and 6.6 times,
code-size reductions between 6% and 72%, and area costs rang-
ing between 12 and 256 adders for maximum speed-up. Our
ILP-based approach scales well: benchmarks with basic blocks
consisting of more than 1000 instructions can be optimally solved,
most of the time within a few seconds.

Index Terms—Application-specific instruction-set processors
(ASIPs), custom instructions, customizable processors, extensi-
ble processors, integer linear programming (ILP), optimization
algorithms.

I. INTRODUCTION

EMBEDDED systems are dedicated to an application do-
main, produced in high volume, and built under strict

cost constraints. The design space is often large, and many
interacting components can be involved. Maximizing the per-
formance while minimizing the transistor area and the power

Manuscript received March 26, 2007; revised July 1, 2007 and August 22,
2007. This work was supported in part by U.K. EPSRC under Research Projects
EP/C509625/1 and EP/C549481/1 and in part by Boğaziçi University under
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consumption are usually the main goals of the design. De-
signers carefully analyze the characteristics of the target ap-
plication and fine-tune the implementation to achieve the best
tradeoffs. General-purpose processors are often not flexible
enough for adapting to the strict area, performance, and power-
consumption requirements of embedded applications. Hence,
a common approach in the design of embedded systems
is to implement the control-dominated tasks on a general-
purpose processor and the computation-intensive tasks on
custom hardware, in application-specific integrated-circuit or
field-programmable gate-array technology.

Application-specific instruction-set processors (ASIPs) pro-
vide a good compromise between general-purpose processors
and custom-hardware designs. The traditional approach in de-
veloping ASIPs involves the design of a complete instruction-
set architecture (ISA) for a given application. The processor
and the compiler are synthesized based on a high-level ISA
description. Target’s CHESS compiler based on the nML [1] ar-
chitecture description language (ADL) and Coware’s LISATek
based on LISA ADL [2] are among the commercial examples.
A more recent approach assumes a preverified preoptimized
base processor with a basic instruction set. The base proces-
sor is augmented with custom-hardware units that implement
application-specific instructions. A dedicated link between cus-
tom units and the base processor provides an efficient com-
munication interface. Reusing a preverified preoptimized base
processor reduces the design complexity and the time to market.
Several commercial examples exist, such as Tensilica Xtensa,
Altera Nios II, Xilinx MicroBlaze, ARC 700, MIPS Pro Series,
and ARM OptimoDE.

We believe that the availability of automated techniques
for the synthesis of custom instructions has tremendous value
in coping with the time-to-market pressure and in reducing
the design cost of ASIPs. The automation effort is motivated
by manual-design examples, such as in [3] and [4], which
demonstrate the importance of identifying coarse grain and
frequently used code segments. Tensilica’s XPRES Compiler
and CoWare’s CORXpert are among the successful commercial
tools offering automated solutions.

In this paper, we target customizable architectures similar to
Tensilica Xtensa processor, where the data bandwidth between
the base processor and the custom logic can be constrained by
the available register-file ports. Our approach is also applicable
to architectures where the data bandwidth is limited by ded-
icated data-transfer channels, such as the Fast Simplex Link
channels of Xilinx MicroBlaze processor. We improve upon the
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state-of-the-art algorithms by formulating and solving the key
step of custom-instruction generation as a formal optimization
problem. Our main contributions are as follows:

1) a novel custom-instruction generation technique, which
optionally constrains the number of input and output
operands for custom instructions and explicitly evaluates
the data-transfer costs;

2) an integer-linear-programming (ILP)-based approach,
which, unlike previous work [11]–[17] and [22]–[25],
does not rely on heuristic clustering algorithms or input/
output constraints for the reduction of the search space;

3) a demonstration that our solutions scale well: basic blocks
with more than a thousand instructions can be optimally
solved with or without input/output constraints;

4) an evaluation of the impact of area and register-file-port
constraints on the execution cycle count and code size for
various multimedia and cryptography benchmarks.

II. BACKGROUND AND RELATED WORK

Automatic hardware/software partitioning is a key problem
in the hardware/software codesign of embedded systems. The
traditional approach assumes a processor and a coprocessor
integrated through a bus interface [7]–[9]. The system is rep-
resented as a graph, where the graph nodes represent tasks or
basic blocks, and the edges are weighted based on the amount
of communication between the nodes. The hardware/software-
partitioning problem under area and schedule-length constraints
is formulated as an ILP problem in [9]. In [10], Arato shows that
hardware/software partitioning under area and schedule-length
constraints is NP-hard.

Custom-instruction processors are emerging as an effec-
tive solution in the hardware/software codesign of embed-
ded systems. In the context of custom-instruction processors,
hardware/software partitioning is done at the instruction-level
granularity. Application basic blocks are transformed into
data-flow graphs (DFGs), where the graph nodes represent
instructions similar to those in assembly languages, and the
edges represent data dependencies between the nodes. Profil-
ing analysis identifies the most time-consuming basic blocks.
Code transformations, such as loop unrolling and if-conversion,
selectively eliminate control-flow dependencies and merge
application basic blocks. Custom instructions provide effi-
cient hardware implementations for frequently executed DFG
subgraphs.

The partitioning of an application into base-processor in-
structions and custom instructions is done under certain con-
straints. First, there is a limited area available in the custom
logic. Second, the data bandwidth between the base processor
and the custom logic is still limited (see Fig. 1), and the data-
transfer costs have to be explicitly evaluated. Next, only a
limited number of input and output operands can be encoded
in a fixed-length instruction word. Further restrictions on the
structure of the custom instructions are needed to guarantee a
feasible schedule for the instruction stream.

Automatic identification of custom instructions has remained
an active area of research for more than a decade. The main-

Fig. 1. Datapath of the custom-instruction processor: The data bandwidth may
be limited by the available register-file ports or by the dedicated data-transfer
channels.

stream approach divides the custom-instruction identification
problem into the following two phases: 1) generation of a set
of custom-instruction templates and 2) selection of the most
profitable templates under area or schedule-length constraints.
Most of the early research and some of the recent work
[11]–[16] relied on incremental clustering of related DFG nodes
in order to generate a set of custom-instruction templates.
Alippi et al. [17] introduced the MaxMISO algorithm, which
partitions a DFG into maximal-input single-output subgraphs in
linear run-time. Binh et al. [18] proposed a branch-and-bound-
based algorithm for the selection problem in order to minimize
the area cost under schedule-length and power-consumption
constraints. Sun et al. [19] imposed no explicit constraints
on the number of input and output operands for custom in-
structions and formulated custom instruction selection as a
mathematical-optimization problem.

Cheung et al. [20] generated custom-instruction templates
based on exhaustive search. The exhaustive approach is not
scalable, since the number of possible templates (DFG sub-
graphs) grows exponentially with the size of the DFGs.
Atasu et al. [21] introduced constraints on the number of input
and output operands for subgraphs and showed that applica-
tion of a constraint-propagation technique could significantly
reduce the exponential search space. Additionally, Atasu et al.
proposed a greedy algorithm, which iteratively selects nonover-
lapping DFG subgraphs having maximal speed-up potential
based on a high level metric. The proposed technique is
often limited to DFGs with a few hundred nodes, and the
input/output constraints must be tight enough to reduce the ex-
ponential worst case time complexity. The work of Atasu et al.
showed that clustering based approaches (e.g., [14]) or single
output operand restriction, (e.g., [17]) could severely reduce the
achievable speed-up using custom instructions.

Cong et al. [23] proposed a dynamic-programming-based
algorithm, which enumerates single-output subgraphs with a
given number of inputs. Yu and Mitra [24] show that subgraph
enumeration under input and output constraints can be done
much faster if the additional connectivity constraint is imposed
on the subgraphs. Pozzi et al. [22] further optimized the al-
gorithm of Atasu [21] and show that enumerating connected
subgraphs only can substantially reduce the speed-up potential.
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In [25], Biswas et al. proposed an extension to the
Kernighan–Lin heuristic, which is, again, based on input and
output constraints. This approach does not evaluate all feasible
subgraphs. Therefore, an optimal solution is not guaranteed.
In [26], Bonzini and Pozzi derived a polynomial bound on
the number of feasible subgraphs if the number of inputs and
outputs for the subgraphs are fixed. However, the complexity
grows exponentially as the input/output constraints are relaxed.
Performance of the proposed algorithm is reported to be similar
to the performance of the enumeration algorithm described in
[21] and [22].

Leupers and Marwedel [27] described a code-selection
technique for irregular datapaths with complex instructions.
Clark et al. [16] formulated the problem of matching a library of
custom-instruction templates with application DFGs as a sub-
graph isomorphism problem. Peymandoust et al. [28] proposed
a polynomial-manipulation-based technique for the matching
problem. Cong et al. [23] made use of isomorphism testing to
determine whether enumerated DFG subgraphs are structurally
equivalent. Cheung et al. [29] employed model equivalence
checking to verify whether generated subgraphs are function-
ally equivalent to a predesigned set of library components.

Clark et al. [30] proposed a reconfigurable array of functional
units tightly coupled with a general-purpose processor that can
accelerate data-flow subgraphs. A microarchitectural interface
and a compilation framework allow a transparent instruction-set
customization. Dimond et al. [31] introduced a customizable
soft processor with multithreading support. Techniques that
can exploit structural similarities across custom instructions for
area-efficient synthesis are described in [32]–[34].

The speed-up obtainable by custom instructions is limited
by the available data bandwidth between the base processor
and custom logic. Extending the core register file to support
additional read and write ports improves the data bandwidth.
However, additional ports result in increased register-file size,
power consumption, and cycle time. The Tensilica Xtensa [5]
uses custom state registers to explicitly move additional input
and output operands between the base processor and custom
units. Binding of base-processor registers to custom state regis-
ters at compile time reduces the amount of data transfers. Use
of shadow registers [35] and exploitation of forwarding paths
of the base processor [36] can improve the data bandwidth.

Another potential complexity in the design of custom-
instruction processors is the difficulty of encoding multiple
input and output operands within a fixed-length instruction
word. Issuing explicit data-transfer instructions to and from
custom state registers is a way of encoding the additional input
and output operands. An orthogonal approach proposed by
Lee et al. [37] restricts the input and output operands for
custom instructions to a subset of the base-processor registers.
Tensilica Xtensa LX processors [6] introduce flexible
instruction-encoding support for multioperand instructions,
known as FLIX, in order to address the encoding problem.

In this paper, we extend the material described in [53] and
[54]. We assume a baseline machine with architecturally visible
state registers and support for explicit data-transfer instructions.
We do not constrain the number of input and output operands
for custom instructions. However, we explicitly account for the

TABLE I
COMPARISON WITH SOME STATE-OF-THE-ART TECHNIQUES

data-transfer cycles between the base processor and the custom
logic if the number of inputs or outputs exceed the available
register-file ports. We explore compiler transformations, such as
if-conversion [45] and loop unrolling, that can eliminate control
dependencies, and we apply our algorithms on predicated basic
blocks.

Today’s increasingly advanced ILP solvers, such as
CPLEX [42], are often able to efficiently solve problems with
thousands of integer variables and tens of thousands of linear
constraints. To take advantage of this widely used technology,
we formulate the custom-instruction identification problem as
an ILP in Section IV. We show that the number of integer
variables and the number of linear constraints used in our ILP
formulation grow only linearly with the size of the problem. In
Section V, we integrate our ILP-based solution into an iterative
algorithm, used also in [21] and [22], which reduces the search
space based on a most profitable subgraph first approach.

In Section VII-C, we provide two real-life examples on
which the algorithms of [21] and [22] miss optimal solutions
since the subgraph-enumeration algorithm fails to complete
within 24 h when the input/output constraints are loose or
removed. Optimizing the same high-level metric, our ILP ap-
proach locates optimal solutions in only a few seconds in
both cases. We provide a detailed run-time comparison in
Section VII-H. Table I compares our approach with some state-
of-the-art techniques in terms of the supported features.

III. OVERALL APPROACH

Fig. 2 shows our tool chain called Custom Hardware Instruc-
tion Processor Synthesis (CHIPS). We use the Trimaran [41]
framework to generate the control- and data-flow information
and to achieve basic-block level profiling of a given application.
Specifically, we work with Elcor, the back-end of Trimaran.
We operate on the Elcor intermediate representation after the
application of classical compiler optimizations. We implement
an if-conversion pass that selectively eliminates control-flow
dependencies due to conditional branches. Immediately prior
to register allocation, we apply our algorithms to identify the
custom instructions.

Section IV describes a scalable ILP formulation that iden-
tifies the most promising data-flow subgraphs as custom-
instructions templates. Our ILP formulation guarantees a
feasible schedule for the generated templates. Furthermore, our
ILP formulation explicitly calculates the data-transfer costs and
critical-path delays and identifies the templates that reduce the
schedule length most. We use the industry-standard CPLEX
Mixed Integer Optimizer [42] within our algorithms to solve
the ILP problems we generate.

We iteratively generate a set of custom-instruction templates
based on ILP as described in Section V. We group structurally
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Fig. 2. CHIPS: We integrate our algorithms into Trimaran [41]. Starting
with C/C++ code, we automatically generate behavioral descriptions of custom
instructions in VHDL, a high-level MDES, and assembly code.

equivalent templates within isomorphism classes as custom-
instruction candidates. We generate the behavioral descriptions
of custom-instruction candidates in VHDL, and we produce
area and delay estimates using Synopsys Design Compiler.
We select the most profitable candidates under area constraints
based on a Knapsack model described in Section VI.

Once the most profitable custom-instruction candidates are
selected under area constraints, we automatically generate
high-level machine descriptions (MDES) [43] supporting the
selected candidates. After the generation of MDES, we insert
the custom instructions in the code and replace the matching
subgraphs. Finally, we apply standard Trimaran scheduling and
register-allocation passes, and we produce the assembly code
and scheduling statistics.

IV. DEFINITIONS AND PROBLEM FORMULATION

We represent a basic block using a directed acyclic graph
G(V ∪ V in, E ∪ Ein), where nodes V represent operations,
edges E represent flow dependencies between operations,
nodes V in represent input variables of the basic block, and
edges Ein connect input variables V in to consumer operations
in V . Nodes V out ⊆ V represent operations generating output
variables of the basic block.

A custom-instruction template T is a subgraph of G, induced
by a subset of the nodes in V . We associate with each graph
node a binary decision variable xi that represents whether the
node is contained in the template (xi = 1) or not (xi = 0).
We use x′

i to denote the complement of xi (x′
i = 1 − xi). A

template T is convex if there exists no path in G from a node

u ∈ T to another node v ∈ T , which involves a node w /∈ T .
The convexity constraint is imposed on the templates to ensure
that no cyclic dependencies are introduced in G so that a
feasible schedule can be achieved.

We associate with every graph node vi a software latency si

and a hardware latency hi, where si is an integer and hi is real.
Software latencies give the time in clock cycles that it takes to
execute the operations on the pipeline of the base processor.
Hardware latencies are given in a unit of clock cycles. These
values are calculated by synthesizing the operators and normal-
izing their delays to a target cycle time.

Given RFin read ports and RFout write ports supported by
the core register file, we assume that first RFin input operands
can be read and that first RFout output operands can be written
back free of cost by the custom instructions. We assume that the
cost of transferring additional RFin inputs is c1 cycles, and the
cost of transferring additional RFout outputs is c2 cycles.

We use the following indexes in our formulations:
I1 Indexes for nodes vin

i ∈ V in;
I2 Indexes for nodes vi ∈ V ;
I3 Indexes for nodes vi ∈ V out;
I4 Indexes for nodes vi ∈ V/V out.

We define the set of immediate successors of nodes in V in as
follows:

Succ(i ∈ I1) =
{
j ∈ I2|∃ e ∈ Ein : e = (vin

i , vj)
}

.

We define the set of immediate successors and the set of
immediate predecessors of nodes in V as follows:

Succ(i ∈ I2) = {j ∈ I2|∃ e ∈ E : e = (vi, vj)}
Pred(i ∈ I2) = {j ∈ I2|∃ e ∈ E : e = (vj , vi)} .

A. Calculation of Input Data Transfers

We introduce an integer decision variable Nin to compute the
number of input operands of a template T . An input operand
vin

i ∈ V in of the basic block is an input operand of T if it has
at least one immediate successor in T . A node vi ∈ V defines
an input operand of T if it is not in T and it has at least one
immediate successor in T

Nin =
∑
i∈I1


 ∨

j∈Succ(i)

xj


+

∑
i∈I2


x′

i∧


 ∨

j∈Succ(i)

xj





 . (1)

We calculate the number of additional data transfers from the
core register file to the custom logic as DTin

DTin ≥ Nin/RFin − 1, DTin ∈ Z+ ∪ {0}. (2)

A constraint on the maximum number of input operands can be
imposed as follows:

Nin ≤ MAXin. (3)

B. Calculation of Output Data Transfers

We introduce an integer decision variable Nout to compute
the number of output operands of a template T . A node
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vi ∈ V out, defining an output operand of the basic block,
defines an output operand of T if it is in T . A node vi ∈ V/V out

defines an output operand of T if it is in T , and it has at least
one immediate successor not in T

Nout =
∑
i∈I3

xi +
∑
i∈I4


xi ∧


 ∨

j∈Succ(i)

x′
j





 . (4)

We calculate the number of additional data transfers from the
custom logic to the core register file as DTout

DTout ≥ Nout/RFout − 1, DTout ∈ Z+ ∪ {0}. (5)

A constraint on the maximum number of output operands can
be imposed as follows:

Nout ≤ MAXout. (6)

C. Convexity Constraint

For each node vi ∈ V , we introduce two new decision vari-
ables Ai and Di. Ai represents whether vi has an ancestor in
T (Ai = 1) or not (Ai = 0). Similarly, Di represents whether
vi has a descendant in T (Di = 1) or not (Di = 0).

A node has an ancestor in T if it has at least one immediate
predecessor that is already in T or having an ancestor in T

Ai =

{
0 if Pred(i) = ∅(∨

j∈Pred(i)(xj ∨ Aj)
)

otherwise. (7)

A node has a descendant in T if it has at least one immediate
successor that is already in T or having a descendant in T

Di =

{
0 if Succ(i) = ∅(∨

j∈Succ(i)(xj ∨ Dj)
)

otherwise. (8)

To preserve the convexity, there should be no node that is not
in T having both an ancestor and a descendant in T

x′
i ∧ Ai ∧ Di = 0, i ∈ I2. (9)

D. Critical-Path Calculation

We estimate the execution latency of a template T on the
custom logic by quantizing its critical-path length. We calcu-
late the critical-path length by applying an as-soon-as-possible
scheduling without resource constraints.

For each node vi ∈ V , we introduce a real decision variable
li ∈ R, which represents the time in which the result of vi be-
comes available when T is executed on custom logic, assuming
all of its input operands are available at time zero

li ≥ hixi if Pred(i) = ∅
li ≥ lj + hixi, j ∈ Pred(i). (10)

The largest li value gives us the critical-path length of T . We
introduce an integer decision variable L(T ) ∈ Z+ to quantize
the critical-path length

L(T ) ≥ li, i ∈ I2. (11)

E. Objective

Our objective is to maximize the decrease in the schedule
length by moving template T from software to the custom logic.
We estimate the software cost of T as the sum of the software
latencies of the instructions contained in T . When the template
is executed on the custom logic, the number of cycles required
to transfer its input and output operands from and to the
core register file are c1DTin and c2DTout, respectively. L(T )
provides the estimated execution latency of the template on
the custom logic once all of its inputs are ready. The objective
function of the ILP is defined as follows:

Z(T )=max
∑
i∈I2

(sixi)−c1DTin−c2DTout−L(T ). (12)

F. Scalability of the Model

Our ILP model scales linearly with the size of the problem.
The overall problem is represented using O(|V ∪ V in|) integer
decision variables and O(|E ∪ Ein|) linear constraints.

V. TEMPLATE GENERATION

Our template-generation algorithm iteratively solves a set of
ILP problems in order to generate a set of custom-instruction
templates. For a given application basic block, the first tem-
plate is identified by solving the ILP problem as defined in
Section IV. After the identification of the first template, DFG
nodes contained in the template are collapsed into a single node,
and the same procedure is applied for the rest of the graph.
The process is continued until no more profitable templates
are found. We apply the template-generation algorithm on all
application basic blocks and generate a unified set of custom-
instruction templates.

Providing a good upper bound on the value of the objective
function can greatly enhance the performance of the ILP solver
without affecting the optimality of the solution. ILP solvers rely
on well-known optimization techniques such as branch-and-
bound and branch-and-cut for efficiently exploring the search
space. These techniques build a search tree, where the nodes
represent subproblems of the original problem. Given a good
upper bound on the objective value, the number of branches
and the size of the search tree can be significantly reduced.
In our case, we observed that the relaxation of the convexity
constraint simplifies the problem and allows us to obtain good
upper bounds on the objective value of the unrelaxed problem
within a short time. Moreover, given the iterative nature of
the template-generation algorithm, the objective value of the
previous iteration provides a second and sometimes tighter
upper bound.

A formal description of our approach is given in Fig. 3. We
first solve the relaxed problem, where the convexity constraint
is not imposed on the templates. If the identified template is
convex, we add it to our template pool. Otherwise, the solution
identified provides an upper bound on the objective value of the
unrelaxed problem. We solve the problem once more with the
convexity constraint imposed using the improved upper bound.
Initially, the upper bound is set to the value of the maximum
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Fig. 3. Template-generation algorithm iteratively solves a set of ILP prob-
lems. Providing a good upper bound on the objective value can dramatically
reduce the solution time.

integer (MAX_INT). As the iterations proceed, the DFG gets
smaller, the upper bound gets tighter, and these factors usually
decrease the solution time.

The objective of the iterative template-generation algorithm
is to generate custom-instruction templates covering applica-
tion DFGs as much as possible while avoiding the exponential
computational complexity of the subgraph-enumeration tech-
niques. Not allowing overlapping between templates guarantees
that the number of iterations will be O(Ntot), where Ntot

represents the total number of instructions in an application. In
practice, the number of iterations is much smaller than Ntot as
the templates we generate are often coarse grain.

At each iteration, we choose the template that provides the
highest objective value (i.e., the most profitable subgraph).
Although heuristic in nature, the iterative approach results in
reasonably good code coverage. In [38], Clark et al. combined
the subgraph-enumeration algorithm of [21] with a unate-
covering-based code-selection approach. The improvement in
speed-up over the iterative approach is reported as 1% only.

VI. TEMPLATE SELECTION

Once the template generation is done, we calculate the iso-
morphism classes using the nauty package [40]. We assume that
the set of generated templates T is partitioned into NG distinct
isomorphism classes

T = T1 ∪ T2 ∪ · · · ∪ TNG
. (13)

An isomorphism class defines a custom-instruction candidate
that can implement all the templates included in that class.

Once isomorphism classes are formed, we generate behavioral
descriptions of the custom-instruction candidates in VHDL. We
apply high-level synthesis, and we associate an area estimate
A(Ti) and a normalized critical-path estimate D(Ti) with each
custom-instruction candidate Ti.

The value of the objective function Z(T ) described in
Section IV-E provides an initial estimation of the reduction
in the schedule length by a single execution of the template
T ∈ Ti on the custom logic. We replace the estimated critical-
path length L(T ) with the more accurate result D(Ti) we obtain
from high-level synthesis in order to generate a refined esti-
mation of the reduction in the schedule length for the custom-
instruction candidate Ti

Z(Ti) = Z(T ) + L(T ) − D(Ti). (14)

Given that a template T ∈ Ti is executed F (T ) times by
a typical execution of the application, the total number of
executions of a custom-instruction candidate Ti is calculated
as follows:

F (Ti) =
∑
T∈Ti

F (T ), i ∈ {1, . . . , NG}. (15)

The overall reduction in the schedule length of the applica-
tion by implementing Ti as a custom instruction is estimated as
follows:

G(Ti) = Z(Ti) ∗ F (Ti). (16)

We formulate the problem of selecting the most profitable
custom-instruction candidates under an area constraint AMAX

as a Knapsack problem and solve it using ILP solvers

max
∑

i∈{1,...,NG}
G(Ti)yi

s.t.
∑

i∈{1,...,NG}
A(Ti)yi ≤ AMAX

yi ∈ {0, 1}, i ∈ {1, . . . , NG} (17)

where the binary decision variable yi represents whether the
candidate Ti is selected (yi = 1) or not (yi = 0).

Naturally, the number of custom-instruction candidates is
smaller than the number of custom-instruction templates we
generate. Hence, the number of integer decision variables used
in the Knapsack formulation is O(Ntot) and, in practice, much
smaller than Ntot. This allows us to solve the Knapsack prob-
lem optimally in all practical cases.

Our approach does not guarantee a globally optimal solution.
A truly optimal solution could be possible by enumerating all
possible subgraphs within the application DFGs. However, this
approach is not computationally feasible, since the number
of possible subgraphs grows exponentially with the size of
the DFGs. In [39], Yu and Mitra enumerate only connected
subgraphs having up to four input and two output operands and
do not allow overlapping between selected subgraphs. Although
the search space is significantly reduced by these restrictions, it
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is reported that optimal selection using ILP solvers occasionally
does not complete within 24 h.

VII. EXPERIMENTS AND RESULTS

A. Experiment Setup

We evaluate our technique by using Trimaran scheduling sta-
tistics to estimate the execution cycles and by using Synopsys
synthesis to estimate the area and delay for custom instructions.
1) MDES and Code Generation: We define a single-issue

baseline machine with predication support including 32 32-b
general-purpose registers and 32 1-b predicate registers. Our
baseline machine implements the HPL-PD architecture [44]
based on a high-level MDES model [43]. MDES requires spec-
ifications of the operation formats, resource usages, scheduling
alternatives, execution latencies, operand read and write laten-
cies, and reservation table entries for the instructions supported
by the architecture. We automatically generate the MDES en-
tries for the custom instructions identified by our algorithms.
We implement custom-instruction replacement using a tech-
nique similar to the one described by Clark et al. in [16].
We apply standard Trimaran scheduling and register-allocation
passes, and we produce the assembly code and scheduling
statistics.

We assume two-cycle software latencies for integer multi-
plication instructions and single-cycle software latencies for
the rest of the integer operations. We do not allow division
operations to be part of custom instructions due to their high
latency and area overhead. We exclude support for memory-
access instructions as part of custom instructions as well, in
order to avoid nondeterministic latencies due to the memory
system and the necessary control circuitry. We assume single-
cycle data-transfer latencies between general-purpose registers
and custom units (c1 = c2 = 1). We assume single-cycle copy
and update operations for transferring the predicate register-file
contents to and from the custom logic. We assume that given
RFin read ports and RFout write ports supported by the register
file, RFin input operands and RFout output operands can be
encoded within a single-instruction word.
2) Synopsys Synthesis: We calculate the hardware latencies

of various arithmetic and logic operations (i.e., hi values de-
scribed in Section IV) by synthesizing on United Microelec-
tronics Corporation’s (UMC’s) 130-nm standard cell library
using Synopsys Design Compiler and normalizing to the delay
of a 32-b ripple carry adder (RCA). Table II shows the relative
latency and area coefficients for some selected operators. Once
our algorithms identify the custom-instruction candidates, we
automatically generate their VHDL descriptions and synthesize
on the same library. If the critical-path delay of a candidate is
larger than the delay of a 32-b RCA, it is pipelined to ensure a
fixed clock frequency.
3) Benchmarks: We have applied our algorithms on a

number of cryptography and media benchmarks. We have
used highly optimized 32-b implementations of Advanced En-
cryption Standard (AES) encryption and decryption described
in [46], a FIPS-46-3 compliant fully unrolled Data Encryp-
tion Standard (DES) implementation [47], a loop-based and
a fully unrolled secure-hash-algorithm (SHA) implementa-

TABLE II
RELATIVE LATENCY AND AREA COEFFICIENTS FOR VARIOUS OPERATORS

BASED ON SYNTHESIS RESULTS ON UMC’S 130-nm PROCESS

Fig. 4. We apply an if-conversion pass before identifying custom instructions.
This reduces the number of execution cycles and the code size in most of the
cases.

tion from MiBench [48] and several other benchmarks from
MediaBench [49].
4) Run-Time Environment: We have carried out our experi-

ments on an Intel Pentium 4 3.2-GHz workstation with 1-GB
main memory, running Linux. We have developed our algo-
rithms in C/C++ and compiled with gcc-3.4.3 using −O2
optimization flag.

B. If-Conversion Results

We implement an if-conversion pass to selectively eliminate
the control-flow dependencies. This improves the scope of our
algorithms and enables us to identify coarser grain custom
instructions. We apply if-conversion only on the most time
consuming functions of the application. We partition control-
flow graphs into maximal single-entry single-exit regions and
convert each such region into a predicated basic block.

The results of our if-conversion pass on five MediaBench
benchmarks are shown in Fig. 4. We observe that the number
of execution cycles and the number of instructions in the code
are reduced in most of the cases, although this is not our
main objective. The remaining benchmarks are only marginally
affected, particularly because they already consist of large basic
blocks and contain few control-flow changes.

Table III shows the total number of basic blocks, the total
number of instructions, and the number of instructions within
the largest basic block for each benchmark. This information
is collected after the application of if-conversion and considers
basic blocks with positive execution frequencies only.
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TABLE III
INFORMATION ON BENCHMARKS: BB REPRESENTS BASIC BLOCK

Fig. 5. AES round transformation. Given an input constraint of four and
an output constraint of four, our algorithms successfully identify the four
parallel MixColumn Transformations within the round transformation as the
most promising custom-instruction candidate. None of the algorithms described
in [22] are able to identify this solution.

C. Examples of Custom Instructions

Our first example is the AES. The core of the AES encryption
is the AES round transformation (see Fig. 5), which operates
on a 128-b state. The state is often stored in four 32-b registers
called as the columns. The most compute-intensive part of AES
encryption is the MixColumn transformation that is applied
separately on each column. The AES implementation we use
unrolls two round transformations within a loop, resulting in
the largest basic block of the application. A second basic
block incorporates an additional round transformation, result-
ing in a total number of 12 MixColumn transformations in
the code.

Given an input constraint of one and an output constraint of
one, our algorithms successfully identify all 12 instances of the
MixColumn transformation in the code as the most promising
custom instruction for the application. Given an input con-
straint of two and an output constraint of two, our algorithms
successfully identify two parallel MixColumn transformations
within a round transformation as the most promising custom
instruction, finding all six instances in the code. Given an
input constraint of four and an output constraint of four, our
algorithms successfully identify the four parallel MixColumn
transformations within a round transformation, and all three
instances of the four-input four-output custom instruction are
matched. In all cases, our algorithms identify optimal solutions

Fig. 6. Optimal custom instruction implementing the DES rounds. Eight of
the inputs (SBs) are substitution table entries and eight of the outputs are the
addresses of the substitution table entries that should be fetched for the next
round. SK1 and SK2 contain the round key. Y represents the second half of the
current state, and the first half of the state for the next round is generated in X .
Fifteen instances of the same instruction are automatically identified from the
C code.

within a few seconds. On the other hand, the subgraph-
enumeration algorithm of [22] fails to complete for a four-
output constraint, and none of the approximate algorithms
described in [22] are able to identify four MixColumn trans-
formations in parallel.

The synthesis results show that the critical-path delay of
the MixColumn transformation is around one-fourth of a
32-b RCA, and its area cost is less than the area cost of two
32-b RCAs. The transformation can be implemented as a
single-cycle instruction. In fact, it is the most likely choice
for a manual designer as a custom instruction, as shown by
Seng in [4]. Given a register file with two read ports and two
write ports, we could as well implement two parallel MixCol-
umn transformations as a single-cycle instruction. Obviously,
this solution would incur two times more area overhead. Given
a register file with four read ports and four write ports, we could
even implement four parallel MixColumn transformations as a
single-cycle instruction depending on our area budget.

In Fig. 6, we show the most promising custom instruction our
algorithms automatically identify from the DES C code when
no constraints are imposed on the number of input and output
operands. An analysis reveals that the custom instruction im-
plements the complete data processing within the round trans-
formations of DES. It has 11 inputs and 9 outputs, 15 instances
are automatically matched in the C code. To our knowledge, no
other automated technique has been able to achieve a similar
result. Subgraph-enumeration algorithms, such as in [21], [22],
and [24], are impracticable when the input/output constraints
are removed or loose and fail to identify custom instructions
such as the one shown in Fig. 6.

An analysis shows that eight of the inputs of the custom
instruction of Fig. 6 are static lookup-table entries (SBs), and
eight of the outputs (ADRs) contain addresses of the lookup-
table entries that should be fetched for the next round. Two of
the inputs (SK1, SK2) contain the DES round key, the input
Y and the output X represents the DES encryption state. The
custom instruction implements 35 base-processor instructions,
which are mostly bitwise operations. The synthesis results show
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Fig. 7. AES decryption: Percent reduction in the execution cycles.
Register file supports four read ports and four write ports (i.e., RFin = 4,
RFout = 4). An input constraint of MAXin and an output constraint of
MAXout can be imposed on the custom instructions, or these constraints can
be removed (i.e., MAXin = ∞, MAXout = ∞).

that the critical path of the custom instruction is around one-
eight of the critical path of a 32-b RCA. Hence, the custom
instruction can be executed within a single cycle. However, as
the register file has a limited number of read and write ports,
we need additional data-transfer cycles to transfer the input and
output operands between the core register file and the custom
units. In practice, the granularity of the custom instruction is
coarse enough to make it profitable despite the data-transfer
overhead, and this overhead is explicitly calculated by our
algorithms.

D. Effect of Input/Output Constraints

In this paper, we use input/output constraints to control the
granularity of the custom instructions and to capture structural
similarities within an application. Our motivation is that ap-
plications often contain repeated code segments that can be
characterized by the number of input and output operands.
When the input/output constraints are tight, we are more likely
to identify fine-grain custom instructions. As we demonstrate in
Section VII-G, fine-grain custom instructions often have more
reuse potential. Relaxation of the constraints results in coarser
grain custom instructions (i.e., larger data-flow subgraphs).
Coarse-grain instructions are likely to provide higher speed-up,
although at the expense of increased area.

In Figs. 7 and 8, we analyze the effect of different input
and output constraints (i.e., MAXin, MAXout) on the speed-
up potentials of custom instructions. For each benchmark, we
scale the initial cycle count down to 100, and we plot the
percent decrease in the cycle count by introducing custom
instructions for a range of area constraints (up to 48 RCAs).
At the end of this analysis, we locate the Pareto optimal points
(i.e., input/output combinations) that maximize the cycle-count
reduction at each area constraint.

In Fig. 7, we assume a register file with four read ports and
four write ports, and we explore the achievable speed-up for
AES decryption. The main difference between AES decryption
and AES encryption is the InvMixColumn transformations that

Fig. 8. DES: Percent reduction in the execution cycles. Register file sup-
ports two read ports and one write port (i.e., RFin = 2, RFout = 1).
An input constraint of MAXin and an output constraint of MAXout can be
imposed on the custom instructions, or these constraints can be removed (i.e.,
MAXin = ∞, MAXout = ∞).

replace MixColumn transformations in the round transforma-
tion. The area cost of the InvMixColumn transformation is
around the area cost of four RCAs. Fig. 7 shows that, at an area
constraint of four adders, the Pareto optimal solution is obtained
using four-input one-output custom instructions. On the other
hand, at an area constraint of 16 adders, four-input four-output
custom instructions provide the Pareto optimal solution. This
solution implements four InvMixColumn transformations in
parallel as a single-cycle instruction. We observe that removing
the input/output constraints completely improves the perfor-
mance slightly until an area constraint of 40 adders.

In Fig. 8, we assume a register file with two read ports
and single write port, and we explore the achievable speed-
up for DES. We observe that, when the area budget is below
16 adders, Pareto optimal solutions are generated by four-
input four-output custom instructions. However, we obtain the
highest reduction in the execution cycles when the input/output
constraints are removed, at an area cost of 20 adders.

E. Effect of Register-File Ports

In Figs. 9 and 10, we demonstrate the improvement in perfor-
mance using additional register-file ports. We scale the initial
cycle count down to 100, and we plot the percent reduction
in the execution cycles for a range of area constraints. For
each (RFin, RFout) combination, we explore the following
six different (MAXin, MAXout) combinations: (2, 1), (2, 2),
(4, 1), (4, 2), (4, 4), and (∞,∞). At each area constraint,
we choose the Pareto optimal solution given by one of the
(MAXin, MAXout) combinations. A monotonic decrease in the
execution cycles with the increasing number of register-file
ports is clearly shown in Figs. 9 and 10. We observe that a
register file with two read ports and two write ports is often
more beneficial than a register file with four read ports and
a single write port. Additionally, a register file with four read
ports and two write ports generates favorable design points.
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Fig. 9. DES: Effect of increasing the number of register-file ports (i.e., RFin

and RFout) on the performance. At each area constraint, we choose the best
MAXin, MAXout combination that minimizes the execution time.

Fig. 10. Djpeg: Effect of increasing the number of register-file ports (i.e.,
RFin and RFout) on the performance. At each area constraint, we choose the
best MAXin, MAXout combination that minimizes the execution time.

In Fig. 11, we analyze the four functions that constitute
92% of the run-time of the djpeg benchmark. Given suf-
ficient register-file ports and area, custom instructions pro-
vide more than 2.8 times speed-up for jpeg_idct_islow and
h2_v2_fancy_upsample functions, whereas the acceleration for
other functions is limited. The last column shows that given
four read and four write ports, we achieve a 47% reduction in
the execution cycles of the overall application at an area cost of
256 adders. This translates to a 1.89 times overall speed-up. We
observe that most of the area is consumed on accelerating the
jpeg_idct_islow function (172 adders for maximal speed-up).
Fig. 10 shows the area-delay tradeoffs in the design space in
more detail. As an example, we could choose to use a register
file with four read and two write ports and achieve an overall
speed-up of 1.63 times at an area cost of 128 adders.

F. Effect of Loop Unrolling

In Fig. 12, we demonstrate the effect of loop unrolling on
the performance of SHA and on the quality of the custom

Fig. 11. Djpeg: Increasing the number of register-file ports (i.e., RFin,
RFout) improves the performance. First four columns depict the maximal
achievable speed-up for the four most time consuming functions. The last
column depicts the maximal achievable speed-up for the overall application.
Respective area costs are given in terms of RCAs.

Fig. 12. Loop unrolling improves the performance and enables coarser grain
custom instructions. SHA (2) represents the SHA implementation where the
main loop is unrolled by two. Area costs in terms of RCAs and the solution
times required to identify the custom instructions are shown.

instructions our algorithms generate. We consider the following
five different SHA implementations: the first implementation
does not unroll the loops; the next three implementations have
their loops unrolled two, five, and ten times; and the fifth
implementation has all SHA loops fully unrolled. We impose
no constraints on the number of inputs and outputs for custom
instructions (i.e., MAXin = ∞, MAXout = ∞) on the first
five columns. The last column again targets the fully unrolled
implementation and imposes MAXin = 4 and MAXout = 2.

We observe that the solution time required to identify the
custom instructions is less than 0.5 s for the first five columns.
Loop unrolling increases the size of the basic blocks and
results in coarser grain custom instructions. The number of
execution cycles monotonically decreases with the amount
of unrolling. However, the area overhead also monotonically
increases. We observe that, in the last column, by imposing
constraints on the number of input and outputs, we identify
smaller custom instructions, but we find several equivalent
instances of these instructions in the code. The result is a fair
speed-up at a reduced area cost. The last column provides a
speed-up of 1.56 times over the highest performing software
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Fig. 13. Loop unrolling increases the number of instructions in the code (up
to 443%). Compression due to custom instructions often compensates for this
effect.

Fig. 14. Granularity versus reusability. Each point represents a custom-
instruction candidate.

implementation at the cost of only 36 adders. In this case,
the time required to identify the custom instructions by our
algorithms is around 11 h.

In Fig. 13, we consider the same design points shown in
Fig. 12, and we analyze the effect of loop unrolling on the
code size. We observe that, although loop unrolling increases
the number of instructions, the compression due to the use of
custom instructions often compensates for this effect. We note
that the third column, where the main loop of SHA is unrolled
five times, provides a speed-up of 1.68 times over the highest
performing software implementation at an area cost of 100
adders and results in a code-size reduction of 20% over the most
compact software implementation. The associated solution time
is less than 0.2 s.

G. Granularity Versus Reusability

We define the granularity of a custom-instruction candidate
as the number of base-processor instructions contained in it.
We define the reusability of a custom-instruction candidate as
the number of structurally equivalent instances of the candidate
identified in the application DFGs. Fig. 14 shows the granu-
larity of the custom-instruction candidates we have generated

from four cryptography benchmarks versus their reusability.
We observe that candidates with high reusability are often
fine grained, and coarse-grain candidates usually have limited
reusability. In one case, we identify a candidate consisting
of 1065 base-processor instructions, which has only a single
instance in the code. In another case, we identify a candidate
consisting of only three base-processor instructions, which is
reused 80 times. Another candidate identified by our algo-
rithms consists of 45 base-processor instructions, and it has
12 instances in the code. Exploring different granularities in
this manner allows us to identify the most promising area and
performance tradeoffs within the design space.

H. Run-Time Results

The runtime of our tool chain is dominated by the template-
generation algorithm described in Section V that solves a series
of ILP problems. At each iteration, we first solve a relaxed
problem, where the convexity constraint is not imposed on
the custom-instruction templates. If the solution to the relaxed
problem is not a convex template, we impose the convexity
constraint and solve once more. Often, the first iteration of
the template-generation algorithm is the most time consum-
ing one. Table IV describes ILP statistics associated with
the first iteration of the template-generation algorithm on the
largest basic blocks of four cryptography benchmarks for four
(MAXin, MAXout) combinations [i.e., (4, 1), (4, 2), (4, 4),
and (∞,∞)]. While generating the results, we set (RFin = 2,
RFout = 1) if (MAXin = ∞, MAXout = ∞). Otherwise, we
set (RFin = MAXin, RFout = MAXout).

We observe that the solution time is usually a few seconds.
Quite often, the relaxed problem generates a convex template,
and we skip solving the original problem with the convex-
ity constraint. The solution time may exceed 1 h in some
cases as it happens for fully unrolled SHA when MAXout = 2
or MAXout = 4. In these two cases, we observe that the
upper bound provided by the relaxed problem considerably
pulls down the solution time for the original problem. We
observe that our algorithms are extremely efficient when the
input and output constraints are removed (i.e., MAXin = ∞,
MAXout = ∞). The first iteration of the template-generation
algorithm on fully unrolled SHA takes only 0.22 s.

In Table V, we show the solution times for the first iteration
of the exact algorithm of [22] on the same benchmarks and for
the same (MAXin, MAXout) combinations given in Table IV.
We also show the solution times required by our algorithm,
which are sums of the solution times of the relaxed and orig-
inal problems from Table IV. We note that given (RFin =
MAXin, RFout = MAXout), the objective function of our ILP
formulation is equivalent to the merit function of [22]. We
observe that the algorithm of [22] is, in general, efficient
when the input/output constraints are tight (i.e., MAXout =
1 or MAXout = 2). However, it fails to complete for DES
within 24 h even if MAXout = 1. The algorithm of [22] be-
comes extremely inefficient when the constraints are loose (i.e.,
MAXout = 4) or removed (i.e., MAXout = ∞) and fails to
complete for all four benchmarks within 24 h. Our algorithm
is faster in most of the cases and successfully completes in all
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TABLE IV
SIZE OF THE LARGEST BASIC BLOCK (BB), THE NUMBER OF INTEGER DECISION VARIABLES (VARS), AND THE NUMBER OF LINEAR CONSTRAINTS

(CONSTRS) FOR THE RELAXED PROBLEM AND FOR THE ORIGINAL PROBLEM WITH THE CONVEXITY CONSTRAINT. WE SHOW THE SOLUTION TIMES

ASSOCIATED WITH THE FIRST ITERATION OF THE TEMPLATE-GENERATION ALGORITHM FOR FOUR (MAXin, MAXout) COMBINATIONS

TABLE V
RUN-TIME COMPARISON WITH THE EXACT ALGORITHM OF [22]. WE

SHOW THE SOLUTION TIMES IN SECONDS FOR FOUR (MAXin, MAXout)
COMBINATIONS. REFERENCE [22] FAILS TO COMPLETE WITHIN 24 h FOR

ALL FOUR BENCHMARKS GIVEN MAXout = 4 AND MAXout = ∞

Fig. 15. All benchmarks: Increasing the number of register-file ports (i.e.,
RFin, RFout) improves the performance. Area costs in terms of RCAs and
solution times are shown. For each benchmark, the highest performing code
with and without compiler transformations is taken as the base. The largest
solution time observed is only 5 min.

of the cases. We have obtained optimal ILP results in all of our
experiments.

I. Overall Results

In Fig. 15, we describe the reduction in the execution-cycle
count for all the benchmarks from Table III while increasing the
number of register-file ports. The area costs and the solution
times are given on top of the columns for each benchmark.
Using only a limited amount of hardware resources, we obtain
a speed-up of up to 4.3 times for AES encryption, 6.6 times
for AES decryption, 2.9 times for DES, 5.8 times for IDEA,
2.7 times for g721decode, 1.7 times for mpeg2encode, and
4.7 times for rawcaudio. Except for a few cases, we obtain the
highest performing solutions when we remove the input/output
constraints. In most cases, the highest performing solution is
found in only a few seconds, but it may take up to a few minutes

Fig. 16. All benchmarks: Increasing the number of register-file ports (i.e.,
RFin, RFout) reduces the number of instructions in the code. For each
benchmark, the smallest code with and without compiler transformations is
taken as the base.

as observed for DES and mpeg2enc. For the same design points,
Fig. 16 shows the reduction in the total number of instructions
in the code. A reduction of up to 72 large benchmarks with
small kernels, the code-size reduction can be as small as 6%, as
it is observed for djpeg.

VIII. CONCLUSION

In this paper, we describe an ILP-based system called CHIPS
for identifying custom instructions given the available data
bandwidth and transfer latencies between the base processor
and the custom logic. We iteratively solve a set of ILP problems
in order to generate a set of custom-instruction templates. At
each iteration, ILP orders feasible templates based on a high-
level metric and picks the one that offers the highest reduction
in the schedule length. The iterative algorithm aims to maxi-
mize the code covered by custom instructions and guarantees
that the number of generated custom-instruction templates is
at most linear in the total number of instructions within the
application. After template generation, we identify structurally
equivalent templates based on isomorphism testing, and we
select the most profitable templates under area constraints based
on a Knapsack model.

Our approach involves a baseline machine with architec-
turally visible state registers. We enable designers to option-
ally constrain the number of input and output operands for
custom instructions. We demonstrate that our algorithms are
able to handle benchmarks with large basic blocks consisting of
more than 1000 instructions, with or without the input/output
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constraints. Our experiments show that the removal of
input/output constraints results in the highest performing solu-
tions. We demonstrate that these solutions cannot be covered by
the subgraph-enumeration algorithms of [21] and [22], which
rely on input/output constraints for reducing the search space.
On the other hand, we observe that input/output constraints
help us identify frequently used code segments and efficiently
explore the area/performance tradeoffs in the design space.

Our approach does not guarantee a globally optimal solution.
Whether a truly optimal algorithmic flow exists is still an
open-research question. We believe that our solution can still
be improved by the following extensions: 1) combining our
approach with pattern-matching techniques [16], [27]–[29] in
order to improve the utilization of the custom instructions
we generate and 2) integrating our approach with datapath-
merging techniques [32]–[34] in order to exploit partial re-
source sharing across custom instructions for area-efficient
synthesis.

We are currently exploring techniques that enable custom
instructions to access memory hierarchy [50], including
automated partitioning of the program data between on- and
off-chip memories. We hope to extend our approach to cover
run-time reconfigurable processors [51] and heterogeneous
multiprocessor systems [52].
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