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The multivariate Gaussian distribution is often used to model correlations between stochastic
time-series, and can be used to explore the effect of these correlations across N time-series in
Monte-Carlo simulations. However, generating random correlated vectors is an O(N2) process,

and quickly becomes a computational bottleneck in software simulations. This article presents
an efficient method for generating vectors in parallel hardware, using N parallel pipelined
components to generate a new vector every N cycles. This method maps well to the embedded
block RAMs and multipliers in contemporary FPGAs, particularly as extensive testing shows that
the limited bit-width arithmetic does not reduce the statistical quality of the generated vectors.
An implementation of the architecture in the Virtex-4 architecture achieves a 500MHz clock-rate,
and can support vector lengths up to 512 in the largest devices. The combination of a high clock-
rate and parallelism provides a significant performance advantage over conventional processors,
with an xc4vsx55 device at 500MHz providing a 200 times speedup over an Opteron 2.6GHz using
an AMD optimised BLAS package. In a case study in Delta-Gamma Value-at Risk, an RC2000
accelerator card using an xc4vsx55 at 400MHz is 26 times faster than a quad Opteron 2.6GHz
SMP.
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1. INTRODUCTION

An important element of many simulations is the multivariate Gaussian dis-
tribution, which captures correlations between different random factors. The
multivariate Gaussian distribution can be used to model, for instance, the
correlation between changes in different financial market indices, or the cor-
relation between temperature and demand for ice cream. The capability of
capturing complex correlations between many random factors, such as those
within a complex portfolio containing tens or hundreds of assets, is a key
benefit.

Generating random samples from a multivariate Gaussian distribution is
a computationally demanding process, since it is based on matrix-vector mul-
tiplication to capture the correlations. The complexity of this process grows
quadratically with vector size. Large clusters, as seen in large compute farms
that banks use to calculate overnight Value-at-Risk, have been used to address
this complexity. This article offers an alternative solution: adopting reconfig-
urable hardware for accelerating generation of multivariate Gaussian random
vectors. This solution enables complete simulations to be built using reconfig-
urable hardware for many applications.

To describe our approach, this article presents:

—An analysis of hardware performance for Gaussian vector generation. This
establishes limits on the size of vectors that can be generated in hardware
in terms of available multiplier and RAM resources, and examines methods
for storing coefficients in fixed-point.

—An abstract architecture for implementing vector generation in FPGAs,
designed to serially generate vectors of size N over N cycles. In the Virtex-
4 xc4vsx55 this architecture can operate at 500MHz, and provides perfor-
mance over 200 times that of a single 2.6GHz Opteron.

—An architecture for implementing a Delta-Gamma Value-at-Risk simulation,
using an xc4vsx55 part on the RC2000 platform, demonstrating a 26 times
speed-up over parallelised software on a quad Opteron 2.6GHz, reducing
simulation time from 30 to 1.1 seconds when simulating a 448 asset portfolio.

—An examination of the statistical quality of generated vectors, showing that
the Virtex-4 fixed-point vector generator provides both high quality marginal
Gaussian distributions, and imposes the correct correlation structure on the
generated vectors.

2. ALGORITHM AND ANALYSIS

The univariate Gaussian distribution X ∼ Norm(µ, σ 2) is described through
its Probability Density Function (PDF):

P(X = x) =
1

σ
√

2π
exp

(

−(x − µ)2

2σ 2

)

. (1)
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Extended to the multivariate case, the distribution X N ∼ Norm(m, S) de-
scribes the PDF of a vector of length N:

P(X N = x) =
exp

(

− 1
2 (x − m)TS−1(x − m)

)

(2π)N/2
√

det(S)
. (2)

The vector m contains the mean of each component in the vector, that is,
E(X N). The matrix S describes the covariance matrix between components.
The diagonal elements Si,i describe the marginal variances of the vector com-
ponents (the variance of the component when treated as a univariate PDF),
while the off-diagonal elements describe the degree of correlation between com-
ponents. Large values of Si, j indicate high levels of correlation, so if component
i increases then it is likely that component j will also increase, while negative
values make it likely that if one decreases the other will increase (and vice
versa). For example, one might expect the correlation between the stock re-
turns of Microsoft and Oracle to be significant as they are in similar markets,
but the correlation of Microsoft and British Petroleum stock returns would
probably be lower.

2.1 Generating Multivariate Gaussian Samples

To generate random samples from X N it is necessary to form a vector r of
independent univariate Gaussian samples from some infinite source r1, r2, ....
The desired correlation structure is then applied to r by multiplication with a
lower triangular matrix A, where S = AAT . The means of the components are
then adjusted by adding the vector m. Thus the generation of the k-th vector
xk is calculated as follows [Barr and Slezak 1972]:

rk = (rkN+1, rkN+2, ..., rkN+N)T (3)

xk = Ark + m. (4)

If Equation (4) is expanded the structure of the computation becomes
clearer:
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, (5)

which can be grouped into independent equations:

x1 = a1,1r1 + m1 (6)

x2 = a2,1r1 + a2,2r2 + m2 (7)

x3 = a3,1r1 + a3,2r2 + a3,3r3 + m3 (8)

xN = aN,1r1 + aN,2r2 + aN,3r3 + . . . + aN,NrN + mN. (9)
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Table I. FPGA Resource Usage for Parallel and Serial Vector Generation

1/cycle N−1 / cycle

Multiplies/cycle N(N + 1)/2 (N + 1)/2
Total coefficients N(N + 3)/2 N(N + 3)/2
Coefficients/cycle N(N + 1)/2 (N + 1)/2
Adds/cycle N(N + 1)/2 (N + 1)/2

Registers (bits) (wc + ws)N(N + 1)/2 ws(N + 1)/2
Block RAMs (storage) - wc N(N + 1)/2/lr/wr

Block RAMs (bandwidth) - wc(N + 1)/2/pr/wr

We will now explore the minimal cost of generating Gaussian samples by
looking at the minimum number of resources needed. Four types of resources
are considered: multipliers, adders, coefficient storage, and coefficient band-
width. We concentrate on the dominating O(N2) costs, and ignore most linear
and constant costs.

Equation (4) is essentially a matrix-vector multiply and add, where A is
lower-triangular. A lower-triangular matrix has at most N(N + 1)/2 nonzero
coefficients, so in total A and m require the storage of N(N + 3)/2 coefficients.
During the generation of each random vector all (lower-diagonal) coefficients
of A are accessed once, then each coefficient is used as input to one multipli-
cation. Adding together the terms (including m) requires the same number of
additions, so N(N + 1)/2 multiplies, adds, and coefficient accesses are needed
per generated vector.

If one vector is to be generated per cycle, then the only practical way to store
A and m is in registers, as each coefficient is accessed once per cycle. Under
this schedule the performance requirements grow rapidly, making it practical
only for small N. However, if vectors are generated serially such that N cycles
are used to generate each vector, it is possible to store coefficients in RAM.

The top half of Table I shows the equations for abstract computational re-
source usage, then the bottom half relates them to implementation, in terms
of registers for the parallel version, and memories for the serial version. The
constants wc, ws, and wr denote the width of coefficients, adders, and RAM ele-
ments respectively, while lr and pr are the length and number of ports of each
block RAM.

Figure 1 shows these estimates applied to the Virtex-4 xc4vsx55, using wc =
18, ws = wr = 36, lr = 1024, and pr = 2. It shows that the largest vector that
can be generated in the parallel case is around 30, but the RAM based serial
generator can support up to 512.

For comparison purposes we also estimate the performance of software,
again considering only the dominating O(N2) costs. As software is almost un-
limited in the size of matrix that can be stored in memory, the performance
when operating out of different memory hierarchies is considered. Each level
i can hold li coefficients, and provides a peak bandwidth of b i coefficients per
second. For simplicity it is assumed that when the coefficients cannot be held
totally in one level then they are all held in the next level. The CPU is assumed

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 12, Pub. date: June 2008.



Random Number Generation Targeting Reconfigurable Hardware · 12: 5

Fig. 1. Estimate resource usage for parallel and serial vector generation.

to be capable of m multiply-accumulates per second. The performance of the
CPU for N length vectors per second is then estimated as:

i = min
i

: N(N + 3)/2 ≤ li (10)

VN = min(
2b i

N(N + 3)
,

2m

N(N + 1)
). (11)

When implementing the vector generation in an FPGA, it is possible to repli-
cate instances if each generator takes up less than half the space. So the total
expected FPGA performance in vectors per second is:

VN = ⌊1/pN⌋ f/N, (12)

where f is the clock frequency, and pN is the proportion of the FPGA taken up
by a single vector generator of size N.

Figure 2 shows the expected performance for an Opteron at 2.6GHz and an
xc4vsx55 at 500MHz. The predicted software performance uses the following
estimated figures for the cache and floating-point performance: m = 1.04×1010

(four vectorized single-precision operations per cycle); l1 = 214; b1 = 2.08×1010;
l2 = 220; b2 = 5.75 × 109; l3 = ∞; b3 = 3.2 × 109. Both memory and operation
bounds are shown for the Opteron, with the memory forming the lower bound
on performance. For small matrix sizes the software should operate mainly
within the first-level cache, suggesting a hardware speedup of only about 20
times, while for larger sizes the coefficients must be stored in main memory,
leading to a potential 100 times speedup.
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Fig. 2. Comparison of expected performance of xc4vsx55 and Opteron 2.6GHz.

Note that these figures are approximations, as both platforms are unlikely
to achieve this performance in practice. The software version is extremely
unlikely to achieve perfect utilisation of memory and bandwidth and func-
tion units, while the hardware figures for smaller vectors assume that the In-
put/Output constraints in outputting larger numbers of vectors at once are not
a problem. However, in both cases the estimates for larger matrix sizes might
be expected to become asymptotically accurate, particularly in the FPGA case.

2.2 Number Representation

The basic generation algorithm described in Equation (4) is exact, but only
under the assumption of infinite precision maths. A double-precision software
implementation provides a reasonable approximation to this ideal, at least for
matrices smaller than 1024×1024, but using large numbers of double-precision
units is still infeasible in contemporary FPGAs. Even single-precision floating-
point carries a significant performance and area penalty, so only a fixed-point
solution is feasible for large matrices. For maximum efficiency (both in area
and speed) the fixed-point representation must be dictated by the available
DSP blocks, as assumed in the previous section. In this section we examine the
question of number representation and matrix coefficient ranges. The effect of
the resulting numeric precision on the generator is then examined in more
detail in Section 5.

The probability of a random univariate Gaussian sample lying outside the
range [−8, +8] is approximately 10−15, so a signed fixed-point representation
with 3 integer bits is sufficient in almost all situations. A counterexample is
in Bit-Error-Rate testing [Lee et al. 2004], where extremely long simulations
are used to explore events occurring in the range [−8.2, 8.2], but in most sim-
ulations these extremely unlikely values are not important. In the case of the
18-bit multiplier inputs on the Virtex-4, this means that the elements of the
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input uni-variate Gaussian vector r have 14 bits of fractional precision. This
leads to a minimum probability separation of values at zero (the mode of the
Gaussian distribution) of 8(2−14) − 8(0) = 2.43 × 10−5.

When looking at coefficient representations, we make two reasonable sim-
plifying assumptions:

—The accumulation of matrix partial-products is exact.

—The output of the generator can be scaled by a binary power (i.e. shifted).

The first assumption is true in practise due to the 48-bit addition chain pro-
vided by the DSP48 blocks in the Virtex-4 (see Section 3.4), but is also possible
with conventional adder trees, by increasing the bit-width of adders as the
partial-products accumulate. The second assumption is reasonable as the bit-
width of the output is far too large for most applications: the first thing they
will do is select some reduced precision section of the output. For example, in
the case study presented in Section 4, the first stage is a shifter to select an
18-bit segment from the vector generator output. Even if the application does
not already have such a section, the logic to implement such a shifter is small
compared to the rest of the vector generator.

The range of the coefficients of A depends on the marginal standard-
deviations of the vector components. The standard deviation of each vector
component is defined by the diagonals of the covariance matrix S, or equiva-
lently, the rows of A:

σi =
√

Si,i =

√

√

√

√

i
∑

k=1

a2
i,k. (13)

The largest standard deviation in the covariance matrix determines an upper
bound on all coefficients in A. However, the largest coefficient might actually
be much smaller than the largest standard deviation. Instead it makes sense
to scale based on the largest coefficient. This leads to the global coefficient
scaling scheme.

In the global coefficient scheme a single fixed-point w-bit data-represen-
tation is used for all coefficients in the matrix. First the maximum coefficient a

in A is found. Then an integer shift s is found, such that 2w−2 ≤ 2s × a < 2w−1.
All coefficients of A can then be multiplied by 2s and rounded to w bits, enforc-
ing a single representation on all coefficients. The shift s then determines the
scaling to be applied to the overall vector output.

The problem with using a single global scaling factor is that one component
with a very large standard deviation may cause the coefficients of smaller de-
viation components to be severely truncated. In the worst case this may mean
that all coefficients of a much smaller standard deviation element are reduced
to zero, reducing that component to a constant zero output. The solution sug-
gested here is the per-row scaling method: instead of scaling coefficients to
support the maximum coefficient in the matrix, each row has it’s own scaling
factor, determined using the maximum coefficient in that row.

The advantage of this scheme is that, even if the marginal standard devi-
ations are of vastly different magnitudes, the largest coefficients for each row
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will be stored with maximum accuracy. It still may be the case that very small
coefficients within a row are reduced to zero, but arguably these coefficients
are not significant anyway. Using 18-bit coefficients we can guarantee that
the largest coefficient in each row is stored with 17 fractional bits, and even a
coefficient a thousand times smaller is still represented using 7 bits. The dis-
advantage of this scheme is that now a separate scaling factor must be stored
per vector component, but this is easily accommodated in a small N element
RAM (e.g., a single Block-RAM).

3. ARCHITECTURE

In this section the mapping of a vector generator into reconfigurable hardware
is presented. Following the analysis in the preceding section the architecture
implements the serial model, generating a length N vector every N cycles. The
architecture design is heavily optimised to take advantage of Virtex-4 specific
resources, in order to achieve the maximum possible clock rate.

The calculations for implementing Equation 4 in hardware can be broken
into four stages:

Univariate Gaussian Vector Generation. Every N cycles a new vector of in-
dependent univariate Gaussian samples must be generated.

Coefficient Management. The coefficients of matrix A must be extracted
from RAM in the correct order, and a means of loading new matrices must
be provided.

Multiplication. The univariate Gaussian components and matrix coeffi-
cients are multiplied together.

Summation. The products are summed to provide the components of the
output vector in successive cycles.

3.1 Univariate Gaussian Vector Generation

To produce each output vector, N independent Gaussian samples must be gen-
erated. In a naive implementation this could be achieved using N separate
generators, with each generator producing a new random sample at the start
of each vector and holding it constant for the remaining N−1 cycles. This con-
cept is shown on the left-hand side of Figure 3. Although simple, this is very
wasteful, as Gaussian random number generators are relatively large and ex-
pensive, typically requiring a number of block-RAMs and often a number of
multipliers.

It is much more efficient to use just one univariate Gaussian generator, ob-
serving that, if the generator produces one random sample per cycle, then
while one vector is being generated and output, the next univariate input
vector can be generated in parallel. It then becomes a problem of distrib-
uting the univariate vector elements to the appropriate multipliers. The so-
lution used here is to use a long shift-register, with its input connected to
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Fig. 3. Generation and distribution of univariate Gaussian samples.

the univariate generator, and having each register stage close to a multiplier
site. This arrangement is shown in the right side of Figure 3. During the N

cycles of multivariate generation the shift-chain is serially loaded with N fresh
univariate samples. When calculation of the next multivariate vector begins,
the contents of the shift-register are transferred in parallel to registers located
by each multiplier.

As well as requiring only one Gaussian generator, this arrangement is also
very appropriate for high-speed designs, as only local routing is required be-
tween registers in the shift-register. The shift-chain can be placed so that
alternating columns in the chain shift up and down, as it doesn’t matter what
order the samples reach the multipliers, as long as each sample is only used by
a single multiplier. Short horizontal connections at the top and bottom of the
columns can then be used to create a single global shift-chain.

The two requirements on the univariate generator are that it should be fast
enough to meet the clock-constraint, and that it should provide a high quality
distribution. The resource usage is less important, as only one generator is
needed for each vector generator.

There are many architectures for generating Gaussian samples in an FPGA,
such as the Box-Muller [Lee et al. 2006; Xilinx, Inc. 2002], Wallace [Lee et al.
2005], and Ziggurat [Zhang et al. 2005] methods. However, these all use mul-
tipliers, and so would require some of the device’s block-multipliers to be di-
verted from the matrix-vector multiplication stage. They are also relatively
complex internally, and would require significant effort to reach the desired
500MHz target speed.

The generator used in this article employs piecewise-linear approximations
[Thomas and Luk 2006b], as this method does not require any multipliers, and
is very easy to pipeline for high-speed operation. The output of a piecewise-
linear generator can only ever be an approximation to the PDF, so the outputs
of four separate generators are additively combined. Due to the Central-Limit
Theorem the combined output is significantly closer to the Gaussian distribu-
tion, and passes all the statistical tests we applied (see Section 5).
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3.2 Coefficient Management

Coefficient management consists of two tasks: extracting elements of A in the
correct order during calculations, and providing a means of loading in new ele-
ments when the matrix A changes. During the N cycles taken to generate each
vector, each multiplier requires at most N different coefficients. Depending on
the aspect ratio of available RAMs, this may require a memory port per mul-
tiplier, or with wide RAMs it may be possible to pack multiple coefficients into
a single word. The entries in the RAM can be arbitrarily re-ordered to allow
efficient indexing schemes, so it is not necessary for the coefficient layout in
RAM to reflect the logical structure of A.

In this work, each Virtex-4 block RAM supplies two coefficients to two mul-
tipliers, with the RAM organized as a 1024 by 18 RAM. The two sets of coef-
ficients are packed into the top and bottom halves of the RAM, and addressed
using a single counter, with the most-significant bit set to 0 for one port, and
to 1 for the other port. During the first cycle of vector generation the counter
is reset to zero, then during successive cycles it is incremented by one.

The task of loading new coefficients should be a relatively infrequent op-
eration compared to the actual generation of vectors, and so does not need
to be heavily optimized. A very convenient and efficient method of updating
coefficients is to reuse the shift-chain used to distribute univariate Gaussian
numbers. During coefficient update, coefficients are serially loaded onto the
shift-chain, until all N coefficients for a row are ready. The controller then
starts the standard vector generation process, causing the address counters
for all RAMs to start incrementing. At the appropriate cycle the controller
then asserts a write strobe, causing the value of the shift-chain to be written
into the memory location associated with that cycle.

Loading in this way means that entire rows can be written at once, with
each row requiring N cycles to fill the shift-chain, and between 1 and N cycles
to reach the correct point in vector generation for the row to be written. Each
row can thus be written in 2N cycles, so the entire matrix can be loaded in 2N2

cycles. Assuming the xc4vsx55 parameters of N = 512 and a 500 MHz clock,
this means that a new matrix can be loaded in just over one millisecond.

3.3 Multiplication

The multiplication stage multiplies together the coefficients and random num-
bers, producing the terms that will be summed together in the next stage. If
the multiplier units provide no additional functionality (for example, Virtex-II
block-multipliers [Xilinx, Inc. 2000]) then no further processing is performed at
this stage. However, modern FPGA architectures provide more complex DSP
blocks, fusing multipliers and wide adders together, such as the Stratix-II DSP
[Altera Corporation 2005] and Virtex-4 DSP48 [Xilinx, Inc. 2005] blocks. These
blocks allow some of the terms to be summed at the same time as they are pro-
duced, reducing the number of adders that must be implemented in general
logic.

In the case of the Stratix-II, the DSPs support local addition of the four 36-
bit values produced by four 18 by 18-bit multipliers in the DSP. This pushes
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Fig. 4. Architecture of MAC-based multivariate Gaussian generator.

two levels of addition into the DSP block, so if the output of n multipliers must
be combined this means that only (n/4) − 1 of the required n − 1 adders must
be implemented in general logic.

However, the Virtex-4 DSP48 supports a 48-bit wide carry path that runs
the entire height of DSP columns, allowing each DSP to perform an 18x18-bit
multiply, and combine the 36-bit result with the 48-bit result of the DSP block
below. This means that in a device with w DSP columns each containing h

DSP devices, potentially (h − 1)w additions can be implemented in dedicated
addition hardware, so if all hw DSPs are used in vector generation only w − 1
additions need to be implemented in general logic. However, the pipelining of
the DSP carry path means that the data processing must be rescheduled to
allow the DSP adders to be used.

Fortunately the fact that matrix A is triangular allows the calculations to
be rescheduled to take advantage of this dedicated carry path. Consider Equa-
tion (6) (ignoring m as this can be processed in the final stage): only one of
the elements (xN) requires N multiplications and uses all N elements of the
random vector r. If this calculation is started in the first cycle of vector gen-
eration, then over the following N − 1 cycles the remaining terms can be ac-
cumulated, and will eventually be output as the last element of the vector. In
contrast there is one element that only contains one multiplication, which can
be executed in the first cycle and output as the first element. In general the
calculations can be organised so that in cycle k of the vector generation process,
the element derived from k multiplications and k − 1 additions can be output.
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This way of scheduling the calculation takes advantage of the fact that A is
lower triangular, and hence contains a large number of zeroes.

Figure 4 shows how this schedule maps to the DSPs. On the left-hand side
is the univariate Gaussian distribution chain, which will be captured (in par-
allel) into r1..r4 at the beginning of vector generation. In the middle are the
coefficient RAMs, and counters for selecting the coefficients in the correct or-
der. Finally the DSP column contains the buffers r1..r4, which are held constant
during each generated vector, the MAC units which perform riai + c, and the
registers on the data carry path. The right hand side shows the calculations
performed in each MAC in each cycle. In the first cycle the terms ai,iri are
all calculated, and x1,1 can be output. In following cycles the elements with
more and more terms reach the top of the column, until finally the last n-term
element reaches the top.

3.4 Final Summation

Single-cycle logic-based adders are performance limited by the critical path
through the carry-chain. If an adder of length w is implemented using a carry-
chain with a delay per full-adder of dc, then the maximum clock-rate that can
be supported is 1/(wdc). In Virtex-4 dc = 0.07 ns, so the maximum performance
at w = 45 is 317MHz, even before considering factors such as LUT delay and
routing inputs to the LUTs. Clearly to achieve 500MHz performance the adder
carry-chains must be pipelined, but current synthesis tools do not automat-
ically pipeline adders, even when given tight timing constraints and ample
registers for retiming.

The solution used in this work is to use relationally placed adders with ex-
plicitly pipelined carry chains. Each w-bit adder is broken into segments of
length s, each of which adds together two s-bit numbers and supports a carry-
in and carry-out. Each adder is implemented using k = ⌈w/s⌉ segments, and
the carry-out of each segment is registered before being routed in to the carry-
in of the next segment. The pipelined carry-chain means that segments must
be skewed in time, with the least-significant segments arriving first. This skew
is achieved using a triangle of registers attached to the adder inputs, in this
case the output of DSP48 blocks. The final sum is de-skewed using another
triangle of registers.

Figure 5 shows the skewed-adder system for w = 9 and s = 3. Note that
each adder-stage includes an additional stage of registers placed right next to
the addition logic; this is included as it allows the adder inputs to have the
absolute minimum routing delay, allowing each segment to be slightly longer.
The cost of each triangle of registers is sk(k+1)/2 FFs (Flip-Flops), and for an n

input adder tree a total of n + 1 triangles are required. Assuming n is a binary
power, n − 1 skewed adder stages are required, each of which uses (3s + 1)k
LUT-FF pairs (including FFs for input buffering). Thus the total cost of an
adder tree in LUT-FF pairs is:

1

2
(s(n(k + 7) + k − 5) + 2n − 2)k. (14)
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Fig. 5. Pipelined adder tree.

In the xc4vsx55 architecture the value s = 9 is chosen, requiring k = 5 seg-
ments. When all DSP48 columns are used for vector generation n = 8, a total
of 2195 LUT-FF pairs (∼ 4% of total resources) are consumed in the summa-
tion tree. Note that the area could be decreased by removing the extra buffer-
ing stages and using longer addition segments, but this would make meeting
500MHz timing constraints much more difficult. Another solution would be to
dedicate the top DSP48 of each column to addition, and to stagger the initiation
of new vector calculations in successive columns. This would remove almost all
logic needed for addition, but would also reduce the maximum possible vector
size to 504.

3.5 Implementation and Evaluation

The generator we have described is implemented in Virtex-4 specific VHDL,
designed to give maximum performance. The design uses two main building
blocks, one to describe the multiply and accumulate element shown in Figure 4,
and another to describe the pipelined adder components in Figure 5. Both
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Fig. 6. Performance comparison between software and hardware vector generators, both accord-
ing to the performance model and realised performance.

are individually tuned and relatively placed to ensure 500MHz performance
could be achieved. The blocks are then instantiated and connected using para-
metrised container components, creating columns of multiply-accumulate el-
ements, and trees of adders. The containers apply absolute placement con-
straints to the blocks, and are individually synthesised to EDIF blocks. The
set of EDIF multiply-accumulate columns and adder tree are then combined
in a top-level design, which is placed and routed for the xc4vsx55-12. All in-
puts and outputs are routed to pins, with an intermediate layer of buffering
registers clocked at the same rate as the vector generator. Four different top-
level designs are created, using four, two and one replicated instances of the
vector generator, capable of handling vectors up to length 128, 256, and 512
respectively.

The Xilinx 8.1 toolchain is used throughout, using XST for synthesis, and
Xilinx primitives to instantiate almost all registers and other components.
Shift-register inference and optimization of primitives is disabled during syn-
thesis, as XST attempted to optimize registers into SRL16s, without realiz-
ing that they were deliberately introduced for timing reasons. Timing driven
placement is employed, but other advanced map options such as retiming are
not needed. Place and route at the default effort level is found to be sufficient.

The maximum clock rate of the design is reported by Xilinx tools as 500MHz,
which is the maximum supported by the block RAMs and DSPs, so the practical
performance ceiling has been achieved. Figure 6 shows the performance of the
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generator as vector size is increased. The two steps in performance are due
to the switch between 4, 2, and 1 replicated instances as the matrix size (and
the size of each instance) gets larger. The theoretical maximum performance
derived in the preceding section is also shown above the practical performance.
The difference between theoretical and achieved performance changes most
significantly at the steps between the boundary sizes for replicated instances,
with a best-case realized performance of 1/2 the theoretical maximum when
the vector size equals the maximum vector size, and a worst-case of 1/4 for the
next larger size.

Underneath the performance curves for hardware are the predicted and
realized curves for an Opteron 2.6GHz (model 2218). The realized software
performance is measured using the ACML BLAS [Advanced Micro Devices
2006], a set of vector and matrix libraries specifically optimized for AMD
processors, using features such as SIMD and cache management instructions.
Single-precision floating-point is used to allow maximum software processing
speed. No equivalent fixed-point software version is shown, as SIMD floating-
point is faster than integer-based fixed-point, so there would be no performance
advantage. Performance is measured on a Linux based quad-core Opteron
server, with no other computational tasks running, and ensuring each run is
measured over at least 10 seconds of wall-clock time.

The maximum speedup over software of 205 is achieved when four instances
operate on 128 element vectors, and the minimum speedup of 91 with vectors
of size 257 (at the point where it is necessary to move from a two instance
design to a one instance design). For the largest supported vector size of 512
the speedup is 174 times.

These results demonstrate performance when an entire device can be dedi-
cated to vector generation. In the next section an application is developed that
incorporates the vector generation architectures into a real design, allowing
practical speedup to be measured.

4. CASE STUDY

In this section the Gaussian vector generator is used in a real-world applica-
tion, a Delta-Gamma asset simulator for Value-at-Risk. The simulator is im-
plemented using an xc4vsx55-10 in a Celoxica RC2000 platform, so the max-
imum clock rate reduces to 400MHz when compared with the 500MHz that
could be achieved using the xc4vsx55-12 in the previous section.

In many financial simulations a large collection of underlying assets is mod-
eled as having correlated Gaussian returns. An underlying asset is something
like a stock, a bond, or a physical commodity, which can be bought or sold di-
rectly. A portfolio over these underlying assets can then be modeled, where the
portfolio incorporates both direct positions, as well as options and other deriv-
atives on the underlying assets. A direct position is where the portfolio directly
contains one of the underlying assets: for example, the portfolio contains 100
Microsoft shares. The value of the direct position in the portfolio then varies
linearly with the price of Microsoft shares in the market.
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Derivates are assets whose value is derived from changes in value of some
underlying asset. A simple example is an option, which is a contract providing
the option (but not the obligation) to buy some underlying asset A at time T

for a fixed price S. The value of this option varies with the value of A, but the
relationship is complex, and also depends on T and S. Accurately pricing the
option may require significant calculations, for example the commonly used
Black-Scholes pricing operator requires evaluations of the Gaussian CDF and
many other functions [Black and Scholes 1973].

A simple way of approximating changes in portfolio value over short time
periods is to consider only the first and second derivatives of portfolio assets
with respect to changes in the underlying. Thus if s is the vector of original
positions, and x is a random vector of correlated changes in the underlying
assets, then the new price is

p =
N

∑

i=1

si + δixi +
γi

2
x2

i , (15)

where δ is the vector of first derivatives; γ is the vector of second derivatives.
Rearranging this to extract just the change in price gives:

d =

N
∑

i=1

xi(δi +
γi

2
xi), (16)

By simulating millions of different random x vectors the probability distribu-
tion of d can be estimated, and used to evaluate the portfolio. For example,
picking the 5th percentile amongst all values of d gives the 5% Value-at-Risk,
which is the amount of money that would be lost in the 5 worst days out of
every 100. The computationally intensive process is in the calculation of d, so
the remainder can be implemented in software.

To allow full-speed operation in hardware these calculations are performed
using fixed-point, but with a different scaling (binary-point position) for each
vector element. The scaling factor is chosen in advance in software, to max-
imise the accuracy of each calculation while ensuring that overflow does not
occur. This is possible as the range of r is already known (via the marginal
standard deviation and mean of each component), establishing an upper bound
on the magnitude of each element. Thus the 45 bit values produced by the
correlated vector generator can be reduced with shifters down to 18 bit, even
when the standard-deviations of asset returns have very different magnitudes.
This stage can also transparently incorporate the per-row scaling coefficient
described in Section 2.2.

A second scaling is applied prior to the summation of price changes, allowing
assets with very different sensitivities to be accommodated. The final Delta-
Gamma calculation is then:

d =
N

∑

i=1

2−ki
([

2− ji xi

] [

δ′
i + γ ′

i

(

2− ji xi

)])

, (17)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 12, Pub. date: June 2008.



Random Number Generation Targeting Reconfigurable Hardware · 12: 17

Fig. 7. Delta-Gamma approximation pipeline.

where j is a vector of integers that determine the initial scaling of r, k is a
vector of integers that determine scaling before summation, and δ′ and γ ′ are
the portfolio sensitivities after applying the scaling.

Figure 7 shows the pipeline used to implement the Delta-Gamma pricing
operator, including the widths of data-paths. DSP48s are used to implement
all the multipliers and adders, while pipelined LUT-based multiplexors are
used to implement the shifters. The final sum is performed using a DSP48
in accumulation mode, with the accumulator reset to zero at the beginning of
each new vector. All calculation components are placed relative to each other
to provide a relatively compact pipeline, while the registers used for pipelining
and synchronising datapaths are unplaced.
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Each vector of random asset returns produces one total pricing change, and
this is the result that needs to be passed back to software for further process-
ing. If a portfolio of size N is generated at frequency f, then simulated price
changes are generated at a rate f/N, so in large portfolios (which present a sig-
nificant computation challenge in software) the frequency of results that are
transferred back to software will be significantly lower than f. The results can
thus be transferred into a slower clock-domain without data-loss.

This implementation targets the RC2000 platform, so the slower clock-
domain needs to support both the RC2000 local-bus interface, and the logic
that implements the protocol used to communicate with host software. This
section is implemented in Handel-C and a clock rate of 50MHz is chosen, with
the faster clock domain operating at 400MHz via two levels of DCMs.

Ideally the clock-domain bridges would have been implemented using the
Virtex-4 built-in FIFO16, but due to the LUT-based workaround needed for
correct operation [Xilinx, Inc. 2006], the faster clock domain could not reach
maximum speed. Instead a simple register-based protocol is used to transfer
single words, where the faster clock domain holds all data changes constant for
at least three cycles. The slower clock domain registers the output of the faster
domain’s transfer register every cycle, and detects new data using a single va-
lidity bit within transferred words. Incoming data are captured the cycle after
the validity bit is asserted, ensuring that all bits of the transferred word have
been retrieved correctly. This system requires six cycles in the slower clock
domain per transferred word, but the data-transfer rate between the clock-
domains is slow enough that this is not a bottleneck. With the 50MHz clock
domain this allows a minimum vector size of N = 48.

Figure 8 shows the high-level layout of the simulator in the xc4vsx55. The
left half of the device is dedicated to full-height columns of matrix-multiply
components, containing 256 DSPs. The right half of the device uses three-
quarter height columns of matrix-multiply components, containing another
192 DSPs, allowing for generation of vectors up to length 448. The columns
are synthesised to eight EDIF components from a single VHDL description,
parametrised for column height, absolute placement, and whether the shift-
chain goes up or down the column. The adder tree is synthesised from another
VHDL description, with absolute placement for the adders.

The bottom right corner is reserved for the Delta-Gamma pipeline, and the
Gaussian random number generator, both of which are implemented as rela-
tively placed components, and are then absolutely placed within the device at
synthesis time. The figure also shows the control logic and RC2000 interface
in the same area, but this is more conceptual. Actual placement is left to the
tools, and as a result the logic for these components is distributed throughout
the entire device.

The synthesised components are all gathered together in a top-level design
and placed and routed as a single design. No top-level placement or area
constraints are used, as all timing-critical components are already absolutely
placed. A 400MHz clock-constraint is placed on the main processing clock, and
is met.
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Fig. 8. Layout of components in xc4vsx55 based RC2000.

Table II. Resource Usage for Delta-Gamma Simulator, with Percentage of xc4vsx55 Resources
Shown in Brackets

Vector Gaussian Delta
Generator Generator Gamma Control Total

DSP 448 (87.5) - - 4 (0.7) - - 452 (88.2)
RAM 226 (58.9) 4 (1.0) 4 (1.0) 19 (3.7) 253 (65.9)
LUT 9006 (18.3) 955 (1.9) 822 (1.6) 504 (1.0) 11287 (23.0)
FF 18771 (38.1) 1278 (2.6) 1935 (3.9) 803 (1.6) 22787 (46.4)
Slice 12673 (51.6) 947 (3.8) 1523 (6.1) 1210 (4.9) 16353 (66.5)

Table II shows the resources used in the design, broken down by component.
The LUT and FF resource usage of all components is higher than strictly neces-
sary, particularly in the Delta-Gamma pipeline, since the focus is on achieving
the maximum possible clock rate without requiring large amounts of design
time. The majority of the resources are used in the vector generator, as even
though the amount of logic per DSP is very small (approximately 19 LUTs and
34 FFs per cell), it is replicated at each location. Many resources could be
saved by sharing local control logic and address counters across multiple DSP
units, but this would make achieving timing closure much more difficult.

Figure 9 compares software and hardware performance, by measuring the
time taken to simulate 106 portfolio returns. Monte-Carlo simulations can be
trivially parallelised across multiple CPUs, simply by starting up as many sim-
ulation processes as there are CPUs, and in this case the speedup was exactly
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Fig. 9. Time taken to perform 1 million portfolio evaluations.

four times (to within the bounds of measurement error). Note that, in principle,
a multiple FPGA system could potentially achieve a linear speedup in exactly
the same way, by running independent simulations on different FPGAs.

The hardware execution time is measured as the wall-clock time taken to
complete and receive the results for all 106 portfolio returns into a software
buffer (the same as for the software). This includes the time taken to load
the correlation matrix over PCI (24ms), but does not include the time taken
to configure the FPGA. Note that there is no other data-transfer overhead, as
successive portfolio values are sent from the FPGA to the CPU as they are
generated, during the simulation runs. The required data-rate is well within
the bandwidth capabilities of PCI, varying from 33MB/s for N = 48 down to
3.5MB/s for N=448.

For smaller portfolios the hardware is less than 10 times faster than the
Quad Opteron, as very few of the hardware’s multipliers can be applied to
the problem. However, as the portfolio size increases the relative performance
of the hardware increases, achieving a maximum speed-up for the maximum
supported portfolio of 448 assets. This is 26 times the speed of a quad Opteron,
or 104 times faster than a single Opteron, at less than a fifth of the clock rate.

Only one delta-gamma generator design was created, supporting a maxi-
mum of N = 448. This means that the performance curve remains smooth as
the vector size increases, as compared with the jumps in performance seen in
Figure 6, which are caused when the number of vector generators instantiated
within the design changes. The bottleneck in the Delta-Gamma generator is
the vector generation, but because the Delta-Gamma generator supports only
one vector size, the maximum performance advantage of software occurs at
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this largest vector size, rather than at N = 128 as seen in the standalone gen-
erator tests.

This case study provides a useful, if somewhat simple, application that could
be used in the real world. The maximum vector size of N = 448 allows very
large number of underling assets to be modelled, and is sufficient for most
portfolio models. Higher dimension models are used, but these typically in-
volve sparse correlation matrices, rather than the dense empirically derived
matrices used here. In practical terms, the main limitation of the case study
is the simplicity of the delta-gamma pipeline, rather than limitations on the
maximum vector length.

5. GENERATOR ACCURACY

A key requirement for a multivariate Gaussian generator is that the marginal
distributions of the vector elements should be Gaussian, and that the corre-
lation structure of the vectors is correct. In theory the generation method
guarantees both, but in practice the real-world limitations of limited precision
number representations and imperfect random number generators may cause
the generator to fail. This is of particular concern in the hardware version
presented here, due to the use of fixed-precision coefficients.

In this section we describe a number of empirical tests that have been ap-
plied to the generator architecture. These look for potential statistical defects
in the generated vectors, as both the matrix size and the coefficient represen-
tation are varied. The first set of tests verifies that the marginal distributions
are Gaussian distributed, followed by tests that examine the correlation struc-
ture for flaws. The section then concludes with experiments applied to the
Delta-Gamma application from the case study.

Many of the empirical tests in this section produce p-values, which are real
values between 0 and 1. Under the hypothesis that the generator passes a
specific test, repeated applications of that test should produce p-values that
are Independent Identically Distributed (IID) uniform random numbers: thus
p-values very close to 0 or 1 are unlikely, and are grounds for rejecting the
hypothesis. For example, if a test was executed three times, and produced
the values 0.11, 0.78, 0.45, we might conclude that the test is probably being
passed. However, if the values 0.05, 0.12, 0.01 were observed we might become
suspicious, as all the values are close to zero. However, interpreting p-values
is difficult, as they are inherently statistical: even very unlikely looking se-
quences should occur occasionally.

One approach is to reject the hypothesis that a generator passes a test if the
p-value is outside [0.01..0.99], but this ignores the fact that in a set of 100 tests
one would expect to see two values outside this range by chance. The approach
taken in the following tests is that if a p-value outside [0.01..0.99] is observed
the test is repeated, and the two p-values are combined into one p-value using
Fishers method [Birnbaum 1954]. This is repeated until the combined p-value
lies within the passing range [0.01..0.99], or until the p-value lies outside the
range [10−6..1 − 10−6], signifying a definite fail (none of which were found in
the tests).
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5.1 Marginal Distributions

The first requirement is that the source uni-variate generator must provide a
sequence of IID Gaussian variates. The generator used in this article uses the
Piecewise Linear method [Thomas and Luk 2006b], which approximates the
Gaussian PDF using equal-length piecewise-linear segments. Because a gen-
erator only has a finite number of segments, a single generator does not provide
a good approximation to a continuous distribution. To overcome this problem
the source generator actually consists of four individual piecewise generators,
which are additively combined. The output of the composite source generator
is significantly closer to the Gaussian distribution than that of the individual
generators, due to the Central Limit Theorem.

This generator combination was not tested in Thomas and Luk [2006b], so
we applied a number of standard statistical uni-variate tests to this composite
uni-variate generator. Note that the uni-variate generator actually outputs a
24-bit sample, even though only 18-bits are used in the vector generator, as
otherwise there is insufficient resolution to reliably apply many of the tests.
The tests applied to the generator are:

χ2 Test. A χ2 test [Pearson 1900; Marsaglia and Marsaglia 2004] over 236

random samples, using 4096 equal probability buckets. This tests the overall
shape of the distribution over very large numbers of samples, and is sensitive
to defects in the asymptotic PDF of the distribution.

Anderson-Darling Test. The Anderson-Darling test [Anderson and Darling
1954] is applied to 256 successive batches of 220 random numbers, then an
Anderson-Darling test over the 256 test results is performed. The Anderson-
Darling test is sensitive to defects in the tails of the distribution, and is not
limited by the fixed bucket structure of the χ2 test. Repeating the test detects
any overall bias in the p-values of the individual tests.

Crush. The Crush test battery from TestU01 [L’Ecuyer and Simard 2007]
is applied to samples that have been transformed to uniform samples using
the Gaussian Inverse CDF [Marsaglia 2004]. The Crush battery comprises
96 separate tests for uniform randomness, consuming approximately 235 sam-
ples. Note that the 24-bit Gaussian samples do not have enough resolution to
provide 32 bit random samples after transformation, so the 16 least significant
bits are taken from KISS, a known good generator [Marsaglia 1999].

All the tests were successfully passed, providing a high degree of confidence
in the quality of the source generator. It is particularly important that the
Crush tests are all passed, as many of these look for any existing correlation
defects, which would interfere with the correlation we wish to impose.

5.2 Correlation Structure

The most obvious source of potential inaccuracy in the generator is the need to
store the matrix coefficients in relatively small fixed-points values. The fixed-
point representation is largely dictated by the properties of the target platform,
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Fig. 10. Maximum and mean relative-error of marginal standard-deviations for increasing matrix
size using per-row scaling.

and cannot be easily extended without wasting large numbers of resources. For
example, the Virtex-4 target architecture used in this article requires 18-bit
coefficients, as the DSP48 component only supports 18-bit inputs; supporting
wider coefficients using extra LUT-based logic would mean the dedicated 48-bit
carry chain could not be used (or at least not as efficiently). Given this exter-
nally imposed bit-width, it is important to check that it does not significantly
affect the correlation structure of the output.

There are two semi-distinct features of the covariance matrix that must be
reflected in the generated vectors: the marginal standard-deviations of the
vector elements, the square-root of the matrix diagonals; and the pair-wise
correlations, values in the range (−1..1) derived from the lower triangle of the
matrix. The marginal standard-deviations must have low relative error, as
many applications are sensitive to small relative changes in variance. By com-
parison, applications are more likely to be sensitive to absolute errors in the
correlation coefficients, as strong correlations (those near ±1) matter much
more than weak correlations (those near 0).

To test these features we apply a number of tests to randomly generated
covariance matrices. These are constructed by first generating N vectors of 100
independent Gaussian samples, then randomly selecting pairs of vectors and
adding a random fraction of one to the other. The covariance matrix between
the vectors is then used as the target matrix, providing a matrix that is semi-
positive definite and has a wide range of correlation coefficients and marginal
standard-deviations. The target matrix is then quantised down to a fixed-point
representation, either by using a global fixed-point scaling, or using per-row
scaling (see Section 2.2).

Figure 10 explores the behavior of the marginal standard deviation’s rel-
ative error for increasing matrix-size, using bit-widths from 10 to 22 and
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Fig. 11. Correlation coefficient errors for increasing matrix size, using different bit-widths for
storage, and global or per-row scaling.

per-row scaling. The mean error remains relatively constant over the range
of sizes, perhaps even decreasing a little for larger matrices, while the maxi-
mum error has a definite, but slow, increase. The F-Test [Press et al. 1997] uses
the ratio between two variances to produce a p-value for the significance of the
difference. By inverting the test, it is possible to roughly predict the number of
samples at which the generator would fail the F-Test at the 5% level. Assum-
ing the 18-bit generator has a worst case maximum of approximately 10−5, this
suggest that ∼ 235.9 vectors can be generated before the largest (i.e., easiest to
detect) error is noticeable.

Figure 11 shows the maximum absolute error of the generator’s correlation
coefficients for increasing matrix size. Results for four different bit-widths are
shown, using both the global coefficient scaling method, and per-row scaling.
Again, the maximum error slowly increases with matrix size, but it is notice-
able that as well as providing a consistently lower error, the per-row scaling
scheme is also much more predictable; in matrices with a large dynamic coef-
ficient range, the global scaling method loses a significant amount of accuracy,
causing the numerous spikes in error for all bit-widths.

As well as examining the asymptotic correlations, it is also necessary to
investigate the empirical correlation structure, by looking at the actual gener-
ated vectors. The empirical behaviour is examined by generating 214 vectors
from a random 512 × 512 matrix, then calculating the empirical correlation
matrix. Fisher’s Z-transform [Press et al. 1997] is then used to test the hy-
pothesis that each element of the empirical matrix is the same as that of the
target correlation matrix, producing a matrix of p-values, one for each pair-
wise correlation coefficient. Although these p-values are not independent, the
overall distribution can provide a strong indication of whether the generator’s
observed correlation matches the target correlation.
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Figure 12 provides a visualization of the resulting p-values for three dif-
ferent bit-widths, and both the global and per-row scaling scheme. The up-
per triangle of each matrix shows the p-values converted directly to grayscale,
and should be completely random, with no bias towards white or black. The
lower triangle shows the same data (correlation matrices are symmetric), but
singles out particularly suspicious p-values, showing those below below 10−4,
10−3, and 10−2 as black, dark gray, and light gray, respectively. Of the ≈ 217

p-values in the lower-triangle, only about 1300 should be non-white, and about
13 should be black.

It is clear that 4-bit coefficients are causing significant failures, with huge
numbers of p-values below 10−4. At 6-bit the global scaling scheme is still very
bad, but the per-row method begins to look respectable. In the 18-bit case there
is no visual difference, and it is impossible to tell from inspection whether
either is failing. The results are summarized in Figure 13, which shows the
percentage of p-values that are below the 10−4, 10−3, and 10−2 levels. This
suggests that the correlation accuracy is useful for bit-widths larger than 10,
and certainly should be sufficient with 18-bit coefficients.

6. RELATED WORK

Previous work on random number generation in FPGAs has focused on the
univariate building blocks, particularly the uniform distribution [George and
Alfke 2001; Shackleford et al. 2002; Thomas and Luk 2005], which provides
underlying randomness to applications, and the Gaussian distribution [Xilinx,
Inc. 2002; Lee et al. 2006, 2005]. Recent work provides methods for generating
arbitrary continuous univariate distributions [Thomas and Luk 2006a], and
also provides efficient methods for generating the Gaussian distribution. This
article builds on this work, motivated by the ease with which high speeds can
be achieved with various fast methods for generating univariate distributions.

The multivariate generation architecture used here has been described in
earlier work [Thomas and Luk 2007], but this article incorporates many ad-
ditional operational details. In addition, Section 5 demonstrates that a fixed
point generator does not suffer from accuracy problems, and is able to pro-
duce both Gaussian marginal distributions and a correlation structure of high
quality.

The core of the multivariate Gaussian generator is the dense matrix-vector
multiply, and a key insight is the observation that when the matrix remains
constant for large numbers of vectors, the parallel multipliers and RAMs make
this very efficient. If the matrix changes frequently then the method becomes
inefficient compared to software, as the bottleneck becomes the speed at which
the coefficients of the matrix can be retrieved from an external source. How-
ever, if the matrices are sparse, the FPGA can again compete with software
by using custom logic for decoding the matrix structure [deLorimier and De-
Hon 2005]. Dense matrix-matrix multiplications provide many opportunities
for caching and reuse, so block RAMs can be used to increase effective mem-
ory bandwidth. For this reason previous work on linear algebra in FPGAs has
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Fig. 12. Visualization of p-values for significance of difference between empirical correlation ob-
served over 214 vectors, and the target correlation matrix. The lower triangle shows p-values
below 10−4, 10−3, and 10−2 as black, dark gray, and light gray, while the upper triangle translates
p-values directly to grayscale.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 2, Article 12, Pub. date: June 2008.



Random Number Generation Targeting Reconfigurable Hardware · 12: 27

Fig. 13. Distribution of p-values for difference between target and empirical correlation coeffi-
cients for a 512 × 512 correlation matrix.

focused on dense matrix-matrix operations, often aiming to provide a drop-in
accelerator for BLAS [Jang et al. 2005; Zhuo and Prasanna 2005].

7. CONCLUSION

This article describes an architecture for generating multivariate Gaussian
random numbers, and shows how it can be implemented in advanced reconfig-
urable devices. Our main achievement is to organize the on-chip multipliers
and local memories efficiently for dense matrix-vector multiplication, when the
matrix remains constant for many different vectors. A particularly efficient
mapping for Virtex-4 DSP48 blocks is then demonstrated, which can provide a
speedup of 200 times over an equivalent software vector generator. Empirical
and theoretical tests are applied to the fixed-precision architecture, showing
that the quality and correlation structure of the generated vectors matches
the target distribution.

This vector generator is then demonstrated in a case study for simulat-
ing Value-at-Risk, a common financial application. The application is imple-
mented using an RC2000 device containing an xc4vsx55-10 part, and through
manual placement a design capable of running at 400MHz with a maximum
portfolio size of 448 assets is achieved. The hardware accelerated simulator
provides a practical speed-up of 26 times over a quad Opteron workstation, re-
ducing the time taken to simulate a 448 asset portfolio from 30 seconds down
to 1.1 seconds.

The results of this article demonstrate two benefits of using reconfigurable
logic for compute-intensive applications, such as computational finance. First,
a single FPGA is able to replace the equivalent of 26 quad-core computers in
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a cluster, 104 CPU cores in total. This means that much of the heat, power,
space, and capital outlay required for a 32U rack containing 26 blades could in
principle be replaced with a single computer containing one FPGA. Obviously
not all applications will see this level of improvement, but other financial sim-
ulations are likely to see similar improvements.

The second key benefit is the reduction in latency that an FPGA accelerated
solution can provide. Figure 9 shows computational latency dropping from 30
seconds to 1 second when comparing a quad core computer to an FPGA. This
is a great advantage in time-sensitive applications such as trader-support; a
potential position may only be open for a few seconds, so it is important to
reduce the latency observed by the user to the bare minimum.

It is of course possible to use a networked cluster of CPUs, but this intro-
duces the problem of distributing and scheduling tasks across multiple nodes.
Such clusters are also too big and expensive to dedicate one to each user; clus-
ters are shared resources, and in periods of peak demand users will actually
find latency increasing. An FPGA accelerator can be installed in every users
computer, providing a dedicated computational resource with guaranteed la-
tency and availability.

Current and future work involves integrating complex pricing operators
such as Black-Scholes option valuation [Black and Scholes 1973], exploring
more complicated types of correlations and probability distributions, and ex-
amining the intermediate levels of parallelism between fully parallel and fully
serial generators.
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