
FPGA Accelerated Simulation of Biologically
Plausible Spiking Neural Networks

David B. Thomas and Wayne Luk
Imperial College, London
{dt10,wl}@doc.ic.ac.uk

Abstract

Artificial neural networks are a key tool for researchers
attempting to understand and replicate the behaviour
and intelligence found in biological neural networks.
Software simulations offer great flexibility and the abil-
ity to select which aspects of biological networks to
model, but are slow when operating on more complex
biologically plausible models; while dedicated hard-
ware solutions can be very fast, they are restricted to
fixed models. This paper uses FPGAs to achieve a
compromise between model complexity and simulation
speed, such that a fully-connected network of 1024 neu-
rons based on the biologically plausible Izhikevich spik-
ing model, can be simulated at 100 times real-time
speed. The simulator is based on a re-usable inter-
connection architecture for storing synapse weights and
calculating thalamic input, which makes use of the large
number of available block-RAMs and huge amounts of
fine-grain parallelism. The simulator achieves a sus-
tained throughput of 2.26 GFlops in double-precision,
and a single Virtex-5 xc5vlx330t without off-chip stor-
age running at 133MHz is 16 times faster than a 3GHz
Core2 CPU, and 1.1 times faster than a 1.2GHz 30-core
GPU operating in single-precision.

1. Introduction
Artificial neural networks are of wide interest and

applicability, both as a practical tool in areas such as
pattern recognition, and as a means of developing an
understanding of the brains of animals and humans and
ultimately increasing our understanding of intelligence
and consciousness. There have been many successes
in practical applications, using simple neuron models
and training rules to achieve specific tasks, but very lit-
tle success in the use of artificial network to plausibly
model the high-level behaviours of brains - we are still
a long way from artificial intelligence!

Part of the problem is that we still do not know ex-

actly what it is about biological neural networks that
gives them high-level capabilities, such as the ability to
learn. Although the low-level electrical and chemical
properties of individual neurons and synapses are well
understood, it is not clear which of these properties are
required, and which are just “implementation details”.
Is it the number of neurons? The number of synapses?
Axonal delay? Neuron transition function?

Software can be used to model neural networks
with a given subset of properties, but is often too slow
to allow researchers to observe the changes in networks
over long simulations, or to observe the statistical prop-
erties of many different networks. Hardware implemen-
tations of neural networks are an attractive proposition,
as they can be designed to implement the selected prop-
erties of the network exactly. However, this still raises
the question: which properties are the important ones
that should be modelled in the dedicated hardware?

FPGAs offer an interesting alternative to software
and custom hardware, as different biological features
can be added or removed according to the requirements
of the researcher, while also still offering at least some
of the speed-up provided by hardware. In this paper we
examine the acceleration of densely connected spiking
neural networks, using a biologically plausible neuron
model. Our key contributions are:

• An architecture for simulating fully-connected
spiking neural networks in FPGAs, which uses
their fine-grain parallelism and high bandwidth lo-
cal memories to provide an efficient and flexible
simulator, providing a constant speed-up over real-
time, independent of network activity.
• An evaluation of the FPGA implementation for

fully-connected networks with 1024 neurons,
showing that a Virtex-5 xc5vlx330 at 133MHz pro-
vides a sustained 2.26 GFlops in double-precision,
which is 16 times faster than a 3GHz Core2 CPU,
and 1.1 times faster than a 1.2GHz 30-core GPU
operating in single-precision.



SynapseNeuron

Neuron

Neuron

NeuronSynapse

Synapse

+

Synapse

Synapse

Synapse
Axons

0 t t1

0 t t0 0 t

t 0 t

Thalamic
input

Figure 1. Overview of a spiking neural network.

2. Background and Goals

Figure 1 provides a very abstract overview of a neu-
ral network. On the left are shown a set ofneurons,
each of which has an electrical output which occasion-
ally produces voltage spikes, orspike trains. Each neu-
ron has a set ofsynapses(inputs), which are connected
to the output of other neurons viaaxons(wires). Each
synapse has a weight, which it uses to scale the in-
coming spike train. The scaled spike-trains from the
synapses are then summed to provide the overalltha-
lamic inputfor the neuron. The neuron then combines
the thalamic input and its current state to decide how to
modify its state, and what kind of spike train to produce.

Depending on the type of neuron, the state of the
neuron, and the input the neuron has just received,
the characteristics of the spike train will change: spik-
ing modes include phasic spiking, where a single iso-
lated spike is fired; tonic spiking, where single spikes
are fired at regular intervals; and tonic bursting, where
small bursts of spikes are fired at regular intervals [2].

The current prevailing theory is that it is the type
and timing of these spike trains which encodes commu-
nications between neurons within the brain, so it is criti-
cal that any artificial network should be able to replicate
these different types of spiking. Another point of broad
agreement is that at least some of the power of biolog-
ical networks comes from the sheer level of connectiv-
ity: typically each neuron has around 1000 synapses,
i.e. each neuron is connected to the output of 1000 other
neurons. The synapses also seem to be related to mem-
ory: over time the weight of each synapse changes in
response to firings within the network, reinforcing some
connections, and reducing others.

In this paper we focus on the development of sys-
tems which can replicate these three phenomena:

• Biologically plausible spiking behaviour.

• Thousands of neurons, millions of synapses.

• Run-time modifiable per-synapse weights.

In particular we are interested in providing end-users
with hyper real-time simulations of neural networks.
This allows researchers to investigate statistical proper-
ties of networks, by simulating the same network many
times and identifying common behaviour between the
runs. It also allows for iterative modification of net-
works, where local network features are adjusted to ex-
plore the effects on local and global behaviour.

What we arenot attempting to capture are the ef-
fects of large networks: our aim is to enable the inves-
tigation of small-scale phenomenon related to spiking
and bursting behaviour, minimising the restrictions on
the user. Supporting large networks involves restricting
either the types of networks that can be supported, the
accuracy of the simulation, the simulation speed, or all
three, and is beyond the scope of this paper.

3. Neural Network Model

We will now provide a basic framework for de-
scribing the types of network in which we are inter-
ested, before describing in more detail the specific bi-
ologically plausible spiking network we implement.

Our starting assumption is that we are dealing with
relatively small (around 1000 neurons), dense networks.
In particular we assume that the network is fully con-
nected: every neuron has a synapse for every other neu-
ron in the network. This means that a network withn
neurons hasn2 synapses.

Because the network is full connected, the synapses
can be described using a matrixW, which is ann×n
matrix of real numbers, whereW[i, j] describes the scal-
ing applied to the output of neuronj before feeding it
to the input of neuroni. So the rowW[i, :] describes the
synapse weights at the inputs of neuroni, while the col-
umn W[:, j] describes the weights that will be applied
to the output of neuronj whenever it produces a spike.

The neurons are described in terms of two features:
fixed neuron parameters, which are neuron properties
which do not change, or at least change over a large
time-scale; and neuron state, which contains properties
which vary rapidly in response to the incoming thalamic
input. For the moment we will use an abstract model of
neuron dynamics, using the setP to represent the set of
possible neuron parameters, andS for the set of neuron
states. Then element column vector~c (where~ci ∈ P)
describes the fixed parameters of the neurons.

There are two components needed to describe the
dynamic state of the network. One is the previous state
of each neuron, ann element column vector~s, with
~si ∈ S. The other is the set of spikes just produced by
the neurons, a boolean column vector~f, where~fi = 1
means that neuroni has just produced a spike. From
the combination of~f and the neuron weightsW we can



calculate the current vector of thalamic stimuli:

~i = W×~f (1)

The final piece needed is the neuron step function
f , which takes as input the neuron parameters, previous
neuron state and thalamic input, and produces as output
the next neuron state and whether the neuron fired:

f : (P,S,ℜ) 7→ (S, [0,1]) (2)

We can now advance the network by one time-step:
(

~s,~f
)

← f
(

~c,~s,W×~f
)

(3)

Repeatedly stepping the network forward allows us to
simulate the evolution of the network over time. A
typical time-step is 1ms, so 1000 steps are required to
simulate 1 second of network operation; or, conversely,
we must be able to perform 1000 steps per second to
achieve a real-time simulation.

4. Hardware Synapse Interconnect
The general update process shown in Equation 3 is

expressed in terms of matrix-vector multiplication, but
in practice will be implemented using specialised rou-
tines, rather than linear algebra libraries. A key optimi-
sation is to observe that in practice the average number
of neurons producing spikes in each update (time-step)
will be relatively low (although there may be isolated
periods of very high activity where many neurons fire
synchronously). To optimise for this low average activ-
ity, software implementations use an intermediate vec-
tor to accumulate stimuli, accumulating weights into it
as each neuron fires.

This algorithm is shown in Algorithm 1, using a
temporary vector called~t. Although this method im-
proves performance in the average case, it has the unfor-
tunate side-effect of introducing dependencies between
the update of individual neurons: if neuroni fires, then
the vector summation in statement 5 must be executed.
This summation must be atomic, so if another neuronj
is evaluated in parallel and also fires, then it must wait
for neuroni to complete before it is able to perform it’s
own summation.

Algorithm 1 Fan-out (software) update algorithm.

1: ~t← 0n

2: for i = 1..n do
3: (~si ,~f i)← f (~ci ,~si ,~i i)
4: if~fi then
5: ~t←~t+W[i, :]
6: end if
7: end for
8: ~i←~t

Algorithm 2 Fan-in (hardware) update algorithm.

1: ~t← 0n

2: for i = 1..n do
3: ~i i ←W [:, i]×~f {Vector dot-product.}
4: (~si ,~ti)← f (~ci ,~si ,~i i)
5: end for
6: ~f←~t

In software this contention is not a problem, as a
single-threaded implementation is inherently safe, and
even a multi-threaded implementation can simply create
a private copy oft for each thread, before combining
the (small number) of private copies into one overall
vector in the final statement. However, in hardware this
summation presents more of a problem.

If the summation is implemented using a shared se-
quential vector adder then the simulator will be severely
reduced in speed. Updating then neurons will take
n+K cycles, whereK is the number of pipeline stages
needed to implement functionf . In the cases we con-
sider, wheren∼ 1000, thenK will be less thann, and
so the number of cycles needed to update the neuron
state will be at most 2n. However, if a single shared
vector adder is used, then the minimum update time is
increased topn2 cycles, wherep is the proportion of
neurons which fire in the time-step. Even in quiet net-
works it is likely that more than two neurons will fire in
each update, so the summation becomes the bottleneck.

Instantiating multiple vector summation units is
one possible solution, but the problem becomes where
to store the synapse weights used within the summation.
In software the weights are trivially shareable between
threads, but in hardware each extra thread requires its
own RAM port, and so using more than two summation
instances will require multiple copies of the weight ma-
trix. Given that the weight matrix consists ofn2 ∼ 106

words, we quickly run out of RAMs in which to store
it. Possible solutions include partially or fully parallel
summation units, but these are more complicated, and
also present problems with how to store the weights.

Although all these problems can be solved with
some engineering effort, we prefer to re-organise the
algorithm in a way that both simplifies the architecture
and allows us to provide a fixed throughput ofn+ K
cycles per update. The key is to rearrange the update
algorithm into the form shown in Algorithm 2, which is
much closer to the original vector-matrix version given
in Equation 3. Now instead of maintaining the vector of
stimuli (~i) between steps, we retain the vector of firings
(~f), as in the original formulation.

The reason for doing this is that the cost of oper-
ations in hardware is different from that in software.



In software the cost of an operation is dependent on
whether it was executed or not, while in hardware the
cost is related to the area required to implement the op-
eration. So if we can fit a hardware structure that is able
to implement the vector dot-productW[:, i]×~f into the
device then we might as well use it, regardless of how
many neurons actually fire. Fortunately, because~f is a
boolean vector, the multipliers in the dot-product are ac-
tually and-gates, so even withn∼ 1000 the whole struc-
ture can be fit into larger contemporary FPGAs, provid-
ing a throughput of one dot-product per cycle.

Figure 2 shows how this algorithm can be imple-
mented in hardware. On the left-hand side is shown
the structure of a single synapse. Each synapse is ded-
icated to the spike-train of a single neuroni, with the
last spike value held in the (1-bit) registerfi. Over n
successive cycles the synapse iterates through the col-
umn of weightsW[i, :] held in the RAM, and outputs
the successive elements of the vectorfi×W[i, :].

The right-hand side of the figure shows the overall
architecture. Each of then synapse units outputs one
scaled spike per cycle, so in each cycle all the scaled in-
puts for one neuron are produced. Thesen scaled spikes
are then combined using a pipelined adder tree to pro-
duce the overall stimulus value. The stimulus can now
be passed onto a heavily pipelined implementation of
the neuron update functionf . The neuron state is stored
in a dual-port RAM, and can be updated in place.

The other output of the neuron update pipeline is
the 1-bit value indicating whether each neuron fired.
This needs to be propagated back into the synapses so
that it can be loaded into thefi registers at the start of
the next update. This feedback is achieved using a 1-
bit n-stage shift-register running through the synapses,
shown asti . The shift register starts at the synapse ded-
icated to neuronn, then moves back to neuron 1. Be-
cause the values of~f are produced in order, aftern shifts
the spike values are all in the correct location. After
n+ K cycles the whole network has been updated, and
the synapses can be flipped, moving the values of the
ti register into the associatedfi , and allowing the next
update step to start.

5. Izhikevich neuron model

As well as the interconnection method, another re-
quirement for biologically plausible spiking behaviour
is the selection of an appropriate neuron update func-
tion f . This is responsible for taking the incoming tha-
lamic stimulus, combining it with and updating the neu-
ron state, and producing the resulting spike train. The
difficulty lies in choosing a model that is sufficiently
complex to produce the different types of spiking be-
haviour, while simple enough to fit in an FPGA.

At the simple end of the spectrum is the leaky inte-
grate and fire model, with three parametersa, b, c, and
vt , and one state variablev:

v← v+ i +−bv
if v > vt then

v← c
end if

The model is very efficient, requiring only four floating-
point operations per 1ms time-step, but unfortunately is
too simple to exhibit complex behaviour such as inter-
mittent bursting.

At the other end of the scale is the much more com-
plicated Hodgkin-Huxley model. This consists of four
update equations, and tens of neuron constants, which
provide detailed models of the chemical and electrical
processes within the neuron, and is able to provide all
kinds of spiking phenomena. However, to achieve this
the model must operate using very small time-steps of
0.1ms, rather than the more normal 1ms steps. Because
each small time-step requires 120 floating-point opera-
tions, this means that around 1200 floating-point opera-
tions are required to advance one neuron by 1ms.

The model that we have found provides the best
balance between efficiency and biological plausibility
is the relatively recent Izhikevich spiking model [1].
This uses two neuron state variablesv andu, and five
neuron parametersa, b, c, d, and s, and can exhibit
all known types of spiking modes, such as intermittent
bursting and chaotic spiking. The basic update algo-
rithm uses 13 floating-point operations per time-step,
but we choose to adopt the more stable version given
in the matlab source code in [1], which steps variable
v in two steps for stability. For efficiency we transform
some of the constants and rearrange the equations into
the form shown in Algorithm 3, without affecting the
model or the flexibility presented to the user. Note that
the expressionsab and (1− a) on line 4 only involve
neuron parameters, and so can be pre-calculated and
stored instead of the underlying parametersa andb.

The function N() provides a random normal vari-
able, which perturbs the thalamic input, so simulations
of networks starting from the same starting state will
diverge over time. Note that parameters is encoded
implicitly using numeric constants in [1], but we have
treated it as an explicit parameter

It is worth noting that we donot transform lines 2
and 3 to Horner form, i.e.(0.02v+ 3.5)v+ t. The rea-
son for this is that the polynomial form has a latency of
two multiplies and an add, while the Horner form has
two multiplies and two adds. Any decrease in update
latency reduces theK part of then+ K cycles required
per network update, so it is worth spending a little extra
area to get a small performance increase.



RAM

Synapse n

+
Neuron
Update
Pipeline

Neuron
State RAM

Neuron
Params RAM

Synapse n-1

Synapse n-2

Synapse 1

Stimulus Accumulation Neuron Update

W[i,1]
W[i,2]
W[i,3]

W[i,n]

fiti

Co
un

ter
RST

CE

iFl
ip

iSpikeLoad

oSpikeLoad

oS
ca

led
Sp

ike iFlip
Serial 1-bit spike loading chain

Figure 2. Architecture of a synapse (left) and a neural netwo rk (right).

Algorithm 3 Izhikevich Neuron Update Algorithm

1: t← (i +s N()−u+140)/2
2: v← 0.02v2+3.5v+ t
3: v← 0.02v2+3.5v+ t
4: u← (ab)v+(1−a)u
5: if v > 30 then
6: v← c
7: u← u+d
8: end if

Floating-point Ops. Parameters
Total × + N() Global Neuron

Calcv 15 5 7 1 3 0
Calcu 4 2 2 0 0 2
Firing 1 0 1 0 1 2
Total 20 9 10 1 4 4

Table 1. Cost of the Izhekivich neuron model in
floating-point operations and constants.

The costs of the neuron model are summarised
in Table 1, in terms of floating-point operations, and
number of parameters (numeric constants). The di-
vide by two on line 1 and the comparison on line 5
are not counted, as they are relatively cheap operations.
The random number generator is counted as 1 floating-
point operation - this is actually an underestimate when
considering software, where it takes multiple instruc-
tions (floating-point and integer) to generate one ran-
dom number, but is a fair comparison in hardware where
random number generation is comparatively cheap.

In total each neuron update requires 20 floating-
point operations, so with a time-step of 1ms this means
that updating one neuron over a one second time period
requires 20KFLOPs. With the target network size of
1024 neurons, this means that at least 20MFLOPs are

required to simulate a neural network at real-time speed
- however, our aim is to achieve significantly higher
throughput to provide hyper-real-time speeds, for the
reasons given in Section 2.

6. Implementation

To explore the performance of the proposed archi-
tecture and neuron model outlined in the previous sec-
tions, we implemented a 1024 neuron fully-connected
network using the Virtex-5 xc5vlx330t device. This is
a comparatively large device, with an emphasis on ba-
sic logic elements, containing 324 36Kbit RAMs, 192
DSP blocks, and just over 200,000 pairs of Logic Ele-
ments (LEs), each containing a 6-LUT and a Flip-Flop.
It has previously been used in investigations into High-
Performance Computing using FPGAs, for example in
the 16-FPGA Maxwell system, and so is reasonably
typical of the kind of FPGA that can easily be bought
and used by neural network researchers.

The interconnection architecture outlined in Sec-
tion 4 uses RAMs to store the weights assigned to each
neuron, and a tree of adders to sum the scaled spike-
trains to form the stimulus. In software these constants
and summation operations would all be floating-point,
but this is infeasible in hardware: a fully connected
network requiresn2 weights, so even in 32-bit single-
precision we would need 33Mbits of storage, far more
than the 12Mbits available in the target device. Even in
a device with more RAM blocks, we would still not be
able to fit then−1 adders required for the summation
tree, as even the largest devices cannot accommodate
1023 single-precision adders.

To fit the stimulus calculation into a contemporary
FPGA, we must use fixed-point for both the weights and
the summation tree. Although this may appear to in-
troduce a significant limitation to the system in terms



Figure 3. Cell implementing four synapses.

of what networks can be represented, and in how ac-
curately the networks are simulated, in reality it is less
of an issue. Weights below a certain level simply do
not matter, as they will be swamped by the thalamic
noise term, and the weights are also limited to a rel-
atively small range, as they are modelled on physical
processes with fixed limits. This means that only the
absolute accuracy of the weights is relevant, rather than
the relative accuracy, so floating-point is unnecessary,
and fixed-point weights will not limit the types of net-
works that can be described.

Assuming that a network can be described using
fixed-point weights, then there is consequentially no ef-
fect on the accuracy of the simulation. The weights can
be accumulated using a tree of adders that increases in
width from the leaves to the root, so the stimulus will be
calculated exactly. In certain situations this may actu-
ally bemoreaccurate than single-precision stimulus ac-
cumulation, as inhibitory and excitatory synapses (those
with negative and positive weights) may cause cancel-
lation and loss of precision.

Figure 3 shows the basic cell used within our con-
crete implementation of the abstract architecture shown
in Figure 2. Each cell is based around a single Virtex-
5 RAMB36 primitive, configured as a 36-bit wide by
1024 element RAM. Each RAM holds the weights for
multiple synapses, in this case four. The maximum
width (ww) of the weights is determined by the num-
ber of synapses per RAM, and the width of the RAM
ports. For four synapses we must have 4ww < 36, so the
maximum width isww = 9 bits.

On the left of the RAM is shown a 4ww-bit wide
register chain that passes through all the cells. This is
used to load synapse weights into the RAM, without
requiring a large fan-out address and data distribution
network. Loading the synapse weights takesn2/4 cy-
cles: shifting new weights through the column takes
n/4 cycles, and this must be repeatedn times to load

the synapses for each neuron.
In the centre of the cell is the spike distribution

and storage shift chain, equivalent to registersti and
fi in Figure 2. During each neuron update pass, the
RAM steps through the synapse weights for each neu-
ron, which are multiplied with the 1-bit spike value,
then added together. The logic for the multipliers and
the first-stage of adders can be combined into one stage
of logic elements, followed by another stage to produce
the overall stimulus from all four synapses.

In order to supportn neurons we requiren/4 of
these basic cells, so 256 cells are required to support
all 1024 neurons. Because this basic cell is repeated
so many times it is important to use as little logic as
possible. Figure 3 shows the cost of each four-synapse
cell in LEs, whereww is the width of each weight, and
wn = dlog2 ne. Our implementation usesww = 8 and
n = 1024, so the total cost of each cell is 78 LEs, or
just over 20,000 LEs in total (10% of the device to-
tal). Combining the 256 partial sums produced by these
cells requires another 3000 LEs, so a total of just over
23000 LEs are required for the synapses and stimulus
accumulation.

The neuron update function is a straightforward
pipeline, scheduled using an ASAP (As-Soon-As-
Possible) approach. The floating-point units are gener-
ated using Xilinx CoreGen 9.2, using maximum latency
versions for maximum speed, and choosing the default
(balanced) option for DSP48E usage. The neuron state
and parameters are stored in block-RAMs, and are re-
trieved individually where needed within the pipeline,
rather than reading all the inputs at the beginning of the
pipeline - this rather trivial optimisation significantly re-
duced area when using double-precision, as otherwise
large numbers of SRL32 shift-registers are needed to
pipeline the parameters until the point in the pipeline
where they are used. The random number generator
is implemented using the alias method [6], with one
central-limit accumulation to improve the distribution.

Because the stimulus interconnect is so regular, it is
possible to manually place large amounts of the logic.
The left side of Figure 4 shows the arrangement of
RAM and DSP columns in the xc5vlx330.1 To target
this arrangement, relatively placed clusters containing
16 cells (i.e. 64 synapses) are created, then placed in a
chain that snakes from the bottom right over to the bot-
tom left (numbered 0 to 15 on the figure). The bottom
third of the RAM columns on either side of the DSP
columns are deliberately left clear, providing an empty
space for the neuron update pipeline containing DSPs,
RAMs, and logic. Both relative and absolute placement

1There is also an additional irregular column on the far rightcon-
taining a combination of RAMs and a PCI-Express interface.



����������	�
��� ������ ������
Figure 4. Arrangement of Block-RAM and DSP
columns in the Virtex-5 xc5vlx330t device, and
placement of synapse clusters and neuron up-
date logic within device.

were achieved using VHDL level constraints (RLOC
and LOC), and placing the logic allows us to perform
the full tool-flow in under an hour for all designs.

Table 2 summarises the resource-usage and clock-
rate of the different components, and for the whole sim-
ulation architecture. The individual components are
placed and routed with no specific timing constraints,
while the overall simulators are constrained to 133MHz.
In principle the simulators could achieve a higher clock
rate, as the individual components can run much faster,
but 133MHz is both convenient for the Alpha-Data
FPGA cards that we use, and balances performance
against place-and-route time for the combined design.

The first column shows the total number of LEs
used, either fully or partially occupied. The number of
LEs used for the synapse interconnect is 24226, very
close to the predicted 23000. The extra usage is due
to FFs replicated by the tools for timing reasons, and
due to small amounts of shared control and timing logic.
Overall logic usage is just over 20% for the double pre-
cision version, which is very promising for future ex-
tensions, as it suggests that there is plenty of room left
to add new features, even on a per-synapse level.

The RAM utilisation is much higher, with both
single and double precision versions using over 80%
of available resources. This is an unavoidable conse-
quence of using a fully-connected network and storing
the synapses on-chip. Larger networks would require
the use of off-chip RAM resources, and probably could
not use the fan-in approach adopted here.

7. Evaluation

The performance of the simulator is determined by
the number of neurons (n), the latency of the neuron up-
date pipeline (K), and the clock-rate of the circuit (F).
Each pass through the network takesn+K cycles, so the

Implementation Firing Activity
Platform PrecisionStandardHeavy None
xc5vlx330t Single 118.75x
xc5vlx330t Double 113.58x
Core2/3GHz Single 8.41x 3.98x 28.8x
Core2/3GHz Double 6.84x 3.83x 12.9x
GT200/1.2GHzSingle 101.11x32.02x 183.77x

Table 3. Speed-up of platforms over to real-
time, for different levels of firing activity.

number of time-steps achieved per second isF/(n+K).
For both the single and double precision implementa-
tionsF=133MHz, andK = 96 for the single-precision
orK = 147 for double-precision, resulting in a peak per-
formance atn = 1024 of 118.75 and 113.58 KSteps/s.
Using a time-step of 1 ms, 1 KStep corresponds to one
seconds worth of simulation time, so the speed-up of
the simulators over real-time is also 118.75 and 113.58.

Table 3 compares the performance of the hardware
implementation against a software version running in
an Intel Core2 3GHz CPU, and a GPU version using
an NVidia 1.2GHz GT200 containing 30 SIMD pro-
cessors. The software implementation is not explicitly
vectorised, but is written in a way that allows the Intel
C Compiler to automatically vectorise the neuron up-
date procedure and the accumulation of stimulus. Per-
formance is shown in multiples of real-time - i.e. how
much faster the simulated network runs than the “real”
network. The GPU implementation is described using
CUDA, and great care is taken to ensure that all memory
accesses can correctly coalesce, that the correct number
of thread blocks are launched, and that fast maths in-
trinsics are used wherever possible.

Because the software version uses the fan-out
model shown in Algorithm 1, the performance is de-
pendent on the level of spiking activity occurring in the
network. For this reason we consider three different
spiking activity levels:standard, as produced by the ini-
tialisation code in [1], where about 7% of neurons fire
per time-step;heavy, where the network has been tuned
so that 20% fire per step; andnone, where no spikes
at all occur. Because the FPGA implementation uses
the fan-in model, the simulation rate is independent of
spiking activity, while in software we see that theheavy
activity level approximately halves the performance of
the simulator.

The GPU provides slightly lower performance than
the two FPGA versions under the standard load, and
is only faster under the unrealistic (and uninteresting)
situation where no neurons fire. When very heavy
firing occurs the GPU performance degrades signifi-



Module Format LEs (%) LUTs FFs Slices (%) DSPs (%) RAMs (%) MHz

Synapses 8-bit 24226 (11.7) 12816 24226 6844 (13.2) 0 (0.0) 256 (79.0) 311

Neuron Single 8727 (4.2) 6261 7781 2859 (5.5) 16 (8.3) 8 (2.5) 307
update Double 18147 (8.8) 12943 16293 5489 (10.6) 96 (50.0) 15 (4.6) 214

Entire Single 33452 (16.1) 19397 32420 9976 (19.2) 16 (8.3) 264 (81.5) 133
simulator Double 43263 (20.9) 26286 40919 13204 (25.5) 96 (50.0) 271 (83.6) 133

Table 2. Resource-usage and performance for neural network simulator and its components, using
single-precision and double-precision floating-point.

cantly, as even the high-bandwidth memory architecture
of a GPU cannot supply the synapse weights quickly
enough. Even with standard firing activity, where per-
formance is broadly comparable, we would observe that
the FPGA is able to provide double-precision, while the
GPU only operates in single-precision.

8. Related Work
There is a huge body of existing work on the imple-

mentation of neural networks using FPGAs – a contem-
porary survey of the various approaches can be found
in [4]. Our focus is on hyper-real-time simulation of
fully connected networks with around 1000 neurons
using a complex biologically plausible neuron model,
unlike many approaches which use a simpler neuron
model while attempting to support much larger net-
works at slower speeds.

One approach [5] that provides a similar level of
performance and functionality to our approach is to use
a CPU and FPGA in parallel. Here the synapse weights
and interconnection are handled in software, while the
computationally intensive neuron update is performed
in hardware. This provides more flexibility and scala-
bility when constructing the neural network, but signif-
icantly reduces performance: a 1024 neuron network
can be simulated in real-time, using a 14-bit fixed-
point neuron model. This is 100 times slower than our
double-precision model, although we have the advan-
tage of a much more recent FPGA platform.

The Izhikevich model has been previously imple-
mented in FPGAs [3], but only as a standalone neuron
model using 24-bit fixed point. The only reported ex-
periments are for two directly coupled neurons operat-
ing at 1MHz in a unspecified FPGA device.

9. Conclusion
This paper has demonstrated the feasibility of us-

ing FPGAs for the simulation of biologically plausi-
ble spiking neural networks. Using a single Virtex-
5 xc5vlx330 device at 133MHz we are able to simu-
late fully-connected 1024 neuron networks at over 100
times real-time speeds, with a simulation rate inde-

pendent of the spiking activity level. This guaranteed
throughput is achieved using a method that distributes
synapse weights through hundreds of block RAMs,
dedicating small groups of synapses to each RAM, and
using a shifting mechanism to distributed spike-trains.

The network uses the Izhikevich neuron model,
which is capable of replicating all spiking patterns ob-
served in real neurons, using a process requiring 20
floating-point operations. Using this model the FPGA
simulator achieves a sustained processing rate of 2.26
GFlops in double-precision, over 16 times the speed of
a 3GHz Core2 CPU implementation.

Current and future work includes scaling up our ap-
proach to cover larger neural networks with more com-
plex properties, such as axonal delay and spike-timing
dependent plasticity. Automating design optimisations,
such as those involved in transforming Algorithm 1 to
Algorithm 2 in Section 4, would also be investigated
with the view of extending them to support a wide vari-
ety of applications.

References
[1] Eugene M. Izhikevich. Simple model of spiking neurons.

IEEE Trans. on Neural Networks, 14(6), 2003.
[2] Eugene M. Izhikevich. Which model to use for corti-

cal spiking neurons?IEEE Transactions on Neural Net-
works, 15(5):1063–1070, 2004.

[3] M. La Rosa, E. Caruso, L. Fortuna, M. Frasca, L. Oc-
chipinti, and F. Rivoli. Neuronal dynamics on FPGA:
Izhikevich’s model. Proceedings of the SPIE, 5839:87–
94, 2005.

[4] L.P. Maguire, T.M. McGinnity, B. Glackin, A. Ghani,
A. Belatreche, and J. Harkin. Challenges for large-scale
implementations of spiking neural networks on fpgas.
Neurocomputing, 71:13–29, 2007.

[5] Eduardo Ros, Eva M. Ortigosa, Rodrigo Agı́s, Richard
Carrillo, and Michael Arnold. Real-time computing plat-
form for spiking neurons (rt-spike).IEEE Trans. on Neu-
ral Networks, 17(4), 2006.

[6] David B. Thomas and Wayne Luk. Non-uniform random
number generation through piecewise linear approxima-
tions. IET Computers and Digital Techniques, 1(4):312–
321, 2007.


