
EXPLORING RECONFIGURABLE ARCHITECTURES FOR EXPLICIT FINITE
DIFFERENCE OPTION PRICING MODELS

Qiwei Jin, David B. Thomas and Wayne Luk

Department of Computing
Imperial College London

United Kingdom
email:qj04, dt10, wl@doc.ic.ac.uk

ABSTRACT

This paper explores the application of reconfigurable hard-
ware and Graphics Processing Units (GPUs) to the accelera-
tion of financial computation using the finite difference (FD)
method. A parallel pipelined architecture has been devel-
oped to support concurrent valuation of independent options
with high pricing throughput. Our FPGA implementation
running at 106MHz on an xc4vlx160 device demonstrates a
speed up of 12 times over a Pentium 4 processor at 3.6GHz
in single-precision arithmetic; while the FPGA is 3.6 times
slower than a Tesla C1060 240-Core GPU at 1.3GHz, it is 9
times more energy efficient.

1. INTRODUCTION

The finite difference (FD) method [1] is a basic numerical
procedure used for financial option pricing, especially in sit-
uations when a closed-form solution does not exist (e.g. Bar-
rier Options [2]). In particular, it can be used to handle cer-
tain types of options, such as American Options, that can not
be easily modelled by Monte-Carlo methods.

The FD method solves Partial Differential Equations (P-
DEs), by discretising the underlying variables in the PDE.
Its application can be found in many scientific domains. For
example the Laplace (Heat) Equation in thermodynamics [3];
Maxwell’s (Wave) Equation in electromagnetism [4]; and
the Black-Scholes equation in finance [1].

Option pricing using the FD method can typically be
performed in milliseconds on a modern general purpose pro-
cessor. However, if a high degree of accuracy is required,
the amount of computation needed increases quadratically
in the simplest case where there is only one random vari-
able involved in the PDE. As financial derivatives become
more sophisticated and complex, it is common to see two or
more underlying random variables being used in a pricing
model, which requires computational power to grow expo-
nentially. In the finance industry the FD method is used in
generating risks for large portfolios. Such generation can
take many hours even on a large computer grid. Our aim
is to explore acceleration technologies which can signifi-

cantly reduce both execution time and grid size, without af-
fecting solution quality. This paper shows how Field Pro-
grammable Gate Arrays (FPGAs) and Graphics Processing
Units (GPUs) can provide viable methods of accelerating the
FD methods to solve the standard Black-Scholes PDE. We
mainly discuss designs based on FD method for European
option valuation, but extensions to support American option
valuation are straightforward. Our design is flexible enough
to solve other types of PDEs such as the Heat Equation. The
main contributions are the following:

• two pipelined architectures based on explicit FD op-
tion pricing model, that are capable of processing con-
current requests for option valuations (Section 4);

• implementation of the two architectures in reconfig-
urable hardware, exploiting on-chip resources by al-
lowing parallelism in different dimensions (Section 5);

• evaluation and comparison of the reconfigurable ap-
proach and alternative implementations based on two
nVidia GPUs and a general-purpose Intel processor
(Section 6).

2. MOTIVATION

Hardware acceleration of financial instruments pricing us-
ing Monte Carlo methods has been studied intensively in
the past few years. For instance, a platform independent
domain specific language has been invented to produce op-
timised pipelined designs with thread level parallelism for
Monte Carlo simulations from a high level abstraction [5];
an FPGA-based stream accelerator with higher performance
than GPUs and Cell processors has been proposed for evalu-
ating European options [6]; and an architecture with a pipe-
lined datapath and an on-chip instruction processor has been
reported for speeding up the Brace, Gatarek and Musiela
(BGM) interest rate model for pricing derivatives [7].

Some recent studies have focused on pipelined tree based
methods [8] and quadrature methods [9]. Tree based meth-
ods are efficient, and can handle certain types of options
such as American options that cannot be handled easily by



Application Implementation
The Heat Equation [10] 24 bit Fixed Point
Maxwell’s Equation [11] 16 bit Fixed Point

Poisson Problem
(Iterative Refinement) [12] Mixed 32/64 bit Floating Point

Table 1: Existing PDE solvers

Monte Carlo methods, while quadrature methods provide
more accurate result over tree based methods. However, the
above methods cannot effectively address issues such as the
effects of asset price on option price over time.

The FD method, on the other hand, can generate a grid
of option prices over time, based on a range of underlying
asset price variations, which can then be easily plotted on a
graph for further study if necessary.

There is also existing research explores the acceleration
of FD and iterative refinement methods for solving PDEs,
listed in Table 1. However, the efficiency and applicability
of these methods is highly dependent on application domain,
so in this paper we develop techniques specifically for the
option pricing domain. On the other hand, our design is
flexible enough to be generalised to solve PDEs such as the
Heat Equation, with minor parameter settings.

The FD method solves the Black-Scholes equation by
discretising time and the underlying asset price. We now
briefly describe the concept of option pricing, in terms of
European options, followed by American options.

A put optionin general is a contract that gives party A
the right to sell some asset S to party B at the strike price
K. The important observation is that the option provides
a right, not an obligation: party A can choose whether or
not to exercise that right (i.e. to sell asset S at priceK).
In general the put option will only be exercised ifK > St

whereSt is the price ofS at timet.
A Europeanoption can only be exercised at a particular

time T. The price of a European option is determined by the
formulamax(K−ST , 0). In contrast, anAmericanoption is
one where party A can exercise the option at any time up un-
til the option expires at time T. The American option is very
common, but it presents some difficulties in pricing due to
the freedom to exercise the option before the expiry date – in
particular it becomes difficult to determine the option price
using Monte-Carlo methods [5] due to its path dependence.
In contrast, FD techniques are able to accurately price both
European and American options.

3. THE FINITE DIFFERENCE MODEL

The FD model solves the Black Scholes PDE by discretis-
ing both time and the price of the underlying asset S, and
mapping both onto a two-dimensional grid. There are three
kinds of FD methods: implicit, explicit and Crank-Nicolson.
We consider the explicit mechanism, as it is the most com-
putationally efficient method amongst all three (other two

involve solving linear equations at each iteration) [1].
The Black Scholes PDE with one variable following ge-

ometric Brownian motion has the following form:

∂f

∂t
+ (r − q)S

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2
= rf (1)

wheref(S, t) denotes the price of the option,S denotes the
value of the underlying asset,t denotes a particular time,r
denotes risk-free interest rate,σ denotes the volatility of the
underlying asset, andq denotes the dividend yield paid by
the underlying asset.

Suppose the time to maturity for the option isT . We
discretiseT by dividing it into N equally spaced intervals,
namely:∆t = T/N . As a result, a total ofN + 1 points in
time are considered:

0, ∆t, 2∆t, ..., (N − 1)∆t, T

We then determine an asset priceSmax such thatf(S, T ) =
0, and discretise it intoM equally spaced intervals. As a
result,M + 1 underlying asset prices are obtained:

0, ∆S, 2∆S, ..., (M − 1)∆S, Smax

where∆S = S/M . A (N + 1) by (M + 1) grid is defined
by the time and asset price points.

An efficient approximation for computation within this
grid can be obtained by a change of variable [1], discretising
over lnS instead ofS. SupposeZ = lnS, the following
equations can be obtained:

fi,j = αjfi+1,j−1 + βjfi+1,j + γjfi+1,j+1 (2)

αj =
1

1 + r∆t
(−

∆t

2∆Z
(r − q − σ2/2) +

∆t

2∆Z2
σ2)

βj =
1

1 + r∆t
(1 −

∆t

∆Z2
σ2)

γj =
1

1 + r∆t
(

∆t

2∆Z
(r − q − σ2/2) +

∆t

2∆Z2
σ2)

whereαj , βj andγj are independent ofj and only need to be
calculated once. Equation 2 can be implemented efficiently
by two nested for-loops iterating round a one dimensional
array: with an outer loop steppingt backwards fromT to 0,
and an inner loop calculating the price for eachft,j at level
t in the grid. The array holds the intermediate values, and
can be updated in place.

4. PARALLEL ARCHITECTURE EXPLORATION

Two levels of parallelism can be exploited for the FD model:
coarse grained parallelism and fine grained parallelism. We
define coarse granularity to be the ability to valuate different
options at the same time; fine granularity to be the ability
to valuate different nodes in a grid at the same time. The
higher the coarse granularity, the more options can be priced



Fine 

Core

...

Fine 

Core

Fine 

Core

Coarse Core

Fine 

Core

...

Fine

Core

Fine 

Core

Coarse Core

Fine

Core

...

Fine 

Core

Fine

Core

Coarse Core

Main

Controller

Finaliser

Initialiser

Mem

Controller

Double 

Buffered

Memory

Option 

Values

...

Fig. 1: System architecture for computing the FD model.

at the same time; the higher the fine granularity, the faster
the valuation speed per option.

As the amount of computational resources are limited,
trade-offs between the coarse and fine granularities need to
be made depending on the user requirements. Our design
allows the user to choose the most appropriate granularity
and configure the device on the fly.

Figure 1 demonstrates our proposed architecture for ex-
plicit finite difference option valuation. The architecture is
comprised of the following components: (a) the Main Con-
troller, (b) the Coarse/Fine Core, (c) the Memory Module,
(d) the Memory Controller and (e) the Initialiser and Fi-
naliser. The Main Controller controls the overall process
and communicates to the software-end. The Coarse Core
is the main processor. We assign one option to one Coarse
Core. There can be many Coarse Cores in our architecture
and each Coarse Core consists of one or more Fine Cores.
The Fine Core is the basic computational unit. It is a fully
pipelined block which takes three previously calculated op-
tion values and calculates the value of the present node. A
Fine Core alone can form a one-core Coarse Core. Many
Fine Cores can be wired up to assemble a more powerful
Coarse Core. The Memory Module adopts double buffering
to fully utilise the pipeline. FPGA embedded memory (in
our case Xilinx Block Select RAMs) is used to implement
the Memory Module. The Memory Controller couples the
Memory Modules and Coarse Cores, makes sure that data
are retrieved and stored correctly. It is capable of providing
one set of parameters to a Fine Core per clock cycle. The
Initialiser initialises the memory module by setting up the
initial option prices, and the Finaliser finalises the process
by getting data ready to be sent back to the software-end.

We adopt the C-Slow methodology [13] in our design.
It allows us to use high-latency pipelined functional unitsto
achieve high clock rates while still achieving high through-
put. We continuously provide parameters into the Fine Core
pipeline to valuate different nodes, and we load parameters
for another option while we are waiting for the results re-
quired for the next iteration of the current option. The typ-

Fine Core

ft1 ft2

 ! "fi+1,j-1

fi,j

fi+1,j fi+1,j+1

Algorithmic Logic

s1 s2

Fig. 2: Binomial Model: hardware design for the blockFine Corein Fig. 1.
The solid black boxes denote registers and the grey boxes denote pipeline
balancing registers that are allocated automatically byHyperStreams(Sec-
tion 5).

ical grid size used in industry is 6K by 30K, where 6K cal-
culations are independent of each other at each iteration. As
the total pipeline latency is usually tens of clock cycles de-
pending on the actual device, two options are required to be
valuated at the same time.

The C-Slow approach allows parallelism in time, but we
also try to exploit parallelism in space for the FD model.
There are data dependencies between any two consecutive
columns in the grid to be processed. However the data in
the same column is independent of each other hence paral-
lelisable. In the simplest case we arrange the original grid
horizontally into 2 parts of the same size and process the
upper half and lower half of the grid concurrently. In our
design the array being iterated over is divided into two sepa-
rate arrays and processed simultaneously by two Fine Cores.
However the two array elements (the overlapped elements)
adjacent to the dividing point need to be included in both of
the arrays. At the end of each iteration the two overlapped
elements are swapped in order to seal the cut. In cases when
the grid has odd number of rows (e.g. it can not be cut into
two equally sized parts), we can adjust the number of the
overlapped elements in the array with fewer elements to re-
balance the computational load.

Figure 2 shows our hardware design of the Fine Core,
which essentially corresponds to Equation 2. For eachfi,j it
valuates, it takes a set of parameters provided by the Mem-
ory Controller: three previously valuated grid node values
and three parameters associated to them. Note that the pa-
rameters remain the same throughout the option valuation
process. Switches s1 and s2 are used to swap the overlapped
elements with peer Fine Cores, the Memory Controller is
designed to make sure the values are only swapped at the
right time. In cases when there is only one Fine Core in a



HyperStreams

Out

RAM 

Read
Reg Reg Reg

Reg Reg Reg

Handel-C

p1 p2

p3 p4

: Type Casting

Fig. 3: The data flow of the hardware implementation on FPGA. Noting the
registers in grey hold constant parameters for an option; thebold squares
are ports connecting to peer Fine Cores to swap overlapped elements.

Coarse Core, these switches are not used.
Our implementation can be extended easily to support

American option pricing by adding an extra comparison op-
erator in the pipeline, as the price of the American option at
a particular point in the grid can be obtained by a simple ta-
ble lookup from anM + 1 element lookup table (given that
the lookup table of possible option prices has been generated
initially). The implementation can also be used to solve one-
dimensional Heat Equation: the array need to be initialised
with temperature values, and parametersαj , βj andγj will
be set according to the Heat PDE.

So far the Fine Core is the most resource intensive ba-
sic component in our design. In the asymptotic case we
would expect the overall performance to be dominated by
the size and speed of this block, as other components con-
sist of memories and a small amount of selection logic. We
shall examine our implementation in more detail in the next
section.

5. IMPLEMENTATION

Our FPGA implementation of the Fine Core logic for the
FD option pricing model is based onHyperStreamsand the
Handel-Cprogramming language. The GPU implementa-
tion is based on CUDA version 2.0 API provided by nVidia
[14].

First we consider FPGA implementations.HyperStreams
is a high-level abstraction based on theHandel-Clanguage [6].
It supports automatic scheduling of pipelined operators at
compile time to produce a fully-pipelined hardware imple-
mentation. This feature is useful when implementing com-
plex algorithmic calculations in FPGAs.

Figure 3 shows a fully pipelined FPGA implementation
of the Fine Core logic indicated in Equation 2. Each sym-

bol shown in a “HyperStreams” block in Figure 3 refers to a
HyperStreamsoperator (e.g.

⊕
stands forHsAdd). The in-

puts are cast to desired internal representation, for example
HS DOUBLE, at the top of theHyperStreamsblock. Once
all the computations are finished, the output stream is cast
back to the output format.

Fixed point arithmetic is best performed on FPGAs with
well established optimisations such as word-length optimi-
sation [15]. However in the FD case the numerical values
can theoretically range from infinity to infinitely close to
zero, hence we use floating point arithmetic instead. The
control logic, which is used to send and retrieve data from
pipelines, is written in theHandel-C language. To fully
utilise the pipeline, double buffering is used to get around
the FPGA memory port limitation, memory reads are pipe-
lined so that there is only one read from the memory per
clock cycle instead of three. The results are simultaneously
written to another memory bank.

The ports p3 and p4 shown in Figure 3 are used to swap
overlapped elements with peer Fine Cores. Once the option
valuation is finished, the result is sent back to software via
theDSM interface, which is a platform-independent library
for hardware-software communication.

The tool flow is as follows:Handel-Csource code is
synthesised to EDIF using the Celoxica DK5 suite which
supportsHyperStreams. Xilinx ISE 10.1 is used to place
and route the design. The target device on our Celoxica
RCHTX platform is an xc4vlx160 FPGA from the Xilinx
Virtex 4 family, the description is platform and architecture
independent, so could be retargeted for any platform or de-
vice supported by DK.

We then consider the implementation on Graphics Pro-
cessing Units (GPUs). GPUs are another alternative to CPUs
for computational intensive tasks, and have also been used
for financial computation [16]. Our implementation on GPUs
is based on the CUDA 2.0 programming API provided by
nVidia. Double-precision floating-point arithmetic is sup-
ported by CUDA 2.0 on supported GPU platforms.

To exploit the CUDA single instruction multiple thread
(SIMT) model [14], we assign one option to one thread block
and use double buffering with low latency on-chip shared
memory to avoid frequent access to the GPU’s high latency
global memory.

6. RESULTS

In this section we study the performance of our implemen-
tations in FPGA and on GPU. The testing case is the com-
mon industrial level European option pricing problem based
on 6K×30K grids. We make sure that each implementation
has sufficient amount of tasks to fully utilise its resource.
For example, we price 70 options simultaneously on Tesla
C1060 to make full use of its multiprocessors. The best per-
formance of each implementation is recorded and shown in
Table 2. For FPGA, we show the performance of the single



Coarse-Core implementation with multiple Fine Cores; for
GPU we use 70 blocks with 256 threads per block. The per-
formance of both 32-bit single-precision and 64-bit double-
precision floating point implementations are considered.

All the FPGA and GPU implementations are compared
to the software implementation on a reference Intel PC which
is a 3.6GHz Pentium 4 processor with 4GB of RAM and
Linux operating system. This implementation involves C++
code compiled with maximum speed optimisation options.
The targeted FPGA device is a Virtex 4 xc4vlx160 on an
RCHTX board. The targeted GPU devices are an nVidia
Geforce 8600GT with 256MB of on-board RAM, and an
nVidia Tesla C1060 with 4GB of on-board RAM. Table 2
shows a summary of our performance comparison results.

The top part of Table 2 shows the FPGA device utilisa-
tion figures. The results indicate that less than one third of
the FPGA device is utilised in both cases involving double-
precision and single-precision arithmetic. We can improve
performance by replicating the valuation core in a single de-
vice. In our experiments replications over both the coarse
and fine dimensions are considered. We find the peak perfor-
mance occurs when we aggregate all the Fine Cores into one
Coarse Core, as no logic is wasted to glue the Coarse Cores.
Another reason is that the bandwidth for hardware-software
communication is limited; fewer Coarse Cores means more
bandwidth for each option, hence less communication over-
head. In the actual implementation we allow the user to
choose the Fine-Coarse granularity and configure the FPGA
device on the fly.

The acceleration results can be found in the middle part
of Table 2 for different precision implementations, including
core replication that can be done on a single device to gain
further performance. It can be seen that, the 32-bit single-
precision FPGA implementation offers a 1.5 times accelera-
tion over the software, while the 64-bit double precision ver-
sion offers 1.2 times speedup. Eight single-precision Fine
Cores can be replicated on the xc4vlx160, and is estimated
to achieve 12.2 times acceleration.

Table 2 also shows the data for two GPUs. A speedup
of 9.7 times and 43.9 times can be achieved by Geforce
8600GT and Tesla C1060 respectively, both under single
precision. Regarding to the double-precision implementa-
tion, Tesla C1060 can outperform 26.6 times over the ref-
erence PC. Double precision is not supported by Geforce
8600GT.

It can be seen that the FPGA is 1.3 times faster than
Geforce 8600GT, but 3.6 times slower than Tesla C1060
in the single-precision case. The result is not surprising as
Tesla C1060 is based on the latest 65nm technology, while
the Virtex 4 family is based on 90nm technology. To be
fair, the Tesla series should be compared to the latest FPGA
technology such as Virtex 5 from Xilinx and Stratix IV from
Altera. If a larger Virtex 5 device is used with 2 times
or more slices than that on our Xilinx xc4vlx160 device
and with higher basic clock frequency, then potentially 2
times speedup can be achieved without further optimisa-

tion. Single-precision operators in FPGAs can run at a clock
rate of up to 322MHz [17]; our current implementation at
106MHz has much scope for improvement.

From our experience there is a tradeoff when usingHy-
perStreamsbetween the development time and the accelera-
tion achieved. Although we are able to implement complex
algorithms easily in FPGAs withHyperStreams, the highest
possible performance and utilisation of FPGA resources is
not guaranteed. The balance between development time and
performance needs to be explored with further research and
experiment. However ourHyperStreamsimplementations
still give satisfactory result with significant acceleration over
the software implementation. HenceHyperStreamsis use-
ful particularly for producing prototypes rap-idly to explore
the design space; once promising architectures are found,
further optimisations can be applied.

If energy consumption is taken into consideration, we
find that the FPGA implementations are much more energy
efficient than the GPU implementations. For instance, using
Xilinx XPower Estimator, an 8-core design on an xc4vlx160
FPGA at 106MHz is 9 times more energy efficient than the
two GPUs, based on single-precision arithmetic. If the en-
ergy efficiency of double-precision arithmetic is considered,
the FPGA implementation outperforms the Tesla GPU and
PC by 2.8 times and 46.2 times respectively. Note that both
GPUs have similar energy efficiencies for this application,
regardless of the fabrication technologies on which they are
based. The GPU power consumption data come from [18]
and [19].

7. CONCLUSION

This paper describes a new architecture for accelerating op-
tion pricing models based on FD method. The proposed de-
sign involves a highly pipelined datapath capable of process-
ing multiple option valuations in parallel, which supports
concurrent option pricing requests. We have implemented
our design onto an xc4vlx160 FPGA, and demonstrate that
our implementations can generally run more than 12.2 times
faster than a Pentium 4 processor. They are 1.3 times faster
than the GeForce 8600GT GPU in comparable technology,
and are 3.6 times slower than the Tesla C1060 GPU. If en-
ergy consumption is taken into consideration, the FPGA is
up to 9.4 times more energy efficient than a GPU in single-
precision arithmetic, and 46 times more power efficient than
a CPU in double-precision arithmetic.

Further work is planned to study the speed and area opti-
misations on hardware cores based on the latest Virtex 5 and
Stratix IV FPGAs. FPGA-GPU collaboration is also on our
agenda: we wish to find out the most efficient way to make
FPGA and GPU work collaboratively. It would be worth-
while to investigate how FPGA and GPU techniques can be
used in automating domain-specific strategies for producing
designs which best meet user requirements in speed, area
and energy consumption.



FPGA GPU CPU
Virtex 4 xc4vlx160 Geforce 8600GT Tesla C1060 Intel Pentium 4

Number Format single double single single double double
Slices 5228 (7%) 8460 (12%) - - - -
FFs 4253 (3%) 6271 (4%) - - - -

LUTs 5780 (4%) 9891 (7%) - - - -
BRAMs 37 (12%) 69 (23%) - - - -
DSPs 12 (12%) 48 (50%) - - - -

Clock Rate 106MHz 82.9MHz 1.35 GHz 1.3GHz 3.6GHz
Processing Speed

106 82.9 673 3057 1851 69.7
(M values/sec)

Replication
8 3 32 240 1

(cores/chip)
Acceleration

1.5× 1.2× - - - 1×
(1 core)

Acceleration 12.0× 3.6× 9.7× 43.9× 26.6× 1×
(replicated cores)

Max Power (Watt) 5.8 9.1 43 187 115
Energy Efficiency 146 27.3 15.6 16.3 9.9 0.6
(M values/Joule)

Table 2: Finite difference Performance/area results for Xilinx xc4vlx160 FPGA, Geforce 8600GT and Tesla C1060 GPU and Intel Pentium 4 CPU; note that
the percentage shows utilisation of a specific FPGA resource, and acceleration is compared with the Intel CPU.

Acknowledgement. The support of J.P. Morgan Securi-
ties Limited, particularly Abib Bocresion, Tony Chau, Eric
Fournie and Mark Gibbons, is gratefully acknowledged.

8. REFERENCES

[1] J. Hull, Options, Futures and Other Derivatives, 6th ed.
Prentice Hall, 2005.

[2] P. P. B. Y. Tian, “An explicit finite difference approach to the
pricing of barrier options,”Applied Mathematical Finance,
vol. 5, no. 1, pp. 17–43, 1998.

[3] L. Elden, “Numerical solution of the sideways heat equa-
tion by difference approximation in time,”Inverse Problems,
vol. 11, no. 4, pp. 913–923, 1995.

[4] L. Gao, B. Zhang, and D. Liang, “The splitting finite-
difference time-domain methods for Maxwell’s equations in
two dimensions,”J. Comput. Appl. Math., vol. 205, no. 1, pp.
207–230, 2007.

[5] D. Thomas, J. Bower, and W. Luk, “Automatic generation
and optimisation of reconfigurable financial Monte-Carlo
simulations,” inProc. Int. Conf. on Application-Specific Sys-
tems, Architectures and Processors. IEEE, 2007.

[6] G. Morris and M. Aubury, “Design space exploration of the
European option benchmark using Hyperstreams,” inProc.
Int. Conf. on Field Programmable Logic and Applications,
2007, pp. 5–10.

[7] G. Zhang, P. Leong, C. Ho, K. Tsoi, C. Cheung, D.-U. Lee,
R. Cheung, and W. Luk, “Reconfigurable acceleration for
Monte-Carlo based financial simulation,” inProc. IEEE In-
ternational Conf. on Field-Programmable Technology, 2005,
pp. 215–224.

[8] Q. Jin, D. B. Thomas, W. Luk, and B. Cope, “Exploring re-
configurable architectures for binomial-tree pricing models,”
in Proc. Int. workshop on Applied Reconfigurable Comput-
ing, 2008, pp. 245–255.

[9] A. H. Tse, D. B. Thomas, and W. Luk, “Accelerating quadra-
ture methods for option valuation,” inProc. IEEE Symp. on
FPGAs for Custom Computing Machines, 2009.

[10] J. E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. H. Touati,
and P. Boucard, “Programmable active memories: reconfig-
urable systems come of age,”IEEE Trans. on VLSI, vol. 4,
no. 1, pp. 56–69, 1996.

[11] E. Motuk, R. Woods, and S. Bilbao, “Implementation of finite
difference schemes for the wave equation on FPGA,” inProc.
IEEE Int. Conf. on ASSP, vol. 3, 2005, pp. 237–240.

[12] R. Strzodka and D. G̈oddeke, “Pipelined mixed precision al-
gorithms on FPGAs for fast and accurate PDE solvers from
low precision components,” inProc. IEEE Symp. on Field-
Programmable Custom Computing Machines, 2006, pp. 259–
268.

[13] N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek,
“Post-placement C-slow retiming for the Xilinx Virtex
FPGA,” in Proc. ACM/SIGDA Int. Symp. on Field Pro-
grammable Gate Arrays. ACM, 2003, pp. 185–194.

[14] NVIDIA, “nVidia CUDA programming guide,” nVidia web-
site, 2008.

[15] G. A. Constantinides, “Word-length optimization for differ-
entiable nonlinear systems,”ACM Trans. on Design Automa-
tion of Elect. Sys., vol. 11, no. 1, pp. 26–43, 2006.

[16] M. Giles and X. Su, “Notes on using the nVidia 8800 GTX
graphics card,” 2007, Oxford University.

[17] Xilinx, “Floating-point operator v3.0 manual,” Xilinx web-
site, 2006.

[18] A. Vorobiev and A. B. A. S. Else, “nVidia GeForce 8600 GTS
Spec,” http://www.digit-life.com/, 2007.

[19] NVIDIA, “Tesla C1060 Datasheet,” NVIDIA website, 2009.


