
Tuning Instruction Customisation for Reconfigurable System-on-Chip

Chun Hok Ho1, Wayne Luk1, Jakub M. Szefer2 and Ruby B. Lee2

1Department of Computing, Imperial College London, United Kingdom
2Department of Electrical Engineering, Princeton University, USA

ABSTRACT
This paper describes four techniques for tuning in-

struction customisation for reconfigurable system-on-

chip (SoC) devices. These techniques involve tuning

custom instruction granularity, tuning custom instruction

hardware, tuning based on run-time information, and

instrumentation for tuning analysis. The proposed ap-

proach has been used in deriving custom instructions

for advanced bit manipulation applications for the Mi-

croBlaze processor. We show that for a transfer coding

application, custom instructions with an increase of

23% in area can improve performance by 13 times.

I. Introduction

Advances in reconfigurable technology make it in-

creasingly attractive for system-on-chip (SoC) applica-

tions. Such reconfigurable SoC devices, typically con-

taining one or more instruction processors, enable post-

fabrication customisation resulting in significant cost

reduction, since fabrication costs grow exponentially.

Moreover, many reconfigurable IP (Intellectual Prop-

erty) blocks are becoming available, which reduces

development cost by making complex designs reusable

for different applications.

One drawback of reconfigurable SoC devices is per-

formance. Vendor-supplied instruction processors for

these devices, such as Nios [1] and MicroBlaze [9],

have basic instruction sets, which result in small area

but low performance. One way of improving perfor-

mance is to find IP blocks for demanding computations

for particular applications, which can then be included

as custom instructions for these applications. Promising

candidates for such instruction customisation can be

obtained from experience in conventional microproces-

sors, such as the MMX instructions for media process-

ing [3] and the parallel extract (pex) and parallel deposit

(pdep) instructions for applications involving complex

bit-level processing [5].

This paper presents techniques for tuning instruction

customisation for reconfigurable SoC devices, so that

the resulting design meets requirements in area, speed,

flexibility and cost. In particular, our approach covers:

1) techniques for tuning custom instruction granularity,

tuning custom instruction hardware, tuning based on

run-time information, and instrumentation for tuning

analysis (Section III);

2) application of these techniques for advanced bit

manipulation instructions and multimedia extension in-

structions targeting the Xilinx MicroBlaze processor

(Section IV);

3) evaluation of the proposed approach, showing that

an increase of 23% in area can result in performance

improvement of 13 times (Section V).

It is worth noting that, in contrast to other approaches

which report results based on synthesis estimates [2]

and simulation [5], our results are based on measure-

ments of actual reconfigurable SoC implementations on

the XUP development system [10].

II. Related work

Many reconfigurable SoCs are based on advanced

Field Programmable Gate Array (FPGA) devices. A

convenient way of executing programs on these devices

is to configure them to include one or more instruction

processors. The instruction set of most of these instruc-

tion processors, such as MicroBlaze and Nios, is basic;

moderately complex programs can take a long time to

execute. While most microprocessors from Intel and

AMD include instructions for multimedia or streaming

applications, such instructions are typically absent from

instruction processors for reconfigurable SoCs.

Fortunately, some of these reconfigurable SoCs pro-

vide an interface to IP cores that can be invoked by the

use of custom instructions. Both MicroBlaze and Nios

support custom instructions; other examples of FPGA-

based processors supporting custom instructions have

also been reported [4],[8]. Moreover, a coprocessor for

MMX-style instructions has been developed [3].

There is much work on various aspects of cus-

tomisable instruction processors, particularly for em-

bedded systems [6]. For instance, techniques for au-

tomating the choice of custom instructions have been

proposed [2],[7]. However, previous research does not

elaborate, for instance, on how custom instruction gran-

ularity can be used to optimise performance.

This paper addresses the above issues. It also covers

methods for instrumenting a reconfigurable SoC to

evaluate the effectiveness of a particular customised



architecture. Applications involving advanced bit manip-

ulations [5] will be used to illustrate our approach.

III. Tuning instruction customisation

This section proposes four effective techniques for

tuning and analysing instruction customisation targeting

reconfigurable SoC devices. While similar ideas, such

as instruction granularity, have been reported [2], we

believe this is the first time that these techniques and

their trade-offs are systematically addressed in the

context of reconfigurable SoC technology.

1. Tuning custom instruction granularity. Instead

of having a separate custom instruction for each IP

block, a custom instruction can be made more coarse-

grained by combining multiple IP blocks; this makes

the hardware more efficient in both speed and area,

at the expense of generality – a more specific custom

instruction is less widely-used than a more general one.
As a simple example, two possible options for a

custom instruction for computing (x + y)n are: (a) to

compute this expression directly, or (b) to compute z
n

after an addition instruction for calculating z = (x + y).
Option (a) is more efficient in time since it minimises

instruction fetching and decoding, and also data trans-

fer between the custom instruction datapath and the

register file. For option (b), to compute (x + y)n would

need two instructions, and it would take time to transfer

the result of the add instruction back to the register

file, before commencing the z
n instruction which copies

this result value to the hardware for computing z
n.

Option (a) eliminates this overhead of data transfer for

intermediate values.
Additionally, option (a) is likely to be more efficient in

space than option (b), since option (a) often has more

scope for optimising the control and the datapath. An

example will be used to illustrate this point below.

2. Tuning custom instruction hardware. There are

two common opportunities for tuning custom instruction

hardware: core-driven and interface-driven.
First, core-driven optimisations usually involve

coarse-grained custom instructions, each covering

multiple IP blocks. The hardware for such custom

instructions can often be further optimised. A simple

example concerns custom instructions that convert

data to a more efficient representation for carrying out

certain calculations, and then convert the result back to

the original data representation. A custom instruction

combining several such calculations can avoid data

conversion between successive calculations.
Second, interface-driven optimisations involve tech-

niques for tuning the custom instruction hardware to

match interface constraints, such as the access time

for the register file of the base processor. This can

be achieved, for instance, by varying the number of

pipeline stages of the IP blocks in the custom instruction

hardware, provided that such IP blocks can be opti-

mised in this way.

3. Tuning based on run-time information. This op-

timisation is specific to reconfigurable SoC. Instead of

using a coprocessor with custom instructions some of

which may not be used, one only needs to include

the hardware for custom instructions predicted to be

present during execution by run-time information.

Indeed, if reconfiguration time permits, one could

even arrange to download the hardware for the new

custom instructions at run-time. The effectiveness of

run-time reconfiguration depends on whether the ad-

ditional efficiency that run-time reconfiguration brings

would offset the reconfiguration overheads [8].

4. Instrumentation for tuning analysis. The efficiency

of the above methods can be analysed by information

obtained from instrumenting the customised processor.

Such information can also be used to validate analytical

performance models for the base processor as well as

the customised datapath. It is often difficult to model,

for instance, the communication overhead between the

register file and the customised datapath, since bus

arbitration can be unpredictable, and the overhead may

vary due to different input/output characteristics.

A simple technique is to include a custom instruction

for reading a clock cycle counter; this instruction can

be used to obtain the number of cycles that one or

more base instructions or custom instructions would

take. The custom instructions for tuning analysis are

only necessary during the optimisation process; the

associated hardware is not necessary at run time, and

can be optimised away.

The performance information can be used not only

for evaluating current instruction customisations, but

also for assessing the effect of technology evolution.

For instance, one can study how the performance of

specific instruction customisation varies with the clock

speed of the base processor. An example will illustrate

this opportunity in Section V.

IV. Tuning bit manipulation for MicroBlaze

To illustrate the proposed techniques, we adopt the

Xilinx MicroBlaze processor [9] targeting the Xilinx

University Program (XUP) development system [10].

Custom instruction hardware can be implemented in

a coprocessor which communicates with the MicroB-

laze processor through FSL (Fast Simplex Link) con-

nections. This architecture allows us to support new

instructions seamlessly.



In order to obtain cycle accurate profiling results for

tuning analysis, a dedicated counter is implemented

in the MicroBlaze which can be read using a custom

instruction. The counter simply records the number of

clock cycles elapsed since the circuit is reset. Because

FSL is employed to attach to the clock cycle counter,

there is latency when accessing the counter. This la-

tency can be obtained by accessing the clock cycle

counter in consecutive instructions; the difference be-

tween the readings is the latency required to access the

counter. Cycle count measurements can be calibrated

to take into account the latency of the FSL.

Our benchmarks include applications involving trans-

fer coding such as uudecode and uuencode, and in-

teger compression based on variable byte encoding

(compress). It has been shown that these benchmarks

can be significantly accelerated for the Alpha processor

by novel parallel extract (pex) and parallel deposit

(pdep) instructions based on the butterfly and the in-

verse butterfly networks [5]. However, the MicroBlaze

does not contain these instructions so they are promis-

ing candidates for custom instructions.

All the benchmarks are described in C and are

compiled to MicroBlaze directly. They are then profiled

and instrumented. The total number of clock cycle

counts to complete the benchmarks is determined with

appropriate calibration. The call count of each routine

is also determined.

Hardware for six custom instructions has been devel-

oped, and each is embedded into the MicroBlaze us-

ing FSL. The custom instructions include byte-packed

addition and subtraction (padd, psub), parallel extract

(pex), parallel deposit (pdep) and count the number

of leading zero (ctlz). There is an additional custom

instruction paddpex, which combines the hardware for

padd and pex, so that we can study the effect of custom

instruction granularity.

For each custom instruction, a dedicated FSL bus is

instantiated and attached to the MicroBlaze. The cus-

tom instruction blocks consist of four states, covering

the cases when the block is: (a) idle, (b) reading data

from the register file, (c) writing results to the register

file, and (d) busy with the computation. The state

machine is parameterised to allow different amounts of

input, output and custom circuit latency; for instance,

increasing the number of pipeline stages in the custom

circuit would also increase the circuit latency.

Synplicity 9.0 is used for FPGA synthesis and Xilinx

ISE9.2 is used for place and route. Also, the retiming

facility in the synthesis tool is used extensively to control

the number of pipeline stages of a custom circuit.

V. Results

Table 1 reports the pure software implementation

results. It shows each custom instruction. All the bench-

marks invoke advanced bit manipulation instructions

(pex/pdep). The padd and psub instruction is used by

uuencode and uudecode respectively while compress

requires the ctlz instruction. These results form the

baseline for comparison with implementations involving

custom instructions.

Table 1: Profiling: number of calls of custom instructions in
applications.

Instruction uuencode uudecode compress
pex 560 0 2500

pdep 0 68000 0
padd 560 0 0
psub 0 68000 0
ctlz 0 0 5000

Table 2: Hardware implementation results.
Block Slices Latency Clock (MHz)

pex / pdep 539 3 181
padd, psub 96 1 380

ctlz 53 1 288
paddpex 612 4 181

Table 3: Clock cycle count for custom instructions.
Instruction Software Core Core + FSL Speed up

pex [628, 857] 3 31 [20.2, 27.6]
pdep [624, 853] 3 31 [20.1, 27.5]

padd, psub [79, 79] 1 29 [2.7, 2.7]
ctlz [37, 129] 1 24 [1.5, 5.4]

paddpex [707, 936] 4 46 [15.4, 20.3]

Table 2 shows the reconfigurable hardware imple-

mentation results. For each custom instruction, we

have a corresponding reconfigurable circuit. Since the

MicroBlaze runs at 100MHz on the XUP board, all the

custom instructions are designed to run at 100MHz or

above. If a custom circuit does not achieve 100MHz,

additional pipeline stages are introduced until it reaches

100MHz. In our design, the pex and pdep instructions

can share one hardware block (pex/pdep) which re-

quires three clock cycles to complete.

Table 3 shows the number of clock cycles for each

instruction in software and in hardware; [p,q] indicates

the minimum (p) and maximum (q) values. In addition

to the latency of the custom circuit, there is com-

munication overhead when moving data to and from

the coprocessor using FSL. Instructions requiring more

input or output data take more cycles. The communi-

cation overhead is significant, but good results are still

obtained. Depending on the operation, the speed up

ranges from 1.5 times to 27.6 times.

These results confirm the speed and area benefits

of paddpex, the coarse-grained custom instruction. For

speed, paddpex is about 30% faster than padd and pex



Table 4: Hardware implementation results.

MicroBlaze Slices Clock (MHz)
Processor only (A) 3997 100
padd, psub, ctlz (C) 4469 100

padd, psub, ctlz, pex/pdep (D) 4928 100
padd, psub, ctlz, pex/pdep, paddpex (E) 5412 100

Table 5: Cycle count and speed up of customisations.
MicroBlaze design uuencode uudecode compress

no customisation (A) 502035 60866891 3672613
pex/pdep (B) 80495 9354891 1690413

padd, psub, ctlz (C) 477885 56351891 3451713

padd, psub, ctlz,
62365 4700891 1436713 Mean

pex/pdep (D)

speed up (A/B) 5.97 6.51 2.17 4.88

speed up (A/C) 1.05 1.08 1.06 1.06

speed up (A/D) 8.05 12.95 2.56 7.85

speed up (C/D) 7.66 11.99 2.40 7.35

running in succession; for area, paddpex is about 4%

smaller than the sum of the area of padd and pex.

We implement five different MicroBlaze designs. De-

sign A is the original MicroBlaze without customisation.

Design B covers bit manipulation instructions (pex,

pdep). Design C supports padd, psub and ctlz in-

structions. Design D covers five custom instructions

except paddpex, while Design E supports all six custom

instructions including paddpex. Table 4 shows resource

usage statistics; it indicates that D requires 23% more

slices than A. Table 5 shows the clock cycle count of

each benchmark. We compare each design with Design

A. It shows that B can offer 4.88 times speed up (row

A/B). C offers 1.06 times speed up (row A/C). These

results show that the new bit manipulation instructions,

pex and pdep [5], provide an additional 7.35 times

speed up over multimedia instructions like padd, psub

and ctlz which are already included in some processors.

Note that our speed up results are better than those

in [5]. For instance, D is 13 times faster than A for the

uudecode benchmark, and is 23% larger than A.

The uuencode benchmark takes 53965 cycles on E,

which is 9.3 times faster than A (502035 cycles), and

16% faster than D (62365 cycles). E has 5412 slices,

which is 35% larger than A and 9.8% larger than D.

Our approach can be used not only for evaluating

current instruction customisations, but also for assess-

ing the effect of technology evolution. For instance, one

can study how the performance of instruction customi-

sation varies with the clock speed of the MircoBlaze

processor. Although the MircoBlaze processor can only

run at 100MHz on Virtex II devices, it can be clocked

at 200MHz on more recent FPGAs such as Virtex 4

devices. It is useful to be able to estimate performance

when custom instruction hardware is optimised so that

its clock speed matches the MicroBlaze’s.

Technology trends (uuencode)

0

100

200

300

400

500

600

700

100 150 200 250 300 350

MicroBlaze clock speed (MHz)

E
x

e
c

u
ti

o
n

 t
im

e
 (

u
s

)

Figure 1: Variation of execution time of uuencode with clock
speed of MicroBlaze.

Figure 1 covers this experiment, which assumes that

the MicroBlaze can be scaled up to 350MHz. The

number of pipeline stages of each custom instruction

hardware has to be adjusted accordingly. For the uuen-

code benchmark, we find that the execution time is

623µs for MicroBlaze running at 100MHz with all the

custom instructions except paddpex. If the MicroBlaze

can be clocked at 350MHz and the custom instruction

hardware is further pipelined by adding 7 more stages

to match the clock speed, the execution time will be-

come 189µs, indicating that an increase in clock speed

by 3.5 times would result in speed up of 3.3 times for

the uuencode benchmark.

VI. Summary

This paper covers four techniques for tuning instruc-

tion customisation: tuning custom instruction granular-

ity, tuning custom instruction hardware, tuning based

on run-time information, and instrumentation for tuning

analysis. These techniques have been used in obtain-

ing promising results for advanced bit manipulation ap-

plications. Current and future work includes automating

the proposed techniques, and extending our approach

to cover a variety of applications and SoC devices.

References

[1] Altera, Nios II Processor Reference Handbook, 2005.
[2] K. Atasu et al, “CHIPS: Custom Hardware Instruction Processor Synthe-

sis,” IEEE Trans. on CAD, 27(3):528–541, 2008.
[3] M.H. Calvio et al, “Developing an MMX extension for the MicroBlaze soft

processor,” Proc. ReConFig, pp. 91–96, IEEE, 2008.
[4] R. Dimond, O. Mencer and W. Luk, “Combining instruction coding

and scheduling to optimize energy in System-on-FPGA,” Proc. FCCM,
pp. 175–184, IEEE, 2006.

[5] Y. Hilewitz and R.B. Lee, “Fast bit gather, bit scatter and bit permutation
instructions for commodity microprocessors,” J. Signal Process. Syst.,
53(1–2):145–169, 2008.

[6] P. Ienne and R. Leupers (eds), Customizable Embedded Processors:
Design Technologies and Applications, Morgan Kaufmann, 2007.

[7] S.K. Lam and T. Srikanthan, “Rapid design of area-efficient custom
instructions for reconfigurable embedded processing,” Journal of Systems
Architecture, 55(1):1–14, 2009.

[8] S.P. Seng, W. Luk, and P.Y.K. Cheung, “Run-time adaptive flexible instruc-
tion processors,” Proc. FPL, LNCS 2438, pp. 545–555, 2002.

[9] Xilinx, MicroBlaze Processor Reference Guide, 2007.
[10] Xilinx, Xilinx University Program Virtex-II Pro Development System, 2008.


