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This article explores the application of reconfigurable hardware to the acceleration of financial
computation using tree-based pricing models. Two parallel pipelined architectures have been de-
veloped for option valuation using binomial trees and trinomial trees, with support for concurrent
evaluation of independent options to achieve high pricing throughput. Our results show that the
tree-based models executing on a Virtex 4 field programmable gate array (FPGA) at 82.7 MHz
with fixed-point arithmetic can run over 160 times faster than a Core2 Duo processor at 2.2 GHz.
The FPGA implementation is two times faster than the nVidia Geforce 7900GTX processor with
24 pipelines at 650 MHz, and 27%–35% slower than the nVidia Geforce 8600GTS processor with
32 Pipelines at 1450 MHz. Our preliminary experiments also indicate that while an FPGA imple-
mentation can be slower than a GPU, it could be more efficient when power consumption is taken
into account.
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1. INTRODUCTION

Tree-based pricing models are one way to value and analyze financial deriv-
atives, such as options. A widely used tree pricing model in finance applica-
tions is the binomial model [Hull 2005], since it is simple, efficient, and can
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handle certain types of options (such as American options) that are difficult to
price using Monte-Carlo methods. The model is often used to provide prices to
a trader, but increasingly is also used as a component of larger applications,
where the application may use the model to value hundreds or thousands of
options. The trinomial option pricing model is an alternative to the binomial
model, but requires fewer tree nodes (computation steps) to achieve the same
level of accuracy. As the trinomial model involves more complex computations
in one step, it is used less often than the binomial model for simple option
valuations. However trinomial models are more widely adopted to evaluate in-
terest rate derivatives [Kramin et al. 2005], since it offers additional freedom
in the model that cannot be achieved by binomial models.

Pricing a single option using tree-based models is fast, and can typically be
performed in milliseconds on a modern general-purpose processor. However,
when huge numbers of options need to be valued, for example if a tree-based
pricing model is embedded in a Monte-Carlo simulation, or if a large basket
of options is being revalued in real-time using live data-feeds, the valuation of
the pricing model can become the main computational bottleneck. This arti-
cle shows how field programmable gate arrays (FPGAs) can provide a viable
method of accelerating tree-based pricing computation, and how the proposed
approach can be effectively mapped onto reconfigurable hardware.

The main contributions of this article are:

—two parallel pipelined architectures based on binomial tree and trinomial
tree models that are capable of processing multiple trees simultaneously to
support concurrent requests for option valuations;

—implementation of the architecture in reconfigurable hardware; exploiting
on-chip RAM resources to avoid recomputing costly calculations;

—evaluation of the proposed approach and comparison with alternative im-
plementations based on general-purpose Intel processors and nVidia GPUs
(Graphics Processing Units).

In the following, Section 2 states the motivation of this article. Section 3
introduces the binomial option pricing model. Section 4 explains the trino-
mial option pricing model and compares it with the binomial model. Section 5
suggests an approach to developing hardware architectures for such models.
Section 6 explains how the core evaluation computation of the tree-based op-
tion pricing model can be implemented in reconfigurable hardware. Section 7
contains results and comparison of the proposed approach and other imple-
mentations in general-purpose processors and GPUs, followed by the conclu-
sion in Section 8.

2. MOTIVATION

Previous work on hardware acceleration of financial simulation has focused
on Monte Carlo methods. Three examples are given in the following. First,
a stream-oriented FPGA-based accelerator with higher performance than
GPUs and Cell processors has been proposed for evaluating European options
[Morris and Aubury 2007]. Second, an automated methodology has been
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 21, Pub. date: September 2009.
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developed that targets high-level mathematical descriptions of financial sim-
ulation to produce optimized pipelined designs with thread-level parallelism
[Thomas et al. 2007]. Third, an architecture with a pipelined datapath and
an on-chip instruction processor has been reported for speeding up the Brace,
Gatarek, and Musiela (BGM) interest rate model for pricing derivatives [Zhang
et al. 2005]. All three approaches result in designs based on Monte Carlo meth-
ods. However, many financial simulations have alternative solutions, for which
techniques such as binomial and trinomial trees will be more effective.

The binomial model can be seen as a discrete-time approximation to the
Black-Scholes continuous-time model [Black and Scholes 1973], and the trino-
mial model can be considered as a variant of the finite difference method [Hull
2005]. We briefly explain the concept in terms of an American put option. A
put option is a contract that gives party A the right to sell some asset S to party
B at a fixed price K (called the strike price). The important factor is that the
option provides a right, not an obligation: party A can choose whether or not
to exercise that right (to sell asset S at price K).

In general the option will only be exercised if K > St. For example, when
the strike price K is greater than the current price of the stock (St), party A
can buy the asset from the market at a lower price and immediately sell the
asset to realize a profit of K − St. If K < St then party A will choose to leave
the option to expire and will neither gain nor lose money. In contrast party B
has no control over the option, so in the first case B will lose K − St, and in the
second case B will neither gain nor lose. Because party A only stands to gain,
and B only stands to lose, B must be offered some kind of compensation. The
point of an option pricing model is to determine how much A should pay B in
order to create the option contract, or equivalently how much A can charge a
third party for the option at a later date.

An American option is one where party A can exercise the option at any
time up until the option expires at time T. In contrast, a European option is
one where the option can only be exercised at a particular time T. All else being
equal, an American option must be worth more than a European option with
the same parameters, since party A has more flexibility. With the flexibility
come more opportunities for profit, which translate to greater possible losses
for party B, so more compensation is required for the option contract.

The American option is very common, but it presents some difficulties in
pricing due to the freedom to exercise the option before the expiry date—
in particular it becomes very difficult to determine the option price using
Monte-Carlo methods, another common method of option pricing mentioned
earlier [Thomas et al. 2007]. In contrast, tree-based techniques are able to
accurately price both European and American options.

3. THE BINOMIAL OPTION PRICING MODEL

The binomial model works by discretizing both time and the price of underlying
asset S, and mapping both onto a binary tree. Each step from the root towards
the leaves increases time by one step, and at each node one of the branches
leads to an increase in S, while the other branch leads to a decrease in S. This
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 21, Pub. date: September 2009.
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Fig. 1. The left-hand side shows the recombining binary tree of asset prices. The right-hand side
shows the valuation of a put option over one time period, with each node showing the asset price
on top, and the option price below.

is shown in Figure 1, with time along the horizontal axis, and asset price along
the vertical axis.

At each node the upper branch increases the asset price by a factor u, while
the lower branch decreases the price by a factor d. At the root of the tree the
asset price is S0, which is the current asset price. At the leaves of the tree
are the possible asset prices at time T, which are defined by S0 and the path
through the tree to the leaf. For example, the highest price in Figure 1 is
reached by taking only upper branches from the root, so the asset price at that
node is S0u3. Note that the asset price can only take a fixed number of values,
shown as horizontal dashed lines. The tree also recombines, so the leaf node
with value S0u can be reached through three paths (uud, udu, or duu).

The idea behind binomial tree techniques is that the put option is worth
max(K − ST, 0) at the leaves of the tree. Knowing the value at all the leaves of
the tree enables us to work backwards to previous time steps, until eventually
the root of the tree is reached. The right-hand side of Figure 1 gives a simplified
example over just one time step. The node asset prices are already known
(shown at the top of each node label), so the option values at the leaves (shown
as vu and vd) can immediately be determined. To work back to v0 we require
another piece of information, which is the probability (p) that the asset price
will move up. Given p, the expected value of the option at the first node can
then be calculated.

Two further considerations are needed for practical use. The first is that
interest rate evolution means that money earned in the future is worth less
than money earned now. We handle this consideration by applying a discount
factor r (where r < 1) to option values as we move backwards up the tree. The
second is that at some nodes, early exercise may offer a better return than
future exercise; so at each node we need to choose the higher of the discounted
future payoff versus the payoff from early exercise.

From this discussion, the pricing model can be described as:

vT,i = max(K − ST,i, 0) (1)
vt,i = max(K − St,i, r(pvt+1,i+1 + (1 − p)vt+1,i−1)) (2)

St,i =
{

S0ui, if i ≥ 0
S0d−i, otherwise , (3)
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Fig. 2. The left-hand side shows the recombining trinomial tree of asset prices. The right-hand
side shows the valuation of a put option over one time period, with each node showing the asset
price on top, and the option price below.

where i is an integer indicating the number of steps up or down from the initial
asset price, and t is an integer indicating the number of time steps away from
the root of the tree, with the leaves at time t = T. All other values are real
numbers. The inputs to the model are T, S0, K, u, d, and r, and the output
from the model is v0,0, which is the estimated price for the option.

The model can be implemented in computational form as a recursive func-
tion; however a direct implementation of this function is inefficient unless
memoization is used. An efficient solution can be formulated in an iterative
form, with an outer loop stepping t backwards from T to 0, and an inner loop
calculating the price for each i at level t in the tree. A temporary array holds
the intermediate values, and can be updated in place.

4. THE TRINOMIAL OPTION PRICING MODEL

The trinomial option pricing model can be viewed as an alternative to the bi-
nomial model. It was initially proposed by Boyle [1986] and later proved by
Brennan and Schwartz [1978] to be equivalent to the explicit finite difference
method [Hull 2005], another method for American option evaluation. The tri-
nomial model extends the binomial model, by allowing the price to increase or
decrease as before, but by also allowing the price to stay the same. The main
advantage of a trinomial tree is that it provides an extra level of freedom, mak-
ing it easier for the tree to represent features of the interest rate process such
as mean reversion [Hull 2005]. This extra level of freedom is very useful for
modelling interest rate derivatives such as bond options [Kramin et al. 2005].
Generally a trinomial tree will have more nodes than a binomial tree with the
same number of steps; therefore it is considered more accurate and will give
the same result as a binomial model in fewer steps [Silva 2003]. Typically, an
n step binomial tree has (n+ 1)(n+ 2)/2 nodes whereas an n step trinomial tree
has (n + 1)2 nodes.

A three-step trinomial tree is shown in the left-hand side of Figure 2, with
time along the horizontal axis and asset price along the vertical axis. The
right-hand side of Figure 2 is a simple trinomial tree over one time step, where
p and q indicate the probability that the asset price will go up and go down
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 21, Pub. date: September 2009.
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respectively, and m is the probability for the asset price to remain unchanged.
Given p and q, the expected option price can be calculated.

The trinomial pricing model for American put option can be described as:

vT,i = max(K − ST,i, 0) (4)
vt,i = max(K − St,i, r(pvt+1,i+1 + mvt+1,i + qvt+1,i−1)) (5)

St,i =

⎧⎨
⎩

S0ui, if i > 0
S0, if i = 0
S0d−i, otherwise

. (6)

It can be observed that Equation 5 requires about 33% more computations
than Equation 2. However, we are able to implement the trinomial model in
a similar way to the binomial one by iterating over an array with nested for
loops.

5. MAPPING TREE-BASED MODELS TO HARDWARE

In mapping the binomial model described in Section 3 into hardware, we make
two central assumptions.

—The trees use a nontrivial number of time-steps, so the amount of I/O per
tree is small compared to the number of nodes that must be evaluated.

—Requests for option valuations are received concurrently, so many individual
trees can be valued in parallel.

The first assumption means that we only need to consider evaluation when
it is computationally bound, so we can largely ignore the performance of any
software to hardware communications channels. If x is the number of time-
steps, the number of parameters needed for transfer will be of order x, which
mainly comprise the Asset Price Lookup Table and six tree parameters. The
Asset Price Lookup Table will have an exact size of 2x + 1 in both binomial
and trinomial valuations. The transfer overhead is insignificant when com-
pared with the number of computations, which varies quadratically with x.
For example, if a binomial model of 500 steps is being evaluated, we can ex-
pect an Asset Price Lookup Table of 1001 words. Within the model, 1.3×105

nodes are needed to be evaluated. Assuming the PCI bus has a bandwidth
of 500 MBytes/sec, which is equivalent to 125 MWords/sec if single precision
representation is adopted, and the FPGA implementation has a processing
speed of 80 MNodes/sec, it is easy to calculate that it takes 8×10−6 seconds
to finish the transmission and 1.63×10−3 seconds to finish the computation.
In our case I/O can be pipelined to take place concurrently with computation,
hence further reducing the overhead. A further improvement is to compute the
lookup table on the fly so that we can process more trees in a batch, reducing
the effect of start-up overheads of I/O. We discuss this in more detail in the
trinomial example.

The second assumption allows us to use high-latency pipelined functional
units to achieve high clock rates while still achieving high throughput, by using
the C-Slow approach [Weaver et al. 2003].
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 21, Pub. date: September 2009.
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Fig. 3. System architecture for computing the binomial tree model.

Figure 3 shows our proposed architecture for mapping the binomial tree
model into hardware. On the left is a bank of parameter sets, each of which
describes a binomial tree that is currently in the process of being evaluated. In
the center is a large pipelined block that takes two previously calculated option
values and calculates the value of the parent node. To manage temporary stor-
age, a set of buffers (shown to the right) is used; ideally the buffers should be
FIFO stream buffers that hold the option values until they are needed again.

FPGA embedded memory (in our case Xilinx Block Select RAMs) is used
to implement a lookup table for St,i (see Equation 2), which is initialized at
the beginning of each tree-evaluation run, to remove the need for expensive
exponential calculations in hardware.

C-Slow operation can be achieved by modeling multiple trees in parallel: we
continuously provide parameters into the pipeline to evaluate other trees while
we are waiting for the results required for the next iteration of the current
tree. The stream buffers are carefully designed for this approach. A controller
manages the overall timing of the system, ensuring that the intermediate
values are stored and retrieved correctly, and that the correct parameter set
is selected on each cycle.

Figure 4(a) illustrates a straightforward hardware implementation of the
core evaluation pipeline. Two adders and three multipliers are required to
implement Equation 2. If float or double data types are used in the implemen-
tation, multipliers can occupy a significant amount of on-chip resources. On
a Virtex 4 xc4vsx55 device, a floating point multiplier consumes around 4% of
total slices. By rearranging Equation 2 to Equation 7, it is possible to use one
fewer multiplier if, instead of feeding in pu, pd, and r separately, rpu and rpd are
used as two inputs. Note that pu is the upward probability originally denoted
by p in Equation 2 and pd is the downward probability denoted by 1 − p.

vt,i = max(K − St,i, rpuvt+1,i+1 + rpdvt+1,i−1). (7)
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 21, Pub. date: September 2009.
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Fig. 4. Binomial Model: hardware design for the block Calculate Node Value in Figure 3. The
solid black boxes denote registers and the dotted grey boxes denote pipeline balancing registers
that are allocated automatically by HyperStreams (Section 6).

The last multiplier can be omitted since the discount factor r is taken into
account in the first two multiplications. rpu and rpd can be transferred directly
from software. Figure 4(b) shows an example of the improved hardware design
of the evaluation core. For each tree it evaluates, it takes in a set of parameters
provided by the controller from the tree parameters table in Figure 4(b). To
optimise performance, a lookup table is initialized with all possible asset strike
prices. The architecture takes from the stream buffers, three parameters: the
two previous tree node values, and i, the price offset. Using the price offset, i,
the current asset price, St,i, can be retrieved from the lookup table.

With all the parameters ready, the algorithmic core in Figure 4 computes
the option price, vt,i, for the current tree node. The result is then sent back to
the stream buffers for later use. The C-Slow method can be implemented here
as follows.

—The outside controller is designed to provide a set of correct parameters per
clock cycle.

—The lookup tables are correctly initialized beforehand.
—The controller is able to store the result into the correct buffer.

The evaluation core, which calculates the next node value as specified by
Equation 2, will require the most logic resources. In the asymptotic case, we
would expect the overall performance to be dominated by the size and speed of
this block, as the other components consist of a small amount of memories and
selection logic.

The trinomial tree model in hardware shares the same main assumptions as
the binomial model. It differs from the binomial model in the following aspects.

—The trinomial model is more computationally intensive as the number of
computations compared to the binomial model is doubled.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 21, Pub. date: September 2009.
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Fig. 5. Trinomial Model: Hardware design for the block Calculate Node Value in Figure 3. The
solid black boxes denote registers and the dotted grey boxes denote pipeline balancing registers
that are allocated automatically by HyperStreams (Section 6).

—It requires one extra multiplication and one extra addition within each step.
—It requires twice the memory space to store intermediate values.

The proposed architecture for mapping the trinomial tree model into hard-
ware is similar to what is shown in Figure 3 except that the control logic and
the evaluation core are redesigned.

Figure 5 shows a hardware implementation of Equation 5. One more adder
and one more multiplier are used when compared with the design in Figure 4.
However the pipeline depth only increases by one adder; it is therefore ex-
pected that there will be some rise in resource requirement and little increase
in pipeline delay.

The box above the Asset Price Lookup Table in Figure 5 shows the logic to
generate the lookup table on the fly. By using an extra multiplier, we are able
to avoid using expensive exponential operators in hardware. The idea is to
start from S0 in the middle of the lookup table, and to repeatedly multiply it by
u; writing the successive values into the lookup table until we reach one end
of the price table. Then the same can be done to the other half of the look-up
table. If the memory is dual-ported, the two procedures can be done simultane-
ously. This approach allows us to cache only tree parameters instead of caching
large lookup tables, which therefore allows us to transfer trees in a batch from
software. The tree parameters in the cache can be fetched by the control logic
to generate lookup tables for later use. This reduces the communication over-
head further. The table generator runs in parallel with the core evaluation
logic to reduce the generator overhead. Extra memory cache is needed to store
the generated lookup tables.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 21, Pub. date: September 2009.
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Fig. 6. The data flow of the hardware part of the tree-based models implemented on FPGA; note
the separation of control and pipelined data flow.

In the next section we examine the implementation of the Calculate Node
Value block in hardware.

6. THE OPTION UPDATE PIPELINE

Our FPGA implementation of the node evaluation logic to support the tree-
based option pricing model is based on HyperStreams and the Handel-C
programming language.

HyperStreams is a high-level abstraction based on the Handel-C lan-
guage [Morris and Aubury 2007]. It supports automatic optimization of ope-
rator latency at compile time to produce a fully-pipelined hardware
implementation. This feature is useful when implementing complex algorith-
mic calculations in FPGAs. In addition, HyperStreams also provides support
for connecting to FPGA resources such as Block Select RAMs.

Figure 6(a) shows a fully pipelined FPGA implementation of the node
evaluation logic indicated in Equation 2, while Figure 6(b) shows the imple-
mentation of Equation 5. Each symbol shown in a “HyperStreams” block in
Figure 6(a) refers to a HyperStreams operator: for example,

⊕
for HsAdd,

RAMRead for HsRAMRead and so on. Each arrow from DSM (Data Stream
Manager), the interface used for hardware-software communication, indicates
a stream data element received as an unsigned integer. The inputs are cast
to desired internal representation, for example HS DOUBLE, at the top of
the HyperStreams block. Once all the computations are finished, the out-
put stream is then cast back to the desired output format using the HsCast
operator.

The control logic, which is used to send and retrieve data from pipelines, is
written in the Handel-C language.

To fully utilize the pipeline, double buffering is used to get around the FPGA
memory access limitation, since it has lower off-chip memory bandwidth than
GPUs and CPUs [Cope 2008]. We give a simple example to illustrate.

Figure 7 shows some code feeding values to a HyperStreams pipeline. It
waits for the result to come out from the pipeline and then feeds another value.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 21, Pub. date: September 2009.
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Fig. 7. Straightforward code.

Fig. 8. Pipelined code.

The pipeline is not fully utilized since only one pipeline stage will be effectively
working at any time. Figure 8 shows an improved approach. Instead of wait-
ing for the result to come out, inputs are read from one memory cache and
constantly fed into the pipeline, while results are simultaneously written into
another memory cache. Once the evaluation is finished, the result is sent back
to software via the DSM interface.

The tool flow is as follows: Handel-C source code is synthesized to EDIF
using the Celoxica DK5 suite, which supports HyperStreams. Xilinx ISE 9.2i
project navigator is used to place and route the design.

The target device on our Celoxica ADMXRC4SX platform is an xc4vsx55
FPGA from the Xilinx Virtex 4 family, but it would be simple to retarget our
design to other FPGAs supported by the Celoxica DK5 suite.

7. RESULTS

The American put option benchmark has been calculated using three differ-
ent FPGA implementations in different numerical representations as well as
a reference PC implementation. All the FPGA implementations are compared
to software implementations on a PC that provides the reference. The refer-
ence Intel PC1 implementation is based on C++ code fully optimized for local
hardware profile running on a 2.2 GHz Core2 Duo processor with 2 GB of RAM
and Windows XP pro operating system. The reference Intel PC2 is a 3.2 GHz
Pentium4 processor with 1 GB of RAM and Linux operating system; this
implementation involves fully optimized C++ code with Intel SSE3 enabled.

The FPGA device utilization figures are shown in Table I. The results
indicate that less than half of the FPGA device is utilized in all three cases
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 21, Pub. date: September 2009.
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Table I. Binomial/Trinomial Performance/Area Results for Xilinx xc4vsx55 FPGA. The
Percentage Shows Utilization of a Specific FPGA Resource; Note that Acceleration is

Compared with the Reference PC1

FPGA Binomial FPGA Trinomial
Double Single Fix Double Single Fix

Slices 7,162 3,805 1,740 11,113 5,898 2,773
(29%) (15%) (7%) (45%) (24%) (11%)

FFs 5,924 2,914 1,756 9,182 5,170 2,608
(12%) (5%) (3%) (19%) (10%) (5%)

LUTs 6,020 3,238 782 9,331 6,113 1,422
(12%) (6%) (1%) (19%) (12%) (2%)

BRAMs 20 (6%) 18 (5%) 18 (5%) 24 (7%) 20 (6%) 20 (6%)
DSPs 32 (6%) 8 (1%) 8 (1%) 48 (9%) 12 (2%) 12 (2%)

MHz 67.3 76.0 82.7 65.2 69.1 76.3
Replication

3 6 14 2 4 9
(cores/chip)
Processing Speed

67.3 76.0 82.7 65.2 69.1 76.3
(M nodes/sec)
Mean% Error 0% 0.03% 0.05% 0% 0.04% 0.07%
Acceleration

9.3× 10.6× 11.5× 10.3× 10.6× 11.7×
(1 core)
Acceleration

27.9× 63.6× 161× 20.6× 42.4× 105×
(replicated cores)

involving double-precision, single-precision, and fixed-point arithmetic for
both binomial and trinomial models. Hence performance improvement can be
achieved by replicating the evaluation core in a single device. Although only
the nodes at the same step of a binomial tree can be computed simultaneously,
acceleration can be achieved by evaluating several trees in parallel.

The lower part of Table I shows the space occupancy/acceleration results
for different precision implementations, including core replication that can be
done on a single device to gain further performance. The left-hand side of the
table shows results for the binomial implementation and the right-hand side
gives data for the trinomial implementation.

Graphics processing units (GPUs) are another alternative to CPUs for
computational-intensive tasks, and have also been used for financial compu-
tation [Giles and Su 2007]. Our first GPU design is implemented on an nVidia
Geforce 7900GTX device with 512 MB of onboard RAM. The second GPU de-
sign is based on nVidia’s new CUDA platform [Hennessy and Patterson 2006]
and running on a Geforce 8600GTS with 256 MB of onboard RAM. The stated
GPU clock rates in Table II are the peak rates specified by nVidia. Double-
precision floating-point arithmetic is unavailable on Geforce 7900GTX [Morris
and Aubury 2007] and is not yet supported by CUDA 1.1 for Geforce 8600GTS.

Table II shows the data for two GPUs and two reference PCs. The speed
benchmark for both reference PCs and GPUs is to evaluate a 1 × 103 step
binomial tree for 220 times.

First consider the acceleration of the FPGA over the Intel PC1 and PC2
benchmarks. From the results, it can be seen that, for the single core bino-
mial implementation, the 32-bit 16.16 fixed-point implementation offers an
11.5 times acceleration, while the 32-bit single precision floating-point and
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 21, Pub. date: September 2009.
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Table II. Binomial/Trinomial Performance Geforce 7900GTX (GPU1) and 8600GTS GPU
(GPU2), Intel Core2 Duo (PC1) and Pentium4 (PC2) Processors; Note that Acceleration is

Compared with the Reference PC1

Binomial Trinomial
GPU1 GPU2 PC1 PC2 GPU2 PC1 PC2
Single Single Double Double Single Double Double

MHz 650 1450 2200 3200 1450 2200 3200
Replication

24 32 1 1 32 1 1
(pipelines)
Processing Speed

477 1476 7.2 4.3 927 6.5 3.1
(M nodes/sec)
Mean% Error 0.03% 0.03% 0% 0% 0.04% 0% 0%
Acceleration – – 1× 0.6× – 1× 0.5×
Acceleration

66× 205× 1× 0.6× 142× 1× 0.5×
(replicated cores)

the 64-bit double precision versions offer 10.6 times and 9.3 times speedup
respectively.

Not surprisingly, fixed-point arithmetic is faster and smaller than floating-
point arithmetic in an FPGA. For instance, three cores can be implemented in
a single Xilinx xc4vsx55 device if double precision arithmetic is adopted, which
leads to a 27.9 times speedup over optimized software running on a Core2 Duo
processor. In contrast, 14 cores in fixed-point arithmetic can be implemented in
the same Xilinx xc4vsx55 FPGA, indicating a 161 times acceleration for multi-
ple binomial trees evaluated in parallel. It is worth noting that we choose the
16.16 fixed point representation because it provides sufficient accuracy (less
than 0.1% error) for our application. It may still be possible to apply word
length optimization to reduce the number of bits in the fixed point representa-
tion while retaining acceptable accuracy, but the details are beyond the scope
of this article.

The trinomial implementation is generally around 1.5% slower than the bi-
nomial implementation. The small timing overhead is introduced by a longer
pipeline and the associated control logic. The trinomial implementation is
also 40% larger than the binomial implementation. The significant increase
in space is due to the additional multiplier and adder in the Algorithmic Core
and the multiplier in the Table Generator. In Section 4 we pointed out that the
trinomial model will produce a result with the same accuracy as a binomial
model but in fewer steps. Up to x/2 fewer steps are required for the trinomial
model compared to the binomial, where x is the number of steps required for
the binomial model to get the same result. The trinomial model also provides
an effective means of modelling interest rate derivatives [Kramin et al. 2005],
such as American bond options [Hull 2005]. These properties compensate for
the drawbacks of the trinomial implementation.

The floating-point implementations on GPUs are faster than the corre-
sponding single precision implementations on FPGAs with replicated cores in
both binomial and trinomial implementations. However it is worth noting that
the difference between the FPGA and GPU1 is within a factor of 2. This is
because both the GPU1 and FPGA approaches are based on straightforward
implementations without including further parallelism and optimization.
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On the other hand, the implementation on GPU2 is based on CUDA and
seeks to exploit the full utilization of GPU resources by:

—Scheduling options to be evaluated concurrently on different multi-
processors.

—Allowing multiple threads to simultaneously evaluate a single step.
—Using double buffering in local shared memory to avoid highly delayed

access to global memory [Podlozhnyuk 2008].

It is interesting to see that GPU2 is three times faster than the FPGA in both
binomial and trinomial single-precision floating point implementations. We
only had a 2% latency increase to evaluate a trinomial tree on the FPGA, and
asymptotically doubled the computation time when modelling it on CPUs and
GPUs having extra multiply and add operations. This is because in the FPGA
case we trade space for speed. The logic for the trinomial model is asymptoti-
cally twice as large as the binomial one, hence we are not able to map as many
cores on a single FPGA as in the binomial case. The other possible reason is
that CUDA has instruction level parallelism that is able to reduce computation
time for complex expressions.

It is not surprising to see that GPU2 is over 3 times faster than GPU1.
GPU2 has more pipelines than GPU1 (32 stream scalar processors versus
24 pipelines, used here to implement scalar operations), which is 1.5 times
better performance than GPU1; and the shader cores used for computational
purposes on GPU2 runs two times faster than GPU1 (1450 MHz versus
650 MHz). The difference in onboard memory between GPU1 and GPU2 is
irrelevant since our problem is not data-bound but computation-bound. We
believe that the Virtex 4 FPGA and the Geforce 7900GTX GPU are broadly
comparable, since both are based on 90 nm technology.

Additional performance improvement can be expected if the latest Geforce
8800 class GPU is adopted: a 4 times speedup can be gained from increased
parallelism (128 versus 32 stream scalar processors) and some further speedup
from clock speed increment (from 1450 MHz to 1600 MHz). However, the 8800
class GPUs adopt 80 nm technology, and they should be compared with the lat-
est FPGA technology such as Virtex 5 from Xilinx and Stratix IV from Altera.
Geforce 8600GTS is used as a benchmark to indicate how CUDA can be used
to exploit resources for financial computations in similar areas.

If a larger Virtex 4 or even Virtex 5 device is used which has 4 times or
more slices than that on our Xilinx xc4vsx55 device and a higher basic clock
frequency, then at least 4 times speedup can be achieved without further
optimization.

On the other hand, single precision operators in FPGAs can run at a clock
rate of up to 322 MHz [Xilinx 2006]; our current implementation at 76 MHz
has much scope for improvement. Furthermore, if we are able to reduce the
size of our design to half of the original size by means of further optimization, it
would enable us to put twice as many evaluation cores on the FPGA, producing
a further 2 times speedup.

The speed benchmark is purely for the purpose of measuring maximum
evaluation speed, hence we chose to measure 10242 trees with the same depth
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to achieve maximum parallelism. In reality, it is rarely the case that 10242

options will be changing price at the same time and all of them, sharing the
same depth. Our experiments show the GPU processing speed is halved when
1024 options are evaluated and nearly quartered when 512 options are evalu-
ated. Other benchmarks, which involve valuation of 2048 options up to 10242

options, are also included in our experiments. We find the GPU processing
speed goes up logarithmically with the number of options, while the process-
ing speed of the FPGA remains almost constant in all our experiments. The
requirement of varying tree depths for neighboring nodes would map ineffi-
ciently to the GPU SPMD (single program multiple data) programming model.
It can be expected that the one which has the largest number of steps will be-
come the bottleneck in GPU. An FPGA implementation can be designed with
data path flexibility to alleviate this restriction.

From experience there is a tradeoff when using HyperStreams, between the
development time and the amount of acceleration that can be achieved. Al-
though we are able to easily implement complex algorithms in FPGAs with
HyperStreams, the highest possible performance and utilization of FPGA re-
sources is not guaranteed. The balance between development time and perfor-
mance needs to be explored with further research and experiment. However
our HyperStreams implementation still gives a satisfactory result with signif-
icant acceleration over the software implementations. Hence HyperStreams
is useful particularly for rapidly producing prototypes to explore the design
space; once promising architectures are found, further optimizations can be
applied.

The mean percentage error method is used to measure the accuracy of all
the implementations. Random number generators are used to simulate all the
option pricing scenarios and the results are compared to the corresponding
results produced by the benchmark software version. The mean percentage
error is calculated as:

Mean Percentage Error =
100

n

n∑
i=1

|vi − vi∗ |
vi∗

, (8)

where vi is the option price produced by a particular implementation; vi∗ is the
corresponding result produced by the reference software and n is the number
of experiments done.

While the FPGA designs are slower than those on GPU2, they are more
efficient when power consumption is taken into account. For instance, using
Xilinx XPower Estimator, we find that a 3-core design on an xc4vlx160 FPGA at
160MHz takes 5.7 Watts, while the Geforce 8600GTS requires around 71 Watts
[Vorobiev and Else 2007]. Hence a 500-step calculation would run at 18 million
nodes per second per watt on the xc4vlx160, which is around 6 times more
efficient than the Geforce 8600GTS.

8. CONCLUSION

This article describes a new architecture for accelerating option pricing mod-
els based on both binomial and trinomial trees. The proposed design involves
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a highly pipelined datapath capable of supporting multiple tree calculations
in parallel, which can deal with concurrent requests for option valuations.
We have implemented our design onto an xc4vsx55 FPGA, and demonstrate
that our implementations can generally run more than 100 times faster than a
Core2 Duo processor. They are more than 2 times faster than an nVidia GPU
that does not support CUDA, and are 27%-35% slower than a CUDA supported
nVidia GPU.

Further work is planned to carry out complete hardware implementation of
the binomial and trinomial tree models, with various speed and area optimiza-
tions based on hardware cores with the highest performance. Task scheduling
can also be studied to find the best ways of utilizing the pipelines in FPGAs
and GPUs in order to further enhance performance.

Additional improvements in power consumption can also be obtained for our
FPGA designs. Since both pipelining [Wilton et al. 2004] and word-length op-
timization [Constantinides 2006] can improve performance and reduce power
consumption, it would be worthwhile to investigate how these two techniques
can be used in automating domain-specific strategies for producing tree-based
designs that best meet user requirements in speed, area, and power consump-
tion. More sophisticated comparisons with the latest GPUs from nVidia and
AMD/ATI, Altera FPGAs, and the Cell Broadband Engine [Agarwal et al. 2008]
are also planned.
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