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Abstract—This paper presents a method for evaluating func-
tions based on piecewise polynomial approximations (splines)
with a hierarchical segmentation scheme targeting hardware
implementation. The methodology provides significant reduction
in table size compared to traditional uniform segmentation ap-
proaches. The use of hierarchies involving uniform splines and
splines with size varying by powers of two is particularly well
suited for the coverage of nonlinear regions. The segmentation
step is automated and supports user-supplied precision require-
ments and approximation method. Bit-widths of the coefficients
and arithmetic operators are optimized to minimize circuit area
and enable a guarantee of 1 unit in the last place (ulp) accuracy
at the output. A coefficient transformation technique is also
described, which significantly reduces the dynamic ranges of the
fixed-point polynomial coefficients. The hierarchical segmen-
tation method is illustrated using a set of functions including
� �� ���

�
��� �� � �	� �, a high-degree rational

function, �	�
 � �, and 
 �
 � �. Various degree-1 and
degree-2 approximation results for precisions between 8 to 24 bits
are given. Hardware realizations are demonstrated on a Xilinx
Virtex-4 field-programmable gate array (FPGA).

Index Terms—Circuit synthesis, design automation, digital sys-
tems, field-programmable gate arrays (FPGAs), piecewise poly-
nomial approximation.

I. INTRODUCTION

T HE evaluation of mathematical functions is often cen-
tral to numerous applications in communications, com-

puter graphics, digital signal processing, and scientific com-
puting. Examples of such functions include elementary func-
tions such as and , and compound functions such
as and . Software environments such
as C or MATLAB usually provide libraries for evaluating func-
tions in floating-point precision. However, software implemen-
tations on instruction processors are often too slow for numer-
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ically intensive and/or real-time applications. The performance
of such applications depends on the design of a fast and accu-
rate hardware function evaluation unit, usually implemented on
a field-programmable gate array (FPGA) or an application-spe-
cific integrated circuit (ASIC).

The evaluation of functions has received considerable interest
in the research community. In particular, evaluation methods
involving polynomials and splines have been extensively
used in both hardware and software implementations. Spline
approximations (piecewise polynomials) are often preferred
over polynomial-only approximations due to the wide range of
design tradeoffs they offer involving memory, computational
complexity, and precision [1]. Traditionally, spline approxi-
mations use uniform segmentation, in which all splines cover
segments of equal width and the total number of segments
is constrained to a power of two. This has the advantage of
simple coefficient address computation, but can be problematic
for regions of the function in which the first or higher order
derivatives have high absolute values.

The hierarchical segmentation method discussed in this paper
employs hierarchies involving uniform splines and splines with
size varying by powers of two. This segmentation technique is
able to adapt to nonlinearities of a function, resulting in signif-
icant reduction in the number of splines compared to uniform
segmentation. Each spline contains a set of polynomial coeffi-
cients corresponding to a particular region of a function. The
polynomial is then evaluated in fixed-point arithmetic. One of
the main challenges of such arithmetic structures lies in the de-
termination of the required bit-widths of the coefficients and op-
erators. For the work presented here, we use the MiniBit bit-
width optimization approach [2]. MiniBit enables computation
of the required integer and fractional bits for each signal in
an analytical manner, making it possible to guarantee faithful
rounding [1 unit in the last place (ulp) accuracy] at the output.

In the work presented here, compound functions are evalu-
ated directly. This contrasts with the traditional approach in-
volving computation via a series of elementary function eval-
uations, and the associated delays and rounding error accumu-
lation that occur during range reduction and reconstruction for
each component elementary function [3]. Thus, the advantages
of direct evaluation as discussed here increase significantly as
compound functions become more complex.

In contrast with much of the previous work, in this paper we
are targeting environments in which the delay introduced by
the coefficient address logic must be kept to a minimum. Addi-
tionally, we enable a designer to specify an error tolerance
and to automatically obtain a segmentation that: 1) meets this
tolerance; 2) requires a small number of segments ; and 3)
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leads to efficient hardware implementation. The proposed seg-
mentation approach can be applied to a wide range of approx-
imation methods. Without loss of generality, it will be illus-
trated with spline approximations involving polynomials. Some
earlier aspects of this work were presented in [4]. This paper
includes a number of additions and improvements, including
automated analysis of function characteristics and use of the re-
sults in choosing a segmentation method, bit-width optimization
to guarantee 1 ulp precision, coefficient transformation to re-
duce dynamic range, and hardware implementation results that
include measurements of combinatorial delay.

The rest of this paper is organized as follows. Section II
discusses background of function evaluation and discusses
previous work on uniform and nonuniform segmentation.
Section III presents an overview of the methodology for func-
tion evaluation unit design with hierarchical segmentation.
Section IV describes the hierarchical segmentation method.
Section V presents the hardware architecture for evaluating
functions based on hierarchical segmentation. Section VI
presents hardware realization results for a Xilinx Virtex-4
FPGA device. Concluding remarks are given in Section VII.

II. BACKGROUND

Function evaluation methods can be classified into iterative
methods and non-iterative methods. Iterative methods [5], [6]
successively refine the output precision and are suitable for ap-
plications where arbitrary precisions are desired. However, they
usually involve high latencies and low throughputs, making
them unsuitable for high-performance applications.

Non-iterative methods include direct table lookups, table
addition methods, polynomial approximations, and rational
approximations. Direct table lookups are widely used for com-
putations involving low-precision inputs, but are impractical
for high-precision inputs due to high table size. Table addi-
tion methods [7], [8] use two or more parallel table lookups
followed by multi-operand addition. Although this approach
gives significant improvements in table size and potential speed
improvements due to reduction in table access times over the di-
rect table lookup approach, it still suffers from large table sizes
for high precisions. Polynomial approximations [1] involve the
evaluation of a polynomial over a given interval. The approxi-
mation accuracy can be controlled by varying the degree of the
polynomial and choice of interval. Rational approximation [9]
is a generalization of polynomial approximation in which the
function is approximated using the ratio of two polynomials.
For a given limit on numerator and denominator polynomial
degree, it enables higher accuracy than polynomial approxima-
tion, but due to the divide operation, the circuit complexity is
considerably higher. Non-iterative methods are often combined
with segmentation in which the input range is split into multiple
segments, each associated with a spline containing a particular
set of coefficients.

By far the most common segmentation method is uniform,
in which all segment lengths are equal [1], [7], [8], [10]–[12].
In addition, the choice of segment numbers is typically limited
to powers of two. While this leads to simple coefficient address

computation, in contrast with nonuniform segmentation, it
does not allow segment lengths to be customized to the local
function characteristics. The benefits of such customization
using nonuniform segmentation have been noted in the past,
particularly in association with logarithmic number systems
(LNS). LNS involves the approximation of highly nonlinear
functions for performing addition and subtraction operations in
the logarithmic domain. Two-level uniform segmentation has
been described by Lewis [13]. The segmentation in both levels
is uniform, but the density of the second level segmentation is
customized in accordance with local function characteristics.
Coleman et al. [14] describe a two-level approach in which the
first segmentation has segments that vary by powers of two and
the segmentation at the second level is uniform. References
[13] and [14] consider a subset of the segmentation options
considered here, and neither discusses automating the segmen-
tation process.

Balanced error segmentation is a form of nonuniform seg-
mentation in which the maximum approximation error in
all segments is equal. This is desirable since it minimizes
the number of segments needed to meet a given overall
approximation error constraint , though as discussed
further below it is not particularly conducive to efficient
hardware mapping. Given a continuous function , interval

, and number of segments , the goal in balanced error
segmentation is to identify segment boundaries , where

and associated degree-
polynomials such that the absolute maximum approxi-
mation errors

(1)

are minimized and are equal for all segments [15].
Several algorithms have been described in the literature to ad-

dress the balanced error segmentation problem [4], [15]–[17].
However, the main challenge with implementing balanced error
approaches is that the arbitrary variation in segment lengths
complicates the circuitry needed to identify the segment as-
sociated with a particular input. This challenge has been rec-
ognized by Sasao et al. [18]–[20], who present an algorithm
for finding the balanced error segmentation and employ a large
cascade of lookup tables (LUTs) for computing the coefficient
address. This approach leads to the minimum number of seg-
ments, but may not always result in designs with minimized
delay and/or memory requirements; we shall illustrate this point
in Section VI.

III. DESIGN FLOW OVERVIEW

Fig. 1 gives an overview of the function evaluation unit de-
sign methodology based on hierarchical segmentation. The fol-
lowing input parameters must be supplied by the user:

1) function to be evaluated (e.g., ,
etc.);

2) input interval (e.g., , etc.);
3) input and output precisions (e.g., 16 bits, etc.);
4) approximation method (e.g., degree-1 splines, degree-2

splines, etc.).
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Fig. 1. Overview of the automated methodology for function evaluation unit
design.

The “Hierarchical Segmentation” step partitions the splines
over the interval of the function in an adaptive manner via
a hierarchy of segmentation schemes, and produces segment
boundaries and the corresponding polynomial coef-
ficients. The details of the segmentation are described more
fully in the following. Chebyshev coefficients [3] are used
for the splines. Potentially, a minimax approximation could
be performed on the Chebyshev coefficients to find a set of
coefficients with slightly lower . Chebyshev is used in this
paper instead of minimax due to its faster coefficient generation
time, which was necessary due to the large collection of results
presented in Section VI.

The “Bit-Width Optimization” step applies bit-width opti-
mization to the circuit and determines the fixed-point bit-width
required for each signal. The bit-widths determined should guar-
antee overflow protection and faithful rounding at the output
signal. The final step, “Hardware Generation,” utilizes the seg-
mentation, coefficient, and bit-width information, and produces
synthesizable VHDL code suitable for FPGA or ASIC imple-
mentation. The entire process is fully automated and has been
implemented using MATLAB.

IV. HIERARCHICAL SEGMENTATION METHOD

A. Framework

The segmentation utilizes a selection from a library
of four schemes when subdividing an interval, denoted

, and , respectively, as illustrated in
Fig. 2. In , segments are uniformly sized. In , the
segment sizes increase by powers of two from the beginning of
the input interval to the end of the interval, while in the
segment sizes decrease by powers of two from start to end. In

, segment sizes increase by powers of two until the mid-
point of the interval and then decrease by powers of two until
the end is reached. As can be seen in Fig. 2, this range of options
offers a way to match the segmentation to portions of a function

Fig. 2. Illustration of uniform segmentation �� and three segmentations in-
volving lengths that increase or decrease by powers of two: ��� ���� , and
��� .

that have singularities or narrow peaks. The hierarchical aspect
arises because segmentation is applied recursively. In the first
pass, the entire interval is subdivided using one of the
above four methods into smaller segments. In the next pass,
each segment can be further subdivided, again using any of the
four methods. The decision on which method to use is made
independently on each segment. This process can continue to
the depth necessary to meet the design requirements. More
formally, the segmentation at each level, and of each segment,
is selected from . In principle,
any of the segments produced in the segmentation at level
can be further segmented using any of the four methods in
level . In practice, however, it is often sufficient to use
the same segmentation on all segments within the same
segmentation level. This also simplifies the notation, allowing
the full hierarchy to be expressed through ,
where is the number of levels in the hierarchy. When
dealing with functions with multiple singularities distributed
throughout the input interval, it may be beneficial to support
arbitrary segmentation for each segment and each level. The
methodologies presented here still apply in such cases, though
the notation to describe the segmentation becomes more cum-
bersome. Alternatively, the input interval can be divided into
multiple subintervals separated at the singularity regions and
segmentation can be performed individually on these subin-
tervals. In such cases, the singularities can potentially occur
in arbitrary regions of the function, meaning that although the
hardware-efficient segmentation described here can be applied
within each subinterval, it cannot be applied to the outer
most segmentation. Therefore, comparators or multi-valued
decision diagrams [19] will need to be utilized for the outer
most segmentation, which can add increased area and delay
requirements.

This structure can be implemented via cascaded LUTs,
where the output of one LUT is supplied as the address of the
next (as illustrated in Fig. 8 which will be discussed further
in Section V). Cascaded lookup tables are also used in the
balanced error approach of Sasao et al. [18]–[20]. However,
while Sasao et al. use them to realize multi-valued decision
diagrams [21], in hierarchical segmentation, each LUT is used
to store information of a given hierarchy level. Thus, the -bit
representation of an input is split into partitions denoted

, where denotes the bit-width of the th partition .
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TABLE I
��� SEGMENT RANGES IN BINARY REPRESENTATION FOR

� � ��� � ��� , AND � � �. THE FIVE BITS CORRESPONDING TO

� ARE HIGHLIGHTED IN BOLD. THE BITS TO THE LEFT OF THE

VERTICAL PARTITION LINES CORRESPOND TO ��

The number of addressable segments in the th partition is
constrained as follows:

if (2)

if (3)

if (4)

Segments within any given level of the hierarchy are indexed
by , where . For uniform segmentation , it is
clear that segments can be formed, since uniform seg-
ments are addressed with bits. However, for the three power
of two schemes, , the constraints are not as intuitive. Con-
sider the example of a two-level hierarchy in which , and
the first partition is and is addressed using 5 bits;
e.g., . As noted earlier, it is assumed that the approx-
imation interval is normalized to the range to

(in the case where ), where the leading
binary point is implicit. In this example, it is possible to con-
struct a maximum of 10 segments in the first level of the hier-
archy as illustrated in Table I. Note that with the exception of
the initial and final segments, the segment lengths increase by
powers of two until (end of location 4) and start
decreasing by powers of two from the midpoint
(beginning of location 5) to the end. Fewer segments can be
obtained by omitting parts of the table. For , locations 0
to 5 are used with the ending value of location 5 modified to

. Analogously, for , locations 4 to 9 are used
with the beginning value of location 4 modified to .

Computation of the segment address for a given partition
is based on detecting the number of leading zeros for segments
beginning with a zero, and on detecting the number of leading
ones for segments beginning with a one. Specifically, the
addresses (segment numbers) can be computed in the following
manner:

if
if

(5)

if
if

(6)

if
if

(7)

where , and return the number of
leading zeros, number of leading ones, and the most significant
bit of , respectively.

gives the number of bits used for indexing the segments
in (5 in this case, shown in bold Table I). Let denote the set
of bits that remains constant within a given segment in (bits
left side of the vertical partition lines Table I). The th level

uses the adjacent bits to the right of . For example,
in Table I, for and , and

for and . When uniform segmentation is
used in the th level of the hierarchy, then , and
bits of remain constant over a given segment, so .
Therefore, the th level simply uses the bits
immediately to the right of .

However, if one of the three nonuniform segmentations is
used, , then the number of bits
corresponding to depends on the value of , since de-
termines the value of . Consider again the case when

. Let denote the th bit from the least significant bit
(LSB) of ; e.g., is the LSB of is the bit imme-
diately to the left of the LSB, etc. In formal terms, which
has bits, is given by the bits to the right of the following:

• for and (segment numbers
0 and 9 in Table I);

• for to (segment
numbers 1 to 4 in Table I);

• for to (segment
numbers 5 to 8 in Table I).

With appropriate modifications to the asymmetry of the segmen-
tation, an analogous procedure applies for determining in
the case of and . The computation of can be
performed as follows:

(8)
if
otherwise

(9)

if
if
if

(10)

if
or
if and

otherwise
(11)

In principle, it is possible to have any number of levels of
nested segmentation steps , as long as . The
more levels are used, the closer the total number of segments
will be to the optimal. However as increases the partitioning
problem becomes more complex, and the cascade of lookup ta-
bles gets deeper, increasing the delay involved in finding desired
segment. Experiments show that the rate of reduction of de-
creases rapidly as increases, so that further increase in delay
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Fig. 3. Illustration of a two-level segmentation that is uniform at both levels,
e.g., ������. In this example � � �, leading to 8 equal-width outer seg-
ments, and� , ranges from 0 to 3, so that each outer segment is partitioned into
1, 2, 4, or 8 uniform inner segments. The total number of segments is� � ��.
The black and grey vertical lines indicate the boundaries for the outer segmen-
tation 	 and inner segmentation 	 , respectively. Hardware suitable for such
a scheme is illustrated in Fig. 8, which is also discussed in Section V in detail.

arising from incrementing gives diminishing returns in terms
of approximation accuracy.

In most cases, , which consists of an outer segmenta-
tion scheme and an inner segmentation scheme , gives an

that is close to the optimal while retaining acceptable par-
titioning complexity and delay. Therefore, in the results pre-
sented here is used. For the first level of segmentation

is used if the function has strong nonlinearities at
both endpoints of the range and . is used if the
function has strong nonlinearities at but not , and is
used if the opposite occurs. is used if the function
is nonlinear in regions away from the endpoints. For the inner
segmentation is used for the results presented here, en-
abling straightforward and efficient control of the approxima-
tion error of an outer segment . Fig. 3 illustrates an example
of , where , leading to 8 equal-width outer seg-
ments, and , ranges from 0 to 3, so that each outer segment
is partitioned into 1, 2, 4, or 8 uniform inner segments. The total
number of segments is .

B. Segmentation Algorithm

The segmentation is demonstrated with the following six el-
ementary and compound functions:

(12)

(13)

(14)

(15)

(16)

(17)

where is an -bit number over of the form
. The function occurs in image warping

algorithms [22] and is used in the Box–Muller algorithm for
the generation of Gaussian noise [23]. Functions , and
are commonly used elementary functions [3], while function

is an example of a complex high-degree rational function.
The determination of the appropriate segmentation hierarchy

for a given function plays an important role. Choosing the wrong
hierarchy for a given function can result in inefficient segmenta-
tion, leading to unnecessarily large numbers of segments. One

way of finding the best hierarchy is to apply all possible seg-
mentation hierarchies and pick the one that gives the smallest
number of segments . Instead of using this brute-force ap-
proach, we first find the balanced error segmentation of the
given function. Then for each of the four possible segmentation
schemes , we obtain the variance of a histogram that holds
the number of balanced error segmentation boundaries within
each of the “partitions” created by the outer segmentation. The
scheme that results in the smallest variance is chosen, since a
small variance indicates a good match with the balanced error
segmentation. This approach is illustrated in the pseudo-code
shown in Algorithm 1. It can be applied recursively times to
find the appropriate inner segmentation schemes.

Algorithm 1 Select Best Hierarchy Scheme

1: // Parameters: Input Interval ,
2: // Balanced Error Segmentation Boundaries
3:
4: // Use 8 Segments to Aid the Selection of the Best

Scheme
5:
6: //
7:
8:
9: //

10:
11:
12: //
13:
14:
15: //
16:
17:
18:
19: for to 3 do
20: for to 7 do
21: for to length do
22: if then
23:
24: end if
25: end for
26: end for
27: end for
28:
29:

Another important issue is the determination of number of
bits to assign for the outer segmentation . If is too
small, there will be insufficient granularity in the outer segments
follow the local nonlinearities of a function. On the other hand,
if is too large, there will be too many outer segments and
the total number of segments will be unnecessarily large.
Fig. 4 gives an example of how varies with increasing
for the approximation of functions and accurate to .
The segmentation is used for , while is
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Fig. 4. Variation of the number of segments � against � for functions �
(12) and � (15) accurate to � . For function � �� reaches a minimum at
� � �, while for function � , it reaches a minimum at � � �. Segmenta-
tion ��� ���	 is used for � , while �����	 is used for � .

TABLE II
CONTENTS OF ROM0 FOR THE �����	 EXAMPLE IN FIG. 3

used for . In both cases there is a single minimum, occurring
at 9 bits for and 5 bits for .

Algorithm 2 gives the pseudo-code of the hierarchical seg-
mentation method. As noted earlier, four input parameters are
required: the input interval , the ulp of the input, the poly-
nomial degree to be used for the splines, and the desired max-
imum absolute error at the output. The notation
concatenates matrix to matrix (e.g., line 42). First, the
appropriate segmentation hierarchy is found (line 4 to line 6).
Next, hierarchical segmentation is performed while searching
for the optimal that minimizes . Initially , which
corresponds to uniform segmentation. is then incremented
until the segmentation that gives the minimum number of seg-
ments is found (line 8 to line 65).

The core of the algorithm lies in the for-loop from line 19 to
line 51. For each segment in the outer segmentation, the Cheby-
shev coefficients for the approximating polynomial of appro-
priate degree are computed. If the approximation error is
too high, the number of segments in the inner segmentation is
incremented by successive powers of two until the of all
inner segments are less or equal to the required error . This
process is performed for all outer segments. The final output is
the total number of inner segments , the vector containing
the segment boundaries, ROM0 which is needed for ROM1 ad-
dress computation, and ROM1 which holds the polynomial co-
efficients for each segment. ROM0 stores the and the offset
corresponding to each first level segment. The offset is simply
the number of rows in ROM1 prior to the row in ROM1 corre-
sponding to the current first level segment. Table II shows the
contents of ROM0 for the example in Fig. 3.

Algorithm 2 Hierarchical Segmentation Method

1: // Parameters: Function , Input Interval , ulp
2: // Polynomial Degree , Required Error
3:
4: // Select Segmentation Hierarchy
5:
6: //Algorithm 1
7:
8: // Find the Segmentation with the Optimal
9:

10:
11:
12: while 1 do
13:
14:
15:
16:
17:
18: for to do
19:
20:
21:
22: if
23:
24:
25: while
26:
27:
28:

29:
30:
31: for to do
32:
33: SegSize
34:

35: if then
36: break
37: end if
38:

39:
40: end for
41: end while
42:
43:
44: else
45:
46:
47: end if
48:

49:
50: end for
51:
52: if then
53:
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54:
55:
56:
57: break
58: else
59:
60:
61:
62:
63:
64: end if
65: end while

C. Segmentation Experiments

Applying the methods described above to the six func-
tions gives

, and , respectively. Fig. 5 illustrates
the segmentations when Algorithm 2 is applied to the six
functions using degree-2 splines and an error requirement of

. In this example the number of levels is fixed at two
and is used for the inner segmentation for all cases. The
six functions require 19, 28, 64, 80, 6, and 7 seg-
ments, respectively. The optimal that lead to the minimal

are found to be 9, 10, 11, 5, and 6 bits, respectively. The
importance of selecting the right scheme for a given function
is apparent if is used for instead of .
While results in 19 segments, requires
63 segments to deliver the same precision. It can be seen that
the hierarchical segmentation closely resembles the balanced
error segmentation shown in Fig. 6. The main difference is the
expense of increased .

Table III shows a comparison of the number of segments
for uniform, hierarchical, and balanced error segmentation

for several different error requirements. The balanced error re-
sults are obtained from the binary splitting algorithm [4]. It is
clear that hierarchical segmentation greatly reduces when
compared to uniform segmentation, particularly for highly non-
linear functions or stringent precision requirements. For all of
the functions, the hierarchical segmentation requires only mod-
estly more segments than the balanced error approach, and sig-
nificantly fewer segments than uniform segmentation. In other
words, it results in memory requirements that are relatively sim-
ilar to what is needed in balanced error segmentation, while also
delivering significant hardware savings as discussed earlier.

Interestingly, notable improvements are also achieved for rel-
atively linear functions such as and

. The approximation of the natural logarithm has been
widely studied in the literature, mostly using uniform segmen-
tation. Fig. 7 shows the variation of number of segments
with error requirement for uniform and hierarchical segmenta-
tion for . Due to the rigid nature of uniform segmentation (i.e.,
in which the total number of segments must be a power of
two), the curve exhibits step discontinuities. However, hierar-
chical segmentation is more flexible, giving a smoother curve.
Depending on the error requirement, can be reduced by over
a factor of two relative to uniform segmentation. Since is

Fig. 5. Hierarchical segmentations to the six functions using degree-2 splines
and an error requirement of � . Two levels of segmentation were used; the
black and grey vertical lines indicate the boundaries for the outer segmentation
� and inner segmentation � . The six functions � � � � � � � employ segmen-
tation using ��� �������� �������� ������������������, and
������, respectively. They require 19, 28, 64, 80, 6, and 7 total segments,
respectively.

directly correlated to the table size needed for the polynomial
coefficients, these savings are significant. Similar reductions in
segment numbers relative to uniform segmentation are observed
for and other range-reduced elementary functions such as
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Fig. 6. Balanced error segmentation to the six functions using degree-2 splines
and an error requirement of � . The vertical lines indicate the segment bound-
aries. The six functions � � � � � � � require 12, 18, 44, 48, 4, and 6 segments,
respectively. The total segment count is reduced only slightly relative to hierar-
chical results in Fig. 5, but the hardware complexity is significantly increased.

over . For example, under the error require-
ment of used in Fig. 5, is uniformly segmented. For

TABLE III
COMPARISONS OF THE NUMBER OF SEGMENTS � FOR DEGREE-2

SPLINES. RESULTS FOR UNIFORM, HIERARCHICAL, AND

BALANCED ERROR SEGMENTATION ARE SHOWN

Fig. 7. Variation of the number of segments � with error requirement for uni-
form and hierarchical segmentation of the function � � ���� � �	.

tighter error requirements, nonuniform segmentation becomes
superior.

V. HARDWARE ARCHITECTURE

Fig. 8 shows the hardware architecture for evaluating func-
tions segmented with the hierarchical segmentation method.
The unit performs the address decoding step [(5)–(7)]
and the computation (8)–(11). If , the unit
is bypassed. The bit selection unit selects the appropriate bits
for , and from the input in conjunction with ROM0.
Let denote the set of consecutive bits from the th to

th bit of from its LSB. For , the bit selection unit
selects

, and .
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Fig. 8. Hardware architecture for evaluating functions segmented with the hier-
archical segmentation method for degree-� splines. ROM0 contains information
on the hierarchical segmentation, while ROM1 contains the polynomial coeffi-
cients to each spline segment.

A single barrel shifter is required for the selection of and
. For other hierarchy schemes, the selection process is more

complex, since the bit locations of and can overlap as
shown in the example of Table I. For these cases, two barrel
shifters are used. The bit selection unit is illustrated in Fig. 9.

As described in Algorithm 2, ROM1 contains the polynomial
coefficients to each segment. The depth of ROM0 is defined
in (2)–(4), and the depth of ROM1 is the total number of
segments. The size of the two ROMs are defined as follows:

(18)

(19)

In practice, ROM0 will be significantly smaller than ROM1,
since its depth is bounded by which is generally small, and

Fig. 9. Illustration of the bit selection unit in Fig. 8. The first barrel shifter can
be omitted when ������ because � stays constant.

the entries and offset are also small. Horner’s rule is used
for the evaluation of the polynomials in the following form:

(20)

where is the input, is the degree, and are the polyno-
mial coefficients. Alternative polynomial evaluation techniques,
such as the single multiplication degree-2 method in [10] can
potentially be used as well.

Since and are implicitly known for a given segment,
is used instead of for the polynomial arithmetic to reduce

the size of the operators. Let denote the set of bits cor-
responding to and , and denote the bit-width of
this set. is scaled occupy the range . If ,
this involves masking out the bits corresponding to , and
shifting by to the left. One problem is the fact that the
Chebyshev coefficients have originally been generated under the
assumption that will be used for the polynomial evaluation.
Let us consider a segment with a degree-2 spline. is given by

(21)

Rearranging the equation gives

(22)

Representing a degree-2 polynomial equation with the fol-
lowing coefficient labels:

(23)

in combination with (22) gives

(24)
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Fig. 10. Area variations with the inherent approximation error � allocation
for 16-bit degree-2 approximations.

Examining the second, first, and zeroth order terms, the newly
transformed polynomial coefficients are

(25)

(26)

(27)

Note that the additions in (26) and (27) could lead to cancella-
tion errors in floating-point arithmetic when the precisions are
very high. In such cases it is desirable to use a multi-precision
library.

Once the segmentation and coefficient generation have been
completed, the next challenge is the determination of the signal
bit-widths in the arithmetic data-path. Insufficient bit-widths
can cause to overflows and error requirement violations, while
excessive bit-widths can result in waste of valuable hardware
resources. For the architecture in Fig. 8, bit-widths to
and to need to be determined. We use an adapta-
tion of the MiniBit technique, optimized for polynomial-based
function evaluation [2].

There are three main sources of errors when evaluating
functions in digital arithmetic: 1) the inherent error due to
approximating the function with polynomials; 2) quantization
error due to finite precision effects incurred when evaluating
the polynomials; and 3) the error of the final output rounding
step, which can cause a maximum error of ulp. In the
worst case, and will contribute additively, so to achieve
faithful rounding, their sum must be less than ulp. We
allocate a maximum of ulp for and the rest for ,
which provides a good balance between the two error sources
and will be discussed further in Section VI (see Fig. 10).

Quantization is usually performed in two modes: trunca-
tion which can cause a maximum error of (1 ulp), and
round-to-nearest which can cause a maximum error of
( ulp). Round-to-nearest must be performed at the output
signal to achieve faithful rounding, but either rounding mode
can be used for the internal signals. Since truncation results in

TABLE IV
PROCESSING TIMES OF THE AUTOMATED HIERARCHICAL SEGMENTATION

TOOL (SEE FIG. 1) ON AN INTEL PENTIUM-4 3.4 GHZ PC FOR

DEGREE-2 APPROXIMATIONS TO FUNCTION �

better delay and area characteristics over round-to-nearest, it is
used for the internal signals. Note that the quantization of the
coefficients is performed with round-to-nearest at com-
pile-time, while truncation is performed for the intermediate
signals at run-time (see Fig. 8).

VI. HARDWARE IMPLEMENTATION RESULTS

A Xilinx Virtex-4 XC4VLX100-12 FPGA is used for ex-
perimental implementation. Synplicity Synplify Pro 7.7.1 is
used for synthesis, and Xilinx ISE 7.1.04i is used for place-
ment and routing. Implementation results for degree-1 and
degree-2 splines using Horner’s rule are given. The designs
are fully combinatorial with no pipeline registers. For the
leading zero/one detectors required for the unit, the design
described by Oklobdzija [24] is adopted.

The primary building block of Xilinx Virtex series FPGA
is the “slice,” which consists of two four-input lookup tables
(LUTs), two registers and two multiplexors, and some addi-
tional circuitry such as carry logic and AND/XOR gates. The four
input LUT can also be used as 16 1 RAM or a 16-bit shift
register. Although the Virtex-4 FPGA contains hardwired ded-
icated RAMs and multiply-and-add blocks, we consider imple-
mentations based on slices only, in order to obtain unbiased area
and delay comparisons. The “precision” in the results refers to
total number of bits (sum of number of integer and fractional
bits) at the output.

Table IV shows the processing times of the automated hier-
archical segmentation tool (see Fig. 1) on an Intel Pentium-4
3.4 GHz PC with 2 GB RAM for degree-2 approximations to

. The segmentation step described in Algorithm 2 takes the
largest portion of the processing time followed by the bit-width
optimization and VHDL generation steps. The main bottleneck
of the segmentation algorithm is the sequential search for the
optimal . If the optimal is used initially for 24-bit pre-
cision for instance, the segmentation time is reduced to 57 s.

Fig. 10 explores the area variations with allocation
discussed in Section V for 16-bit degree-2 approximations to
the six functions. When the allocation is close to zero,
the number of segments are excessive leading to large areas.
On the other hand, when allocation is close to 1/2, errors
allocated for quantization effects are too small, resulting
larger operator and coefficient table sizes. As mentioned in
Section V, we have chosen 1/4 for the allocation which
provides a good balance between the two error sources for the
case studies concerned in this work.
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Fig. 11. Area comparisons for degree-2 approximations. The top (grey), middle
(white), and bottom (grey) parts of each bar indicate the area portion for address
decoding, ROM1, and polynomial evaluation, respectively.

Fig. 12. Delay comparisons for degree-2 approximations. The top (grey),
middle (white), and bottom (grey) parts of each bar indicate the delay portion
for address decoding, ROM1, and polynomial evaluation, respectively.

Figs. 11 and 12 examine area and delay behavior of degree-2
approximations. The top (grey), middle (white), and bottom
(grey) parts of each bar indicate the area portion for address
decoding (top part of Fig. 8 for computing the address for
ROM1), ROM1, and polynomial evaluation respectively. The
area results indicate that the portion for address decoding is
generally small in all cases. The address decoding for
is slightly larger than , because employ
power of two based outer segmentations which are more com-
plex to decode than the uniform based outer segmentations
employed in . The portion for ROM1 increases with
precision due to increasing number of required segments (as
shown in Table III). For a given precision, the ROM1 portion
varies across functions due to different requirements and
the degree of logic minimization performed during synthesis.
The portion for polynomial evaluation increases with precision
due to increased bit-width requirements in the data path. While
an exponential increase in area with precision was observed
in Fig. 11, the results in Fig. 12 indicate that delay increases

Fig. 13. Area comparisons for degree-1 and degree-2 approximations.

Fig. 14. Delay comparisons for degree-1 and degree-2 approximations.

in a linear fashion with precision. Compared to the single
multiplication degree-2 method by Detrey and de Dinechin
[10], our results for indicate similar area characteristics but
notably slower speeds. This suggests that the performance of
the degree-2 designs shown here can be further improved by
utilizing optimized polynomial evaluation architectures over
the standard Horner’s method.

Figs. 13 and 14 show area and delay comparisons between de-
gree-1 and degree-2 approximations to , and . The area
for degree-1 approximations increase more rapidly than the area
degree-2 approximations. For , precisions exceeding 13 bits,
degree-2 splines start to become more cost effective in terms of
area than the degree-1 splines. This intersection point occurs at
11 bits for and at 17 bits for . The delay exhibits a linear
increase with precision for all cases due to the increasing in-
ternal bit-widths. Degree-1 approximations are faster than de-
gree-2 approximations due to their shallower polynomial com-
putation chains.

Table V compares the area and delay results between uniform
and hierarchical segmentation for degree-2 approximations to

and . When hierarchical segmentation is used, significant
area savings are obtained at the expense of moderate increase
in delay. The area savings occur due to the fewer numbers of
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TABLE V
AREA AND DELAY COMPARISONS BETWEEN UNIFORM AND HIERARCHICAL

SEGMENTATION FOR DEGREE-2 APPROXIMATIONS TO FUNCTIONS � AND �

Fig. 15. Area comparisons of uniform and hierarchical segmentations for
approximating � � ���� � ��.

segments leading to smaller coefficient tables. The delay penal-
ties are caused by the coefficient address decoding circuitry. For
function , precisions beyond 16 bits could not be mapped on
to the FPGA due to the rapid area increase (mainly memory) of
uniform segmentation.

Fig. 15 presents area comparisons of uniform and hier-
archical segmentations for approximating .
Earlier, Fig. 7 and Table III indicated that even for relatively
linear functions such as , hierarchical segmentation always
leads to smaller number of segments (or memory require-
ments) than uniform segmentation. However, when the overall
hardware area is examined, the results in Fig. 15 show that
hierarchical segmentation does not necessarily result in the
smallest area; though memory reductions are achieved for
ROM1, there are area overheads associated with address de-
coding. For degree-1 approximations, uniform segmentation
is always more area efficient for precisions up to 20 bits.
Beyond 20 bits, the most area efficient method depends on
the precision. With degree-2 approximations however, there
are relatively few segments required for the precisions shown
(up to 24 bits). Thus, the reduction in ROM1 achieved with
hierarchical segmentation has little impact on the overall
hardware area. At higher precisions however, we suspect there
will be an intersection point (where hierarchical segmentation
can be more area efficient), analogous to the degree-1 case.

For an 8-bit degree-1 approximation to over
on a Xilinx Virtex-II XC2V4000-6 device, the balanced

error approach by Sasao et al. [19] results in a delay of 67 ns,
while the hierarchical segmentation results in 33 ns. We expect
that the delay gap between the two methods will be wider for
approximations with larger due to the increased burden on
the address decoding process. In other words, hierarchical seg-
mentation leads to significant reduction in delay over the bal-
anced error approach with modest increase in (the behavior
of is similar to that of and in Table III).

It is also instructive to compare memory requirements be-
tween the balanced error approach in [18] and hierarchical
segmentation. The two main sources of memory utilization
are the tables for coefficient address computation and coef-
ficient storage. In hierarchical segmentation the coefficient
table (ROM1) is dominant and memory for coefficient address
computation (ROM0) accounts for only a small fraction of the
overall memory utilization. By contrast, in the balanced error
approach the large number of cascaded LUTs that are used
for address computation can account for over 90% of the total
memory utilization [18], with the remaining memory used for
the coefficient tables. Thus, while the balanced error method
requires fewer segments and thus less memory for coefficients,
these savings can be more than consumed by the memory for
the address computation.

These issues are illustrated in Table VI with specific refer-
ence to the functions over and

over . Memory requirements for ad-
dress computation and coefficient storage are given for hierar-
chical segmentation. For balanced error, the results presented in
[20] for the sum of address computation and coefficient memory
are incorporated. The table does not specify the contribution
of the address computation memory to the overall memory for
balanced error as this information is not directly available in
[20], though, as noted above, the cascaded LUTs for coeffi-
cient address computation in the balanced error implementa-
tion can consume significantly more memory than the corre-
sponding structure in the hierarchical approach. It should also
be noted that the memory utilization for balanced error method
could likely be improved through the use of more memory-effi-
cient address computation strategies.

VII. CONCLUSION

We have presented an efficient method for evaluating func-
tions via splines with a hierarchical segmentation scheme. The
use of segmentation hierarchies involving uniform splines and
splines with size varying by powers of two enables efficient,
high precision coverage of highly nonlinear function regions.
The methodology is automated given user-specified precision
requirements and choice of approximation method. The hier-
archical segmentation method results in significant reduction
in number of required spline segments for given precision re-
quirements compared to the commonly-used uniform segmen-
tation approach. Compared to balanced error segmentation, the
method presented here gives significantly reduced delay and
memory requirements. The bit-widths of the fixed-point coef-
ficients and arithmetic operators are optimized via the MiniBit
approach, enabling us to guarantee 1 ulp accuracy at the output
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TABLE VI
MEMORY REQUIREMENT COMPARISONS IN BITS BETWEEN THE SASAO BALANCED ERROR APPROACH AND HIERARCHICAL SEGMENTATION FOR THE EVALUATION

OF � � � ����� OVER � � �� � �� AND � � ���� 	 �� OVER � � �
� ��. THE NUMBERS SHOWN FOR HIERARCHICAL SEGMENTATION ARE THE SUM OF

ROM0 AND ROM1 (SEE FIG. 8), WHILE THE NUMBERS SHOWN IN BRACKETS ARE ROM0. THE REDUCTION FACTOR IS THE RATIO OF THE TWO MEMORY SIZES

in an analytical manner. A hardware architecture for evaluating
functions segmented hierarchically has been presented with var-
ious realizations on a Xilinx Virtex-4 FPGA.

Current and future work includes exploring the use of hi-
erarchical segmentation for approximation methods other than
piecewise polynomials, applying the proposed approach to a
wide range of examples, and evaluating its effectiveness for var-
ious FPGA devices.
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