
Parametric Encryption Hardware Design

Adrien Le Masle1, Wayne Luk1, Jared Eldredge2, and Kris Carver2

1 Department of Computing, Imperial College London, UK
{al1108,wl}@ic.ac.uk

2 BlueRISC, Inc, Amherst, MA, USA
{jared,kris}@bluerisc.com

Abstract. We present new scalable hardware designs of modular mul-
tiplication, modular exponentiation and primality test. These operations
are at the core of most public-key crypto-systems. All the modules are
based on an original Montgomery modular multiplier. Our multiplier is
the first Montgomery multiplier design with variable pipeline stages and
variable serial replications. It is 8 times faster than the best existing
hardware implementation and 30 times faster than an optimised soft-
ware implementation on an Intel Core 2 Duo running at 2.8 GHz. Our
exponentiator is 2.4 times faster than an optimised software implementa-
tion. It reaches the performance of a more complex FPGA design using
DSP blocks which is the fastest in the literature. Our prime tester is
2.2 times faster than the software implementation and is 85 times faster
than hardware implementations of the same algorithm with only 60%
area overhead.

1 Introduction

Most public-key cryptographic algorithms consist of two main stages: the key
generation which requires the ability to generate large prime numbers and the
encryption/decryption part.

Modular exponentiation is a common operation used by several public-key
crypto-systems, such as the Diffie-Hellman key exchange protocol and the Rivest,
Shamir and Adleman (RSA) encryption scheme. It is also, together with modular
multiplication, the core of common prime tests such as the Rabin-Miller strong
pseudo-prime test.

As security is becoming increasingly important, algorithms such as RSA need
more and more bits for the keys used to be secured. For data that need to be
protected until 2030, a 2048 bit key is recommended whereas a 3072 bit key
is recommended for beyond 2031 [2]. This creates a need for scalable designs
working with any bit-width.

Many new algorithms and improvements of existing algorithms for modular
multiplication have been presented during the last decade [10]. This led to many
hardware implementations of modular multiplication [3,4,6,8,9,11], modular ex-
ponentiation [3,7,9,11,12,13], and primality testing [5]. Most implementations
target Field Programmable Gate Arrays (FPGAs) which offer rapid-prototyping
platforms to compare different designs and can be reprogrammed as needed.

P. Sirisuk et al. (Eds.): ARC 2010, LNCS 5992, pp. 68–79, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parametric Encryption Hardware Design 69

As FPGAs are quickly increasing in size, it is becoming more of a challenge to
fully cover the design space available for a given budget. This introduces the need
for parametric designs capable of exploring the entire design space, especially in
terms of the speed-area trade-off.

This paper presents parametric hardware designs of modular multiplication,
modular exponentiation and primality testing. Our main contributions include:
– A new parametric Montgomery multiplier design with variable pipeline

stages and variable serial replications
– A modular exponentiator design based on our Montgomery multiplier
– A Rabin-Miller prime tester design using both our multiplier and our expo-

nentiator
– An implementation of the proposed designs on Xilinx Virtex-5 FPGAs and

a comparison of their performance in terms of speed and area with the main
existing implementations.

Our Montgomery multiplier implementation is 8 times faster than the best exist-
ing hardware implementation [13] and 30 times faster than an optimised software
implementation on an Intel Core 2 Duo running at 2.8 GHz. Our exponentiator
is 2.4 times faster than an optimised software implementation and reaches the
performance of a more complex FPGA design using DSP blocks [12] which is also
the fastest design in the literature. Our prime tester is 2.2 times faster than the
software implementation and is 85 times faster than hardware implementations
of the same algorithm [5] with only 60% area overhead.

The rest of the paper is organised as follows. Section 2 explains the background
relevant to our work. In section 3, we present the main challenges of our designs
and how we address them. In section 4, we compare our FPGA implementations
to the best existing implementations and highlight the scalability of our hardware
architectures. Finally, section 5 concludes the paper.

2 Background

Most modular exponentiation algorithms require the ability to perform fast and
area efficient modular multiplications. In [4], different algorithms for modular
multiplication are compared in terms of the area-time product (AT). The Mont-
gomery modular multiplication algorithm turns out to be the best with an AT
complexity of O(n2).

Another important feature of a crypto-system is the ability to generate large
prime numbers. Probabilistic methods for prime testing, determining whether
or not a number is prime with a certain probability of error, are often used.

Modular Exponentiation. A simple but common algorithm for modular
exponentiation is given in Alg. 1. To compute XE mod N , the algorithm iterates
on the bits of E from the least significant bit (LSB) to the most significant bit
(MSB). At each iteration i, the variable Pi = X2i

mod N is squared modulo
N to obtain Pi+1 = X2i+1

mod N . If ei = 1, the accumulated product Zi is
multiplied by Pi modulo N , otherwise it remains the same. After n iterations, n
being the bit-width of E, Zn contains XE mod N .

70 A. Le Masle et al.

Algorithm 1. Exponentiation algorithm
Input: X,E,N with E =

∑n−1
i=0 ei2

i, ei ∈ {0, 1}
Output: Zn = XE mod N
Z0 = 1, P0 = X1

for i = 0 to n − 1 do2

Pi+1 = P 2
i mod N3

if ei = 1 then4

Zi+1 = Zi.Pi mod N5

else6

Zi+1 = Zi7

end8

Algorithm 2. Simple Montgomery algorithm for modular multiplication
Input: A =

∑n−1
i=0 ai2

i, B =
∑n−1

i=0 bi2
i, N =

∑n−1
i=0 ni2

i, (ai, bi, ni) ∈ {0, 1}3,
n0 = 1, 0 ≤ A, B ≤ N

Output: P = A.B.2−n mod N
P = 01

for i = 0 to n − 1 do2

P = P + ai.B3

P = P + p0.N4

P = P div 25

end6

if P ≥ N then P = P − N7

Algorithm 3. Rabin-Miller strong pseudo-prime test
Input: p = 2rd + 1 odd integer, set P of |P | first primes
Output: composite if p is composite, prime if p is probably prime
for i = 0 to |P | − 1 do1

a = P [i]2

if ad = 1 mod p or a2jd = −1 mod p for some 0 ≤ j ≤ r − 1 then3

continue4

else5

return composite6

end7

return prime8

Montgomery Modular Multiplication. A simple version of Montgomery
modular multiplication is presented in Alg. 2. This algorithm iterates on the bits
of A from the LSB to the MSB. At iteration i, ai.B is added to the accumulated
product P . If P is odd, N is added to P . This does not change the result as
the calculation is done modulo N . As N is odd (required by the algorithm), P
becomes even and can be divided by 2 without remainder.

Parametric Encryption Hardware Design 71

The drawback of the Montgomery algorithm is that it actually computes
A.B.2−n mod N , introducing an extra 2−n factor which has to be eliminated.
The common method to remove this factor is to convert the inputs in N-residue
[7], to perform the modular multiplication and to convert back the result to a
normal representation by Montgomery multiplying it by one.

Rabin-Miller Primality Test. In this paper, we consider a variant of the
Rabin-Miller strong pseudo-prime test using a few number of primes as witnesses.
This probabilistic test has a low probability of error. Algorithm 3 shows that the
Rabin-Miller test relies on the ability to perform modular multiplications and
exponentiations and is therefore a relevant application for our designs.

3 Design Flow

Our goal is to create parametric designs of Montgomery multiplication, Mont-
gomery exponentiation and Rabin-Miller primality test. The benefits of such
designs are that they can:

– adapt to the present and future needs in terms of key width
– explore a large design space in terms of speed and area, adapting to the

accelerating advancement in FPGA development
– meet the requirements of various hardware encryption projects

Parametric Montgomery Multiplier Design. We choose a one-carry save
adder (CSA) based Montgomery multiplier as the basic block of our design. A
CSA is faster than a ripple-carry adder with no area overhead. Algorithm 4 from
[4] is used. The diagram of a multiplier cell is given in Fig. 1. The bit-width of
this cell is set as a design parameter.

We apply two techniques to our design: pipelining and serial replication.
Pipelining improves the throughput of the design and serial replication improves

Fig. 1. Diagram of a Montgomery multiplier cell

72 A. Le Masle et al.

Algorithm 4. Fast Montgomery algorithm for modular multiplication
Input: A =

∑n−1
i=0 ai2

i, B =
∑n−1

i=0 bi2
i, N =

∑n−1
i=0 ni2

i, (ai, bi, ni) ∈ {0, 1}3

Output: P = A.B.2−n mod N
S = 01

C = 02

for i = 0 to n − 1 do3

if (s0 = c0) and ai = 0 then I = 04

if (s0 �= c0) and ai = 0 then I = N5

if (s0 ⊕ c0 ⊕ b0) = 0 and ai = 1 then I = B6

if (s0 ⊕ c0 ⊕ b0) = 1 and ai = 1 then I = B + N7

S, C = S + C + I8

S = S div 29

C = C div 210

end11

P = S + C12

if P ≥ N then P = P − N13

its latency. Three main challenges have to be addressed to design a parametric
Montgomery multiplier using these techniques:

Challenge 1. Algorithm 4 cannot be easily parallelised due to the data depen-
dencies between the consecutive values of S and C in the main loop. At
iteration i+1, the values of S and C from iteration i are needed to compute
the new value of I and the new values of S and C.

Challenge 2. To explore as much design space as possible, the bit-width, the
number of replications and the number of pipeline stages should be param-
eters which can take any value.

Challenge 3. The control should adapt to the values of these parameters.

Consider Challenge 1. Figure 2 shows the basic structure of our pipelined design.
Each Montgomery cell is a modified version of the basic cell presented earlier. We
cope with Challenge 1 by allowing each basic cell to perform a consecutive part
of the iterations. For this principle to work, the final addition and subtraction
blocks are removed from this cell and the number of iterations performed by
each cell becomes a parameter. The basic cell is added with the ability to load
the S and C registers from the inputs. The current values of S and C are also
available at the output of each cell.

Inside each pipeline block, the CSA can be replicated as many times as needed.
The data dependencies problem prevents us from simply duplicating the CSA
and perform several iterations in parallel. Instead, several CSAs along with the
shift logic are put in series. This is equivalent to unrolling the loop of Alg. 4
r−1 times. The I-selector is also replicated as the values of I differ for each CSA
and at each iteration. At equal frequencies, replication decreases the latency of
the design by a factor of r, the total number of CSAs. The area overhead is less
than r because only a part of the basic cell is replicated. In practice, replication

Parametric Encryption Hardware Design 73

Fig. 2. Structure of a 32 bit pipelined Montgomery multiplier with 4 pipeline stages

also increases the critical path, reducing the maximum clock frequency at which
the multiplier can run.

Consider Challenge 2. Allowing the bit-width (n) and the pipeline depth (p)
to take any value makes it more difficult to divide the number of iterations
between blocks. When n is not a multiple of p, each block cannot perform the
same number of iterations. We address this challenge by adding an extra iteration
to the first n mod p pipeline blocks. This leads to n mod p blocks computing
�n/p�+ 1 iterations, and (n − n mod p) blocks computing �n/p� iterations.

Inside a pipeline block, in order to allow the number of replications (r) to take
any value, the result can be extracted from any CSA. This solution deals with
the case when the number of iterations the cell has to perform is not a multiple
of the number of replications.

Consider Challenge 3. A flexible pipeline control is implemented. This control
deals with the updates of two types of registers: the registers between blocks and
the triangular register array. The register triangular structure consists of arrays
of registers controlled as FIFO queues. The inputs enter all the FIFOs at the
same time when the done signal of the very first cell is triggered. The element
at the head of the FIFO of a given cell leaves the queue when the corresponding
cell has finished using it, that is when its done signal is triggered. In practice,
extra registers store the position of the first empty slot in each FIFO, acting
as pointers. When an element leaves the FIFO, the FIFO registers are updated
accordingly (register i takes the value of register i + 1) and the corresponding
pointer is decremented by 1. When an element enters the FIFO, the register
indexed by the pointer is updated with the value of this element and the pointer
incremented by 1.

Inside a pipeline block, the control logic manages the extraction of the result
from the correct CSA, depending on the number of replications chosen and the
number of iterations this particular block has to perform.

Let us consider an example summarizing this section with n = 1024, p = 5
and r = 7. As �n/p� = 204 and n mod p = 4, the first 4 pipeline blocks compute
204 + 1 = 205 iterations and the last one computes 204 iterations. Our flexible
pipeline control deals with this issue. Inside each block, we want 7 replications.
In the first 4 pipeline blocks, we loop through the 7 CSAs 30 times (�205/7�).
The result is extracted from CSA number 2 (205 mod 7) after the last iteration.

74 A. Le Masle et al.

In the last pipeline block, we loop through the 7 CSAs 30 times (�204/7�). The
result is extracted from CSA number 1 (204 mod 7) after the last iteration. This
complex behaviour is managed by the control logic of each pipeline block.

Application to Modular Exponentiation. We use our modular multiplier
to design a parametric hardware implementation of Alg. 1. The exponentiator
uses the pipelining and replication capabilities of the multiplier description.

Two main problems have to be solved for this design to be efficient in terms of
speed and area. First, the multiplier has to be optimally pipelined. We can show
that the number of pipeline stages of the multiplier giving best performance for
use with the exponentiator is equal to two. This is due to the fact that in Alg 1,
Pi+1 depends on Pi and Zi+1 depends on both Pi and Zi. If we use more than
two pipeline stages, the multiplier’s pipeline cannot be kept full due to these
data dependencies.

Second, integrating our multiplier in a bigger design can reduce its running
frequency due to critical path problems. The latency of the adders and subtrac-
tors used in the multiplier would become a bottleneck for large bit-widths. To
reduce the critical path, all the ripple-carry adders and the subtractors can be
pipelined with any depth.

The design of our exponentiator is represented in Fig. 3. It has three main
parameters: the number of multiplier’s pipeline stages, the number of replications
for the multiplier’s pipeline cells, and the pipeline depth of the adders/subtractors.
At each iteration, the current values of P and Z are stored in a RAM. The con-
trol logic manages the inputs to give to the multiplier and the data to write
back. It also controls the multiplier.

Application to Primality Testing. We design a parametric Rabin-Miller
prime tester based on both our multiplier and our exponentiator. The challenge
is to use these two modules optimally, while keeping the design simple.

To save area, one single multiplier is shared by the exponentiator (to per-
form the multiplications needed to compute ad mod p) and the prime tester
(to perform the consecutive modular multiplications needed to compute the
a2jd mod p). To improve the speed of the prime test, the exponentiator takes
full advantage of the pipelining and replication features of the multiplier. How-
ever, it is not worth using the pipeline of the multiplier for the calculation of the
a2jd mod p. It can be shown that the mean value of r in Alg. 3 is equal to two
and that on average the multiplier is only used once directly by the prime tester
at each iteration. Pipelining the computation of the a2jd mod p would therefore
make the design more complex with almost no performance benefit.

A diagram containing the important blocks, signals and connections of the
prime tester is presented in Fig. 4. The values of the first prime numbers are
stored in a ROM. At each iteration, the control logic selects the prime to use
for the test and the inputs to give to the multiplier, to the comparator and to
other intermediate registers. The control logic contains the state machine of the
prime tester which controls the multiplier and the exponentiator.

Parametric Encryption Hardware Design 75

Fig. 3. Montgomery exponentiator

Fig. 4. Rabin-Miller prime tester

4 Results

Our three designs are implemented in Verilog. We synthesize our designs with
Xilinx ISE 11.1 for Xilinx Virtex-5 FPGAs with “speed” as the optimisation
mode and “normal” as the optimisation level. The results for the area and the
maximum clock frequency are those given by the synthesis operation. When
comparing the reported performance with other implementations, one should
take into account that they do not all target the same FPGA. These results
only give an idea of how our implementations perform compared to the best

76 A. Le Masle et al.

implementations in the literature. However, the scalability results are made ac-
curate by implementing our designs on the same FPGA for most values of r
and p.

Multiplier. Table 1 compares the execution time of our multiplier with other
implementations for n = 1024 bits. For the software version, we report the mean
and the standard deviation (σ) of the execution time for one million multiplica-
tions of random numbers. The execution time of our hardware multiplier only
depends on p, r and the clock frequency. Our multiplier without any pipelining
and replication is faster than most existing implementations with a runtime of
4.28 μs. It is also faster than the software implementation of modular multi-
plication using the very optimised GMP library on an Intel Core 2 Duo E7400
running at 2.8 GHz. For p = 8 and r = 8, our multiplier is 8 times faster than the
best existing hardware implementation and 30 times faster than the optimised
software implementation. We can still get better performance by increasing r
and p if we target an FPGA with enough available area. Our design scales as
the device scales and can therefore adapt to future FPGA families.

The results of Tab. 1 also show how our multiplier scales with p and r. Keeping
r constant, when p doubles (from 1 to 2), the execution time is halved with 85%
area overhead. This area overhead is less than 100% as the area of the adder
and subtractor required at the output of the pipeline is not negligible, especially
for small values of p and r. Keeping p constant, by increasing r from 1 to 4 a
speedup of 2.5 times is achieved with less than 80% area overhead. Increasing
the number of replications is less area-consuming than increasing the number
of pipeline stages as a smaller part of the basic cell is duplicated. However, the

Table 1. Performance comparison of 1024 bit multipliers

Design Device
Clock Area Ex. Time
(MHz) (LUT-FF pairs) (μs)

Our design (p = 8, r = 8) XC5VLX330T-2 99.13 206 982 0.18

Our design (p = 2, r = 8) XC5VLX110T-3 110.98 59 337 0.59

Our design (p = 2, r = 4) XC5VLX110T-3 149.55 42 429 0.87

Our design (p = 1, r = 8) XC5VLX110T-3 102.63 31 925 1.27

Tang [13] XC2V3000-6 90.11 N/A 1.49

Our design (p = 1, r = 4) XC5VLX110T-3 150.23 20 593 1.72

Our design (p = 2, r = 1) XC5VLX110T-3 226.31 23 436 2.28

Our design (p = 1, r = 1) XC5VLX110T-3 239.74 13 671 4.28

GMP 4.2.4 [1] Intel Core 2 Duo
2800 N/A

mean: 5.45
mpz mul/mpz mod E7400 σ: 0.53

Oksuzoglu [11] XC3S500E-
119 6 906 7.62

(1020 bit) 4FG320C

McIvor [8] XC2V3000 75.23 23 234 13.45

Daly [6] XCV1000 55 10 116 18.67

Amanor [9] XVC2000E-6 49 8 064 21.00

Parametric Encryption Hardware Design 77

Table 2. Time-Area products normalised to our design for 1024 bit multiplication

Design
Area

Clock Cycles Time × Area
(LUT-FF pairs)

McIvor [8] 23 234 1025 6.08

Daly [6] 10 116 1027 2.65

Amanor [9] 8 064 1027 2.11

Oksuzoglu [11]
6 906 907 1.60

(1020 bit)

Our design (p = 2, r = 8) 59 337 66 1.00

increase in speed is less substantial due to the negative effect of replication on
the maximum frequency.

Table 2 compares implementations in terms of the Time × Area product.
For p = 2 and r = 8 our multiplier ranks first. It is interesting to see that
(p, r) = (2, 8) is a design point favouring speed over area. Our design benefits
mainly applications with high speed requirements and large area available.

Exponentiator. Table 3 compares the execution time of our exponentiator
with other implementations for n = 1024 bits. The pipeline depth of all ripple-
carry adders and all subtractors is fixed to 8 in order to reduce the critical
path. For the software version, we also report the mean and standard deviation
for one million exponentiations of random numbers. For p = 2 and r = 8, our
implementation running at 97.9 MHz is 2.4 times faster than the optimised
software implementation using the GMP library on an Intel Core 2 Duo E7400
running at 2.8 GHz. Our exponentiator can also reach the speed of the best
Montgomery modular exponentiator in the literature which uses DSP operations.

Prime tester. Table 4 compares the execution time of our prime tester with
other implementations for n = 1024 bits. The pipeline depth of all ripple-carry

Table 3. Performance comparison of 1024 bit exponentiators

Design Device
Clock

Area
Ex. Time

(MHz) (ms)

Suzuki [12]
XC4VFX12-

200/400
7 874 LUT-FF +

1.71
10SF363 17 DSP48

Our design (p = 2, r = 8) XC5VLX110T-3 97.9 65 200 LUT-FF 1.74

Tang [13] XC2V3000-6 90.11
14 334 slices +

2.33
62 multipliers

Our design (p = 2, r = 2) XC5VLX110T-3 145.66 28 008 LUT-FF 3.88

GMP 4.2.4 [1] Intel Core 2 Duo
2800 N/A

mean: 4.23
mpz powm E7400 σ: 0.12

Oksuzoglu [11] XC3S500E-
119

6 906 LUT-FF +
7.95

(1020 bit) 4FG320C 20 multipliers

Our design (p = 1, r = 2) XC5VLX110T-3 135.9 17 414 LUT-FF 8.14

Blum [3] XC4000 45.7 13 266 LUT-FF 11.95

78 A. Le Masle et al.

Table 4. Performance comparison of 1024 bit prime testers

Design Device
Clock Area Ex. Time
(MHz) (LUT-FF) mean/σ (ms)

Ours (p = 2, r = 8) XC5VLX110T-3 86.7 64 817 2.01/0.741

Ours (p = 2, r = 4) XC5VLX110T-3 87.1 41 970 3.54/1.31

GMP 4.2.4 [1] Intel Core 2 Duo
2800 N/A 4.33/1.82

mpz millerrabin E7400

Ours (p = 1, r = 4) XC5VLX110T-3 87.1 31 538 6.81/2.51

Ours (p = 2, r = 2) XC5VLX110T-3 87.0 30 892 6.64/2.45

Ours (p = 1, r = 1) XC5VLX110T-3 87.1 22 346 25.3/9.32

Cheung [5] (non-scalable design) XC3S2000 6.1 40 262 171.45/

Cheung [5] (scalable design 32 PE) XC3S2000 25.6 18 566 2235.08/

Cheung [5] (scalable design 8 PE) XC3S2000 26.5 5 684 6338.95/

adders and all subtractors is also set to 8. Unlike our other designs, the execution
time of the prime tester depends on the number under test. We choose 10 000
random numbers and use them for all the experiments. We report the mean and
the standard deviation. For p = 1 and r = 1, our prime tester is 6.8 times faster
than Cheung’s non scalable design and takes 1.8 times less area. It is 88 times
faster than the fastest scalable design from [5] with only 20% area overhead. For
p = 2 and r = 8, our design running at 86.7 MHz is 2.2 times faster than the
GMP implementation on an Intel Core 2 Duo running at 2.8 GHz. It is 85 times
faster than Cheung’s non scalable design and only takes 1.6 times more area.

Our multiplier, our exponentiator and prime tester descriptions cover a huge
design space. The exponentiator and the prime tester scale with p and r the same
way as the multiplier except from one point: their speed cannot be increased by
using more than two multiplier’s pipeline stages as shown before. However, once
this threshold is reached, increasing the number of replications remains relevant
in order to increase the speed of these two designs.

5 Conclusion and Future Work

This paper presents a new parametric Montgomery multiplier design with vari-
able pipeline stages and variable serial replications. It is 8 times faster than the
best existing hardware implementation and 30 times faster than an optimised
software implementation on an Intel Core 2 Duo running at 2.8 GHz. We design
a modular exponentiation module based on our multiplier. It is 2.4 times faster
than the optimised software implementation and reaches the performance of a
more complex FPGA implementation using DSP blocks. A Rabin-Miller prime
tester gathering the strengths of our modular multiplication and exponentiation
modules is presented. It is 2.2 times faster than the software implementation
and is 85 times faster than hardware implementations of the same algorithm
with only 60% area overhead. Our three designs are scalable and their perfor-
mance are only limited by the device used. As FPGAs are growing steadily, the

Parametric Encryption Hardware Design 79

parametric nature of our modules enables them to fully explore the design space
available in any current and future project.

Current and future work includes extending our replication and pipelining
methods to the exponentiator and the prime tester, making our parametric
multiplier capable of reaching the very low-area end of the design space and
developing tools that automate our replication and pipelining approaches.

Acknowledgments. The support of UK EPSRC and BlueRISC is gratefully
acknowledged.

References

1. Gmp library manual, http://gmplib.org/manual/
2. RSA Labs article on RSA security,

http://www.rsa.com/rsalabs/node.asp?id=2004

3. Blum, T., Paar, C.: High-radix Montgomery modular exponentiation on reconfig-
urable hardware. IEEE Trans. Comput. 50(7), 759–764 (2001)

4. Bunimov, V., Schimmler, M., Tolg, B.: A complexity-effective version of Mont-
gomery’s algorithm. In: Workshop on Complexity Effective Designs (2002)

5. Cheung, R., Brown, A., Luk, W., Cheung, P.: A scalable hardware architecture for
prime number validation. In: IEEE Int. Conf. on Field-Programmable Technology,
pp. 177–184 (2004)

6. Daly, A., Marnane, W.: Efficient architectures for implementing Montgomery mod-
ular multiplication and RSA modular exponentiation on reconfigurable logic. In:
ACM Symp. on FPGAs, pp. 40–49 (2002)

7. Fry, J., Langhammer, M.: RSA & Public key cryptography in FPGAs. CDC (2003)
8. Mclvor, C., McLoone, M., McCanny, J.: Fast Montgomery modular multiplication

and RSA cryptographic processor architectures. In: 37th Asilomar Conf. on Signals,
Systems and Computers, vol. 1, pp. 379–384 (2003)

9. Narh Amanor, D., Paar, C., Pelzl, J., Bunimov, V., Schimmler, M.: Efficient hard-
ware architectures for modular multiplication on FPGAs. In: Int. Conf. on Field
Programmable Logic and Applications, pp. 539–542 (2005)

10. Nedjah, N., de Macedo Mourelle, L.: A review of modular multiplication methods
and respective hardware implementation. Informatica 30(1), 111–129 (2006)

11. Oksuzoglu, E., Savas, E.: Parametric, secure and compact implementation of RSA
on FPGA. In: Int. Conf. on Reconfigurable Computing and FPGAs, pp. 391–396
(2008)

12. Suzuki, D.: How to maximize the potential of FPGA resources for modular expo-
nentiation. In: Workshop on Crypt. Hardware and Emb. Sys., pp. 272–288 (2007)

13. Tang, S., Tsui, K., Leong, P.: Modular exponentiation using parallel multipliers.
In: IEEE Int. Conf. on Field-Programmable Technology (FPT), pp. 52–59 (2003)

http://gmplib.org/manual/
http://www.rsa.com/rsalabs/node.asp?id=2004

	Parametric Encryption Hardware Design
	Introduction
	Background
	Design Flow
	Results
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

