
Exploring Algorithmic Trading in Reconfigurable Hardware

Stephen Wray, Wayne Luk, Peter Pietzuch
Department of Computing, Imperial College London

London, United Kingdom
{sjw06,wl,pp}@doc.ic.ac.uk

Abstract—This paper describes an algorithmic trading en-
gine based on reconfigurable hardware, derived from a soft-
ware implementation. Our approach exploits parallelism and
reconfigurability of field-programmable gate array (FPGA)
technology. FPGAs offer many benefits over software solutions,
including a reduction in latency, while increasing overall
throughput and computational density. All of which are im-
portant attributes to a successful algorithmic trading engine.
Experiments show that the peak performance of our hardware
architecture for algorithmic trading is 133 times faster than the
corresponding software implementation. Six implementations
can operate simultaneously on a Xilinx Vertex 5 xc5vlx30 FPGA
on average, maximising performance and available resource
usage.

Keywords-Algorithmic Trading; Reconfigurable Hardware;

I. INTRODUCTION

Electronic trading enables trades to be completed in a
virtual environment by computers with orders being com-
municated across computer networks. This revolution started
in the 1970s and by 2007, 60% to 70% of the volume
traded on the New York Stock Exchange (NYSE) was done
so electronically [1]. In 1961, the average daily traded
volume on the NYSE was four million, however by January
2001, daily volume was already topping two billion trades
a day [2].

The increase in electronic trading had a large effect
on how the equity markets reacted and systems designed
to operate in these environments had to possess certain
attributes to be successful:

• Orders now take a fraction of the time they previously
took to reach the market, reduced from minutes to
milliseconds, making system latency critical.

• Trading volume increased due to a decrease in cost,
requiring systems to be able to handle large amounts
of throughput.

• Market spread (price difference) shrank as a direct cor-
relation to the increase in volumes and competitiveness,
requiring investors to trade more frequently.

Algorithmic trading engines trade large quantity orders
over a set amount of time. They can be described as complex
event processors, consuming real-time market information,
making decisions on this information and their internal state.
The requirement for high throughput and low latency was
realised in [3] for equity trading and CEP.

These attributes align with those that reconfigurable hard-
ware provides making it an ideal solution, it has previously
been discussed in some detail [4], but also explains why
there hadn’t been much market penetration. Some of those
issue have now been solved and our approach maps a
selection of algorithms into reconfigurable hardware to take
advantage of these qualities. We have used a software
solution to provide a comparison against our results. The
contributions of this paper include the following:

• An introduction to algorithmic trading and the specifics
examined in this paper; in Section II.

• An algorithmic trading architecture based on reconfig-
urable hardware that processes available information to
decide whether an order should trade; in Section III.

• Implementation details and initial results from the
hardware architecture proposed, compared against a
comparative software implementation; in Section IV.

• Evaluation of the proposed approach and comparison
with a related software solution, illustrating its poten-
tial; in Section V.

Currently, Credit Suisse has a joint venture with Celoxica
to use reconfigurable hardware in their electronic trading
systems [5], showing that these technologies are used in
industry. Academic research on this subject has been lim-
ited however. One study [6] which is particularly relevant
explores parsing market data feeds directly from a network
interface in hardware. The study found that the hardware
implementation could process 3.5 million updates per sec-
ond, or roughly 12 times the current real-world maximum
rate as well as improved latency.

II. ALGORITHMIC TRADING

Algorithmic trading is concerned with taking a large
quantity order and breaking it up into multiple, much smaller
orders, before sending them to market throughout the trading
day [7]. This minimises market impact and achieves a
consistent price which is less dependent on varying market
conditions. Equity orders trade shares (stock) in a company
which has a varying value dependent on the companies per-
formance, the industry and global economics. The algorithm
design determines when smaller orders are created and what
quantity of shares they have depending on market conditions,
internal parameters and state.



Figure 1. The Participate algorithm trading volume over a trading day
compared to total market volume.

We looked at three trading algorithms, each with its own
benchmark to beat. The benchmarks are documented and
used in industry, measuring the performance of prices over
time. Each captures a slightly different approach, we will
only examine one algorithm in this paper, Participate as this
is the most concise.

Participate [8], aims to trade a percentage against the total
market activity. The average price of executions as shown
in equation (1), is used as the price comparison benchmark.
The total market volume decides the amount to trade.

AP =
∑n

t=0 Pt

n
(1)

Where Pt is the price executed at time t and n is the total
number of prices seen. Figure 1 shows how a Participate
traded order trades over a full trading day, aiming to be 5%
of the traded market volume. It shows that the majority of
trading happens at the start and end of the trading day.

Threshold Trading [8] is used to help increase the price
performance [9] by giving the algorithm the ability to trade
ahead or behind its predetermined target. This was based on
an attractiveness function of the current market state which
effects the size of a child order (a sub-order of the main order
or parent order). A parameter limits this effect to prevent a
large deviation from the original target.

System Overview, figure 2 shows a high-level overview of
an algorithmic trading engine. The two inputs are orders
and market data updates. An underlying order manager
maintains the orders and handles communication between
other systems. The algorithms take the orders and their state
with market updates and calculate whether specific orders
should trade [10]. Returning the parameters for the new child
order to be created. In this paper we map the implementation
of the algorithms into hardware.

III. HARDWARE ARCHITECTURE

This section covers the system architecture of the algo-
rithmic trading engine described in Section II. We will cover

Algorithmic
trading engine

Parent orders

Child orders

Create

Algorithms

Orders

Downstream
(markets)

Send

Decision

Upstream
(clients)

New

Market data
source

Updates

Figure 2. Process diagram for the algorithmic trading engine, depicting
parent order input and child order output. Market data updates are supplied
from a source which updates algorithm state.

the most specific parts of the hardware architecture.

Equity order and market updates are modelled in the
system as a collection of parameters, such as the side of
the order, the quantity and information that is specific to the
algorithm trading them. Market updates have information
about its symbol, the price and quantity for the entries.

Trading on Market Updates, orders can be traded on
market data updates. If the price is favourable then it
would be beneficial to trade the order ahead to achieve a
better price. A price metric is used as a comparison, with
the difference between the actual and theoretically traded
volumes. The actual volume is how much the order has
already traded and theoretical volume is what the order
should have traded without threshold trading. If the market
metric is positive then the market is favourable and the order
should trade to improve its price. The amount to trade is
normalised to prevent the order exiting trading boundaries
and parameters governing the size of child orders before
being sent.

Trading on Events, alternatively orders can be traded on
events, Participate events are executions. The event updates
algorithm state, which might allow orders to trade. The
amount to trade is calculated from the order parameters,
this is normalised and checked against boundaries and pa-
rameters, the only exception is when the remaining volume
is less than any lower quantity allowed. This then allows the
order to completed. If the market is unfavourable then the
amount to trade can be reduced before being sent.

Market Favourability, is calculated against the price metric
that the algorithm uses. The entries on the market are



compared to the price metric and a weighted sum is taken
over the entries after the comparison. If the price metric is
greater than an entry, then that entry is favourable. If the
entries start favourably then the market is favourable and
unfavourable entries are discarded.

Parallel Processing, the hardware architecture supports
three forms of parallelism, task-level, pipeline parallelism
and expression evaluation parallelism. Placing multiple algo-
rithms on a single device will result in task-level parallelism.
Pipeline parallelism is used extensively when processing
orders or entries in a market data update, as this information
is independent. Expression evaluation parallelism is utilised
to reduce the number of cycles required for calculations on
data where results are independent, such as calculating the
child order quantity. One trade-off a long parallel pipeline
is increased clock speed and power consumption [11], how-
ever this would increase latency, which is undesirable and
therefore the designers need to make a trade-off.

Reconfigurability, our hardware architecture makes use of
arrays of registers for performance. This aids parallelism but
the array sizes have to be determined at compile time. Our
solution is to allow batch processing, the array size is set to
the batch size which determined at compile time. Orders and
entries are processed in batches until complete. A trade-off
exists between the batch size and the number of algorithms
placeable on a single device.

IV. IMPLEMENTATION AND RESULTS

The hardware implementation was developed in Handel-
C [12], the hardware development environment used was
Mentor Graphics DK Design Suite 5.2. This compiled
the Handel-C into Electronic Design Interchange Format
(EDIF), allowing Xilinx ISE Webpack 11.1 to place and
route the design on the target chip, in this case the Xilinx
Vertex 5 xc5vlx30.

The software implementation was developed in C++, the
software development environment used was Eclipse with
the CDT plug-in to aid C++ development. The compiler g++
4.2.1 on Mac OS X 10.6.3 was used with full optimisation
enabled. The host machine was a 2.33GHz Core 2 Duo with
3GB of 667MHz DDR2. All software tests where executed
multiple times to produce and avoid any skew in the results
from the operating system prioritising other processes on
some test runs.

Hardware Results, using our implementation we can calcu-
late the number of cycles required to complete tasks, this is
possible because only a small set of statements in Handel-C
consume a clock cycle. For the purpose of our performance
analysis we set the batch sizes for both order and update
entry processing to 10. The top half of table I shows the
results for these calculations.

Table I
NUMBER OF CYCLES REQUIRED FOR THE THREE MAIN ACTIVITIES AND

THEORETICAL MAXIMUM PERFORMANCE ON UPDATES AND ORDERS
PROCESSED PER SECOND.

Calculation Participate Algo

Cycles for Update Handling 31

Cycles for Event Handling 41

Cycles for Market Metric Calculation 13

Max Updates per Second 25,900,000

Max Orders per Second 341,000,000

Table II
RESOURCE USAGE FOR THE ALGORITHM WHEN PLACED AND ROUTED

ON A XILINX VERTEX 5 XC5VLX30 FPGA.

Resource Usage Participate Algo xc5vlx30

Slice Logic Utilization Used Available

Number of Slice Registers 544 19,200

Number of Slice LUTs 1,732 19,200

Number of Occupied Slices 619 4,800

Number of Bonded IOBs 4 220

Number of BUFG/BUFGCTRLs 1 32

Number of DSP48Es 4 32

Number of Route-Thrus 88 -

Number of LUT Flip Flop Pairs 2,004 -

Number of Engines 7 -

The implementation was placed and routed by Xilinx’s
ISE which produces details on the resource usage for the
specific device. Table II shows how many implementations
of an algorithm the Xilinx Vertex 5 xc5vlx30 chip can
support with its total 4,800 logic slices available, algorithms
can be placed multiple times concurrently on a single chip.
The xc5vlx30 has a realistic maximum is 6 algorithms,
performance may be impacted with any more. The number is
calculated by dividing the usage by the availability for each
resource and then taking the minimum value produced. We
will allow for 6 algorithms to be used simultaneously to
calculate total maximum performance of the device.

Xilinx ISE also provides the Critical Path Delay (CPD)
of the system, from which we can derive the theoretical
maximum clock speed. In this case the CPD calculated is
1.765ns which equates to 566.6MHz. This is very high and
it is unlikely that the device would be run at this speed, a
more realistic clock speed would be 200MHz which we will
assume as the device’s configuration. With the clock speed
we can calculate the estimated performance of the device
with our previous information on the number of clock cycles
required. The bottom half of table I shows the throughput
of the implementation at this speed.

Software Results, the software implementation was tested
on the development machine. The test market updates and
orders where a simple selection of parameters which were



repeatedly fed into the process for testing. The tests used the
same batch size of 10 and the average execution time was
30ms executing on a single processor. With the prevalence
of multi-core processors, running multiple instances of the
system would result in near linear scaling of performance.
For a dual-core processor, doubling performance and a quad-
core processor, quadrupling performance.

The software results found that the maximum number of
updates processed per second was 139,000 per process. On
the dual-core test machines the result was double, at 279,000
updates per second.

Comparison. The hardware must run at a frequency which
will provide greater performance than the software to give
reason for using a hardware implementation. Using the
software results and our information on the number of cycles
the calculations require, when can calculate the intersection
point at which the hardware will eclipse the software per-
formance. The result is 2.5MHz which is low given the
theoretical maximum clock speed. This means that there
is plenty of headroom for additional functionality which
would be required in a production system and possible to
see significant performance gains.

V. CONCLUSION

In this paper we have proposed an implementation of
algorithms for trading equity orders in reconfigurable hard-
ware and compared it to its software implementation. We
have evaluated the performance and found it to be supe-
rior, increasing maximum throughput. In addition we have
looked at the size of the implementation and the number of
algorithms that can concurrently be placed on a chip. This
makes the implementation more cost effective, flexible and
increases performance further.

The hardware is approximately 133 times faster at
200MHz than the equivalent software using 6 instances on a
chip. More complex algorithms would be expected to show
similar gains over their software counterparts. Floating and
fixed point arithmetic needs to be investigated and its trade-
off between accuracy and performance.

A limitation of the hardware is in supporting a large
number of differing algorithms, possible solutions are run-
time reconfiguration, use of larger capacity or additional
chips.

Further Work. There is a large scope for further work
in this area, a power consumption comparison between the
implementations should also provide compelling reason for
a system of this nature to be used in industry. Other possi-
bilities include a high-level language to describe algorithms,
validation of algorithms and moving more of the software
into hardware.

ACKNOWLEDGMENT

We would like to thank Qiang Liu and Tim Todman at
Imperial College London for their help with the Mentor
Graphics DK Design Suite and Xilinx ISE. Additionally we
would like to thank the three anonymous reviewers for their
invaluable feedback that enabled this paper to be improved.

REFERENCES

[1] R. Martin, “Wall Street’s quest to process data at the speed
of light,” Information Week, Apr 2007.

[2] NYSE, “http://www.nyse.com/,” nyse.com, 2010.

[3] M. Migliavacca et al., “High-performance event processing
with information security,” Imperial College London, Tech.
Rep., 2010.

[4] Automatedtrader.net, “FPGA’s - Parallel perfection?” Auto-
mated Trader Magazine Issue 02, July 2006.

[5] I. Schmerken, “Credit Suisse hires Celoxica for low-latency
trading and market data,” FinanceTech, Nov 2009.

[6] G. Morris, D. Thomas, and W. Luk, “FPGA accelerated low-
latency market data feed processing,” in High Performance
Interconnects, 2009, Aug. 2009, pp. 83–89.

[7] Wikipedia, “http://en.wikipedia.org/wiki/algorithmic trading,”
wikipedia.org, 2010.

[8] Automatedtrader.net, “Scalable participation algorithm,” Au-
tomated Trader Magazine Issue 10, Q3 2008.

[9] T. C. Group, “Algorithmic trading trends and drivers,” Tellef-
sen.com, Jan 2005.

[10] Hot Bridge, Product Overveiw, Hotbridge.co.uk.

[11] S. Bard and N. Rafla, “Reducing power consumption in
FPGAs by pipelining,” in Circuits and Systems, 2008.

[12] Handel-C Language Reference Manual, Mentor Graphics.


