
Combining Optimizations in Automated

Low Power Design

Qiang Liu, Tim Todman and Wayne Luk

Department of Computing, Imperial College, London SW7 2AZ, UK

Email: {qiang.liu2, timothy.todman, w.luk}@imperial.ac.uk

Abstract—Starting from sequential programs, we present an
approach combining data reuse, multi-level MapReduce, and
pipelining to automatically find the most power-efficient designs
that meet speed and area constraints in the design space on Field-
Programmable Gate Arrays (FPGAs). This combined approach
enables trade-offs in power, speed and area: we show 63%
reduction in power can be achieved with 27% increase in
execution time. Compared to the sequential designs, our approach
yields designs with up to 158 times reduction in execution time.
Moreover, for a given execution time, our combined approach
generates designs using up to 1.4 times less power than those
produced by the same optimizations applied separately and can
also find solutions missed by separating the optimizations.

I. INTRODUCTION

We aim to combine power and performance optimisation in

a single approach. Given a sequential design description, our

approach explores the design space, finding the most power-

efficient design meeting user speed and area goals. This allows

trade-offs in power consumption, speed and area. Although we

use a simple power model, the approach is modular enough

to allow a more accurate model to be substituted.

The approach combines three optimisation techniques: data

reuse, multi-level MapReduce and pipelining. We identify

connections between these techniques and formulate the low

power design space exploration in a Geometric Programming

(GP) [1] model, which uses the techniques to meet user

goals with the lowest power cost. The approach also applies

straightforward transformations to 1) transform the input to

suit the GP model; and 2) apply further optimisations after

exploring the design space based on the GP model.

We compile from C input to Handel-C output description;

however, our approach can adapt to other descriptions.

The contributions of this work are:

• An approach automating the generation of the lowest

power design meeting user area and speed goals in the

design space using a proposed experimental power model;

• A GP model exploring the design space combining data

reuse, multi-level MapReduce and pipelining; and

• Evaluation on three real applications, showing that power-

efficient designs can be determined under different con-

straints, and up to 1.4 times power reduction over separate

optimisations can be achieved.

II. BACKGROUND

Various techniques for power optimisation have been in-

vestigated [2]. To our knowledge, there is no tool currently

available that can perform these optimizations automatically.

In [3] code transformations from floating-point to fixed-

point and polynomial approximation of arithmetic operations

are automated to optimise system power consumption in an

embedded system. Loop transformations such as loop peeling,

loop fusion, etc., have been used in [4]; results show that

these transformations alone do not significantly impact power

consumption of a microprocessor system. Matsumura et al. [5]

propose a new memory structure for low power embedded

system design with two partitions: dynamic power dominated

and static power dominated. The problem is formulated as

a nonlinear program and solved using a heuristic algorithm.

Data reuse exploration for power optimisation in FPGA-based

system is carried out in [6] and is formulated as a multi-

choice knapsack problem. However, these approaches require

pre-processing of input code to work well.

In this paper, we use multiple transformations to automate

the generation of a low power design. Unlike previous ap-

proaches, our approach reduces system power by combining 1)

straightforward transforms, such as loop merging, and 2) de-

sign space exploration of more complex optimizations: data

reuse, pipelining and multi-level MapReduce. Our approach

can be extended to support further transforms.

a) Data reuse: [7], by buffering frequently used data

in local memories, it significantly reduces off-chip memory

accesses and thus reduces off-chip power consumption for

data dominated applications. Our approach involves on-chip

scratch-pad memory buffers [8], resulting in multiple data

reuse options for each array reference: when, where and

which elements of each array are buffered on-chip. Different

options have different impacts on system power consumption

and require different on-chip memory resources. In addition,

buffered data can distribute across multiple on-chip dual-port

memory banks, increasing memory bandwidth. Data reuse is

constrained by the on-chip memory size.

b) Pipelining: [9], [10], widely used to improve system

throughput, can also reduce dynamic power, since pipelined

circuits suffer fewer glitches [11]. Data dependence, memory

and computation resources constrain the initiation interval of

pipelining and thus the execution schedule.

c) MapReduce: [12], [13] is a technique widely used to

improve parallelism of large-scale computations. It partitions

the computation into two phases: first, theMap phase, in which

the same computation is performed independently on multiple

data elements; second, the Reduce phase, calculating the final

978-3-9810801-6-2/DATE10 © 2010 EDAA

Do x = 0, N-1

Do y = 0, M-1

Do i = -1, 1

Do j = -1, 1

sumx=sumx+Image[f1(x,y,i,j)]*maskx[f2(i,j)];

Do i = -1, 1

Do j = -1, 1

sumy=sumy+Image[f1(x,y,i,j)]*masky[f2(i,j)];

Out[x][y]=f3(sumx, sumy);

..
.

(a) Original code segment of Sobel

// OP1: loading(RI1, Image);

Do x= 0, N-1

// OP2: loading(RI2, Image);

Do y= 0, M-1

// OP3: loading(RI3, Image);

Do z= 0, 8

i=(z/3)-1; j=(z%3)-1;

reg=RI1~3 [f4(x,y,i,j)];

sumx=sumx+reg*maskx[f2(i,j)];

sumy=sumy+reg*masky[f2(i,j)];

Out[x][y]=f3(sumx, sumy);

..
.

(b) Code segment of Sobel after loop

merging and coalescing

Fig. 1. Sobel code example.

result by combining the results of the map phase with an

associative operator. We consider two-level MapReduce: e.g.

in the Map phase of outer loops the iterations of inner loops

are further MapReduced. This may allow designs to meet user

speed goals not met by pipelining and data reuse. MapReduce

is limited by memory bandwidth and computation resources.

These three techniques have not been used together before.

In this paper, we show that combining these techniques allows

a trade off between power consumption, speed and area.

III. TARGET PROBLEM

We aim to automatically transform and optimise a sequen-

tial, but possibly inefficient design to minimize the system

power consumption, while meeting user goals for speed and

area. To achieve this, we combine three optimisation tech-

niques: data reuse, pipelining, and multi-level MapReduce.

We observe that these optimisation techniques are inter-

related. Memory resources constrain all three techniques. Data

reuse, after duplicating buffered data across multiple memory

banks, can improve memory bandwidth, benefiting pipelin-

ing and MapReduce. Computation resources also constrain

pipelining and MapReduce. Therefore applying each technique

individually to the input code may not lead to the most power-

efficient design. Finally, we apply loop transformations, such

as loop merging and coalescing, to automate the composition

of the three techniques.

We illustrate the problem using the Sobel edge detection

algorithm. Fig. 1 (a) shows the original code fragment, with

four loop levels with two 2-level loops nested in the inner

levels and two references to array Image, assumed stored

in off-chip memory. Profiling shows that most elements of

Image are accessed more than once and the access pattern of

the two references to Image is the same; the only dependence

between iterations of loops x and y and loops i and j is

caused by the result Out and accumulation of sumx and

sumy, respectively. We can thus add on-chip buffers for array

Image and apply MapReduce so that the multiplications in

different iterations execute in parallel in the map phase; the

result output and accumulation execute in the reduce phase.

We first merge the inner two loop nests into one with i and
j and then coalesce them to loop z (Fig. 1 (b)), simplifying the

loop structure. Next, scalar replacement removes one reference

to array Image.

Following the data reuse approach [8], there are three data

reuse options (OP1–OP3) for array Image, as shown in

Fig. 1 (b). Each option OPj introduces an on-chip buffer RIj ,

loads data from the off-chip memory into RIj at a loop level

and replaces the array reference Image with RIj inside the

innermost loop. If the image size is 144× 176 pixels (8 bits),

the on-chip memory required and number of off-chip memory

accesses of options OP1, OP2 and OP3 are (202752 bits,

25344), (4232 bits, 76032) and (72 bits, 228096), respectively.

Larger on-chip buffers lead to fewer off-chip memory accesses

and thus lower off-chip power consumption; however, larger

on-chip buffers lead to higher on-chip power consumption.

Our approach finds which data reuse option gives the lowest

system power consumption.

We assume the off-chip memory has single access port.

After introducing buffers in on-chip memory banks and dupli-

cating data over multiple banks, memory bandwidth increases,

allowing MapReduce to apply. Since all three loops in Fig. 1

(b) are parallelizable, the data reuse options govern which

loop to partition. For example, if option OP2 is chosen,

only loops y and z can be parallelized, because the off-chip

memory accesses for loading RI2 exist in loop x. Furthermore,

since the buffered data are duplicated to increase memory

bandwidth, option OP1 requires a large buffer, decreasing the

number of duplications, given the fixed on-chip memory space,

and thus decreasing the number of parallel partitions of the

loop nest. It is also unclear which combination of data reuse

options and the number of parallel partitions of the loop nest

leads to a low power design with the required speed.

We simplify the problem, by only pipelining the innermost

loop. That is, either only the innermost loop z is pipelined, or it

is first partitioned into segments with all iterations in a segment

executing in parallel and then the sequential segments execute

in pipeline. Both MapReduce and pipelining are constrained

by computation resources. In the Sobel example in Fig. 1 (b), if

only two multipliers are available, then loop z could have two

design options: 1) parallelize loop z into five segments where

two iterations execute in parallel and then pipeline the five

segments with initiation interval two; 2) pipeline loop z with

initiation interval 1. The former could be faster, but consume

more power in parallelized logic, while the latter could be

slower but power efficient.

Combining options of data reuse, pipelining and MapRe-

duce can result in a large number of design options. In our

approach, we use a geometric programming (GP) model to

automatically explore this large design space.

IV. PROPOSED APPROACH

A. Overview

Fig. 2 shows our approach. The inputs are the initial, se-

quential design, and the user goals: speed and target hardware

platform. We first apply straightforward transformations to

turn the input code into a form expected by the analysis

toolbox; this simplifies the toolbox. Next, the analysis toolbox

maps the regular loop iteration space in the code onto a

Pre-transform

(Inlining, Prt->Array,

loop merge, loop

coalesce, RMD...)

Design exploration

and transforms

(data reuse,

MapReduce,

pipelining)

Analysis

toolbox

Parser

Initial design
Speed spec Platform spec

Power

efficient

design

Fig. 2. Overview of the proposed approach.

polytope space and determines data dependencies and memory

access patterns in the loops, for design space exploration.

First, the transformations enable code analysis and design

exploration. The transforms shown in Fig. 2, such as function

inlining and pointer dereference, reveal the data flow of the

input code. In the Sobel example in Fig. 1, loop merging

removes one reference to array Image and loop coalescing

reduces the number of loops, and thus reducing the number

of variables to be determined in design exploration.

The design exploration with combined optimisation tech-

niques is formulated as an optimisation problem with the

objective and constraint functions, whose globally optimal

solution gives the optimal design option. In this paper, the

design objective is low power, and user goals of speed and

platform hardware resources (area) form the constraints.

Finally, the output code is transformed according to the

solution. The final output design meets the design goals,

maintaining initial design behavior.

The next section shows the formulation of the low power

design exploration with data reuse, MapReduce and pipelining.

B. Formulation of design exploration

Without loss of generality, our approach presented in this

paper targets an FPGA-based platform with single-port off-

chip SRAM, assuming that each assignment in the code takes

one clock cycle. The formulation below can easily be extended

to deal with multiple off-chip ports and multiple clock cycle

execution of statements.

For a loop with N levels (I1, . . . , IN), where I1 is the

outermost loop and loop IN is the innermost loop, and R array

references Ai (1 ≤ i ≤ R), our problem is to choose: data

reuse options OPij for reference Ai; the number of parallel

partitions kl of loop l with Ll iterations; and the initiation

interval ii of the pipeline of loop N , so that the transformed

design is the most power-efficient meeting design goals. This

corresponds to the solution of the following problem P :

min
ρij∈{1,2}
1≤kl≤Ll

1≤ii

P(ρij , kl, ii)

subject to S(ρij , kl, ii) ≤ T (P)

Rf (ρij , kl, ii) ≤ Resf

for ∀ i = 1, . . . , R, j = 1, . . . , Ei,

l = 1, . . . , N, f ∈ F

where T and Resf are, respectively, the design execution time

specification and availability of each f of F kinds of resource.

As the on-chip embedded DSP and RAM blocks are scarce,

we prioritize saving DSP blocks and memory blocks. Boolean

variable ρij = 2 means data reuse option OPij is selected for

Ai; otherwise ρij = 1. Ei is the number of data reuse options

of array Ai. The system power consumption P, the execution

time S and the resource utilization R are formulated as follows.

Power model. Since the objective function includes the

power model, at this stage the model needs only to distinguish

different design options. Also, as static power is constant

on the same platform for different design options, we only

consider dynamic power; in the rest of this paper power means

dynamic power. We call the power consumed in off-chip

memory the off-chip power consumption, which is governed

by the off-chip memory access frequency. In contrast to [6],

the on-chip power must consider parallelization caused by

MapReduce. Therefore,

P = Poff + Pon

= Vdd × (Ioperating − Isleep) ×
#off accesses

cyc
+(P1 × #off accesses + P2 × #par + P3 × #dsp

+P4 × #bram × BW + P5) × freq (1)

where Vdd, Ioperating and Isleep are the working voltage,

working current and standby current of the off-chip SRAM,

found in the SRAM datasheet. #off accesses is the number of

off-chip memory accesses:

#off accesses =

R∑

i=1

Ei∏

j=1

ρ
log2Cij

ij (2)

ρij ∈ {1, 2}, 1 ≤ j ≤ Ei, 1 ≤ i ≤ R (3)

(Ei + 1)−1

Ei∑

j=1

(ρij) = 1, 1 ≤ i ≤ R (4)

where Cij is the number of cycles to load the on-chip buffer in

data reuse option OPij . Equation (4) ensures exactly one data

reuse option is chosen for each array reference. The execution

time model gives the number of execution cycles, cyc.
Parameters P1–P5 characterize on-chip power consumption:

IO, parallel logic, computation resources, on-chip RAM blocks

and other sequential logic, respectively; these components vary

across different design options. The parameters are constant

for each input design and can be obtained by experimenting

with designs on the target platform.

#par is the total number of partitions of the loop nest:

#par =

N∏

l=1

kl (5)

1 ≤ kl ≤ Ll, 1 ≤ l ≤ N (6)

kl

l∏

j=1

ρ −log2Ll

ij ≤ 1, 1 ≤ l ≤ N, 1 ≤ j ≤ Ei, 1 ≤ i ≤ R (7)

where loop l is partitioned into kl parallel segments. Inequal-

ity (7) links variables ρij and kl; loop l can only be parallelized

if the array references within its body have been buffered on-

chip prior to loop execution. Section III discusses an example

involving Sobel edge detection.

Similarly, the computation resources required are:

#dsp =

N∏

l=1

kl × xdsp (8)

1 ≤ xdsp ≤ Resdsp (9)

where xdsp is the number of on-chip DSP blocks used in

one loop nest partition. For simplicity, we assume that the

computation is inside the innermost loop; the formulation can

easily be extended to cover more general cases.

#bram is the total number of on-chip RAM blocks used:

#bram = d

R∑

i=1

Ei∏

j=1

ρ
log2Bij

ij (10)

where Bij is the number of on-chip RAM blocks required by

data reuse option OPij , and d is the number of duplications

of the buffered data used to increase the memory bandwidth.

We build a 2-level on-chip memory hierarchy: on-chip SRAM

and registers. When the outer loops of the loop nest are

parallelized, each on-chip SRAM bank is the local memory

for each loop partition. Then, the inner loops within each outer

loop partition are further parallelized; for these inner loop

partitions, each on-chip SRAM bank is the globally shared

memory and registers are used as local memory. Therefore

the number of data duplications in on-chip SRAM is:

d = ⌈
1

2

Wr∏

l=1

kl⌉ (11)

where Wr is the loop level containing the reduce statement,

and the loops from the outermost loop to loop Wr are

MapReduced. For example, in the Sobel code shown in Fig. 1

(b), Wr = 2 because the result output Out is within the second

loop y. The factor of 1

2
is because each on-chip dual-port

SRAM bank is accessed by two parallel partitions. BW is the

bitwidth of the on-chip memory.

Finally, freq is the design clock frequency. Formulation (1)

shows its effect on the five on-chip power components.

Execution time can be expressed as S = cyc/freq.
Therefore, we calculate cyc. For simplicity, we only apply

combined pipelining and MapReduce to the innermost loop

and MapReduce to outer loop levels; the formulation can

however be generalized. The execution cycle count of the

design comprises four parts:

cyc = cycs + cycin + cycr + #off accesses

The number of cycles taken by statements outside the inner-

most loop cycs is given by Equality (12), where statement s
among S statements is in loop level Ws and one partition of

cycs =

S∑

s=1

Ws∏

l=1

vl (12)

Llk
−1

l v−1

l ≤ 1, 1 ≤ l ≤ N (13)

loop l has vl = ⌈Ll/kl⌉ iterations defined in Inequalities (13).

The number of cycles taken by statements inside the inner-

most loop after two-level MapReduce and pipelining is:

cycin =
N−1∏

l=1

vl(vN × ii + Cdata +
I∑

i=1

di

+⌈log2 kN⌉ + notFull) (14)

Wdsp × x−1

dsp × ii−1 ≤ 1 (15)

RecII × ii−1 ≤ 1 (16)

BandW × kN × M−1

b × ii−1 + notAlign × ii−1 ≤ 1 (17)

Ridsp × x−1

dsp × d−1

i , 1 ≤ i ≤ I (18)

where ii is the pipelining initiation interval, constrained by

the computation resources in Inequality (15), data dependence

in Inequality (16) and memory bandwidth in Inequality (17);

Cdata is the number of cycles to read one datum from on-

chip RAM to registers.
∑I

i=1
di is the number of computation

cycles. There may be I (I ≥ 1) computation levels in

the data flow graph of the input code and the computation

cycles of each loop iteration comprises the execution cycles

of every level. The execution cycles di of computation level

i are given by Ridsp, the resource DSPs required in level i
and the allocated resource xdsp, defined in Inequalities (18).

⌈log2 kN⌉ is the number of cycles for the reduce phase using

a tree structure to reduce computation results, and the boolean

parameter notFull = 1 when the innermost loop is not fully

parallelized and one cycle is needed to accumulate results

from different partitions; otherwise notFull = 0. Wdsp in

Inequality (15) and BandW in Inequality (17) are defined

as the number of computation resource DSP and the memory

bandwidth required per iteration of the innermost loop. Mb is

the memory bandwidth available in accessing on-chip RAM.

The boolean parameter notAlign = 1 if data are unaligned

between storage and computation, as one extra access may

need to obtain requested data; otherwise notAlign = 0.
Lastly, the number of cycles cycr taken by the reduce phase

of the outer loop MapReduce is:

cycr =

Wr∏

l=1

vlkl or cycr =

Wr∏

l=1

vl log2

Wr∏

l=1

kl. (19)

These two expressions for cycr correspond respectively to

using a linear structure or a tree structure in the reduce phase.

Resource utilization is measured mainly in the on-chip

memory and embedded DSP blocks. The on-chip DSP block

and RAM utilization are given in Equations (8) and (10), so

the on-chip resource constraint R is defined in Inequalities (20)

and (21), where Recdsp and Recram are the number of on-chip

DSP blocks and RAM blocks available in the target platform.

N∏

l=1

kl × xdsp ≤ Recdsp (20)

d

R∑

i=1

Ei∏

j=1

ρ
log2Bij

ij ≤ Recram (21)

TABLE I
THE DETAILS OF THREE KERNELS.

Kernel kl Reference Option Bij Cij

1 ≤ k1 ≤ 144 OP11 13 25344

Sobel 1 ≤ k2 ≤ 176 Image OP12 1 76032

1 ≤ k3, k4 ≤ 3 OP13 1 228096

k1 = 1 current OP11 13 25344

ME 1 ≤ k2 ≤ 9 OP12 1 25344

1 ≤ k3, k4 ≤ 16 previous OP21 13 25344

1 ≤ k1 ≤ 64 A OP11 2 4096

MAT64 1 ≤ k2 ≤ 64 OP12 1 4096

1 ≤ k3 ≤ 64 B OP21 2 4096

Finally, we substitute P, S and R in the problem P with

the formulations above. All low case variables, except for

freq which is a real number, are integers, while capitals are

compile-time constants. We observe that the only item making

the problem P not a GP problem [1] is the logarithm in

Equation (14). However, ⌈log2kN ⌉ is constant in certain ranges
of kN . Therefore, the problem P can be seen as a piecewise

mixed-integer geometric problem (MIGP) in different ranges

of kN . The number of subproblems increases logarithmically

with kN . The MIGP can be solved by a branch and bound

approach using the GP solver as the lower bounding procedure.

V. EXPERIMENTAL RESULTS

We apply the framework to three kernels: multiplication of

two 64×64 matrices (MAT64), one search path of the motion

estimation (ME) algorithm [14] used in X264, and the Sobel

edge detection algorithm (Sobel) [15]. The execution time,

power and energy of the original design of these kernels with

no optimization are shown in the captions of Figs. 3, 4 and 5.

Table I shows details of these kernels. Our target platform is

an FPGA-based system with off-chip SRAM having a single

access port with two-cycle latency; all array references with

input data are stored in off-chip SRAMs. The three kernels

are implemented in Xilinx XC4VFX140 with 192 DSP48 and

552 dual-port RAM blocks. In this platform, we set the clock

frequency range 1 ∼ 100 MHz and execution time constraints

up to 158× speedup over the original designs. For ME and

Sobel the frame size is 144 × 176 pixels.

In our experiments, after initial transforms, the GP model

(1)-(21) is applied to the three kernels to find data reuse

options, MapReduce pattern and pipelining schemes, giving

the lowest power design meeting the speed requirement.

Solutions of the GP model under different speed specifica-

tions are shown in Figs. 3, 4 and 5 in downward-pointing

triangles for the three kernels. Each design is represented

by (OPij1≤i≤R
, kl1≤l≤N

, ii, freq), the GP solution. For ex-

ample, in Fig. 3, the most power-efficient design for So-

bel edge detection with execution time within 0.51 ms is

(OP11, 4, 11, 1, 1, 100), i.e. the first data reuse option as shown
in Table I is selected for the array Image, the first (outermost)

loop is partitioned into 4 parallel segments, the second loop

is partitioned into 11 parallel segments, the innermost loop

without partitioning after merging is pipelined with initiation

interval 1, and the clock frequency is 100 MHz. Similarly,

the solution for MAT64 is (OP12, OP21, 1, 2, 4, 1, 70) shown
in Fig. 4, where the speed specification is 0.9 ms. We use

the branch and bound algorithm in YALMIP [16] to solve the

GP model described in Section IV; each design is generated

within 2 minutes on average.

To verify the designs given by the GP model, we implement

them on the target platform to obtain execution time and power

consumption. The power values are estimated by Xilinx Power

Estimator [17]; these results are shown by stars in Figs. 3, 4

and 5. We see that the downward-pointing triangle line and

the star line have the same variation over different execution

time constraints for the three kernels. This demonstrates that

the power model used in our approach correctly determines

the most power-efficient design under different execution time

constraints. Moreover, all stars, except for the two in the

middle of Fig. 3 which are 0.4% slower than the estimated

designs, are on the left hand side of the corresponding

downward-pointing triangles, showing that speed requirements

are met. We also implement several possible designs for the

three kernels, as shown by dots in Figs. 3, 4 and 5. These

design options have been automatically removed by our design

exploration model, and are all above or to the right of the

power-efficient designs (the stars), i.e. they either consume

more power or run slower. Also, note that power increases as

execution time reduces (speed goes up), increasing rapidly at

high speeds. Therefore, users can trade speed for power. For

instance, in MAT64, increasing execution time by 27% (0.04

ms) reduces power consumption by 63% when the execution

time constraint is below 0.2 ms.

Our approach combines data reuse, MapReduce and pipelin-

ing. Figs. 3, 4 and 5 (circle data points) show the advantage

of combining optimisations over separate optimisations, where

data reuse applies to reduce off-chip memory access and then

MapReduce and pipelining are applied to increase speed. For

Sobel, when the execution time constraint exceeds 0.6 ms, the

designs proposed by our approach consume up to 1.4 times

less power than the separate optimisations. For MAT64, in

most cases the designs proposed by both approaches are the

same, because the different data reuse options have the similar

effects on system performance as shown in Table I. However,

when the execution time constraint is less than 0.15 ms, the

combined approach finds a solution missed by the separate

approach. In the ME case, the two produce the same result,

because the outermost loop cannot be MapReduced due to

data dependence, i.e the dependence between data reuse and

MapReduce does not exist. Therefore, for applications having

data reuse options significantly varying and thus tightly inter-

linked with MapReduce and pipelining options, our combined

approach is more beneficial. Moreover, many loop partitions

do not guarantee the fastest design. For example, in Fig. 3,

two non-optimal designs shown by dots in the up-left corner

have 1584 and 528 parallel partitions, but are no faster than

0.54 ms and consume significant power.

The off-chip and on-chip dynamic power of the designs

proposed by our approach are also shown in Figs. 3, 4 and

5. We observe that on-chip dynamic power increases as the

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

P
o
w

e
r

(W
)

Execution time (ms)/Speedup over original design (times)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

1.4

1.5

1.6

1.7

1.8

1.9

E
n
e
rg

y
 (

m
J
)

Power−efficient designs by our approach

Implementation of the proposed designs

Designs by the separate approach

P
off

 of the power−efficient designs after implementation

P
on

 of the power−efficient designs after implementation

Implementation of non−optimal designs

Energy of the power−efficient designs after implementation

(OP
12

, 1, 176, 9, 1, 100)

(OP
12

, 1, 176, 3, 1, 100)

(OP
11

, 4, 11, 1, 1, 100)

(OP
12

, 1, 20, 1, 1, 100) (OP
12

, 1, 59, 1, 1, 100)

(OP
11

, 3, 9, 1, 1, 100)

(OP
11

, 7, 2, 1, 1, 100)

(41.8x)(83.6x)

Fig. 3. Sobel results. Ori-design: time=41.8ms, power=0.08W, energy=67mJ.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10
1

P
o
w

e
r

(W
)

Execution time (ms)/Speedup over original design (times)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

E
n
e
rg

y
 (

m
J
)

Power−efficient designs by our approach

Implementation of the proposed designs

Designs by the separate approach

P
off

 of the power−efficient designs after implementation

P
on

 of the power−efficient designs after implementation

Implementation of non−optimal designs

Energy of the power−efficient designs after implementation

(OP
12

, OP
21

, 1, 2, 4, 1, 70)

(OP
11

, OP
21

, 6, 13, 2, 1, 100)

(OP
12

, OP
21

, 1, 32, 4, 1, 100)

(11.7x)(158.9x)

Fig. 4. MAT64 results. Ori-design: time=15.9ms, power=4W, energy=81mJ.

execution time constraint tightens. This is because more on-

chip resources are used to parallelize computation and the

clock frequency is increased. However, the off-chip dynamic

power does not monotonously increase. For instance, in Fig. 3,

the off-chip dynamic power decreases when the execution time

constraint is tighter than 0.6 ms. This is because the data reuse

option selected for the design has changed, as shown in Fig. 3.

When the time constraint is less than 0.6 ms, the data reuse

option with fewer off-chip accesses is chosen. We can also see

some non-monotonic behavior in the off-chip dynamic power

for MAT64 and ME. This validates our approach considering

all factors which cause system dynamic power variations.

Finally, users can also trade energy for execution time.

Energy reduces with execution time for ME but shows minima

for Sobel and MAT64: sweet spots for battery operation.

VI. CONCLUSION

We present an optimization method combining multiple op-

timizations: data reuse, pipelining and multi-level MapReduce,

together with transforms such as loop merging and function

inlining. User inputs are a sequential program and speed

and hardware resource constraints. Our method generates the

lowest power design meeting those constraints. Using our

approach, users can trade speed for power: 27% increase in

execution time can reduce power consumption by 63%. Also,

0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

P
o
w

e
r

(W
)

Execution time (ms)/Speedup over original design (times)

0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

E
n
e
rg

y
 (

m
J
)

Power−efficient designs by our approach

Implementation of the proposed designs

Designs by the separate approach

P
off

 of the power−efficient designs after implementation

P
on

 of the power−efficient designs after implementation

Implementation of non−optimal designs

Energy of the power−efficient designs after implementation(OP
12

, OP
21

, 9, 16, 5, 100)

(OP
12

, OP
21

, 9, 2, 2, 60)

(OP
12

, OP
21

, 9, 8, 3, 100)

(OP
12

, OP
21

, 9, 4, 2, 90)

(11.6x)(29x)

Fig. 5. ME results. Ori-design: time=11.6ms, power=0.37W, energy=22mJ.

we show that designs generated by our combined approach

use up to 1.4 times less power than those applying the three

optimizations separately; furthermore, the combined approach

finds solutions that are missed by the separate approach.

Future work includes supporting more applications and

adding more optimization methods to our combined approach,

such as previous work on data representation optimization.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[2] J. Lamoureux and W. Luk, “An overview of low-power techniques for
field-programmable gate arrays,” NASA/ESA Conference on Adaptive

Hardware and Systems, vol. 0, pp. 338–345, 2008.
[3] A. Peymandoust et al., “Low power embedded software optimization

using symbolic algebra,” in DATE ’02. IEEE Computer Society, 2002,
pp. 1052–1058.

[4] D. A. Ortiz and N. G. Santiago, “High-level optimization for low
power consumption on microprocessor-based systems,” in MWSCAS

2007. IEEE Computer Society, 2007, pp. 1265–1268.
[5] T. Matsumura et al., “Simultaneous optimization of memory configura-

tion and code allocation for low power embedded systems,” in GLSVLSI

’08. ACM, 2008, pp. 403–406.
[6] Q. Liu et al., “Data-reuse exploration under an on-chip memory con-

straint for low-power FPGA-based systems,” IET Computers & Digital
Techniques, vol. 3, no. 3, pp. 235–246, 2009.

[7] F. Catthoor et al., Custom Memory Management Methodology: Ex-

ploration of Memory Organisation for Embedded Multimedia System
Design. Norwell, MA, USA: Kluwer, 1998.

[8] Q. Liu et al., “Data reuse exploration for FPGA based platforms applied
to the full search motion estimation algorithm,” in Proc. Int. Conf. on

FPL, Matrid, Spain, 2006, pp. 389–394.
[9] K. Turkington et al., “Outer loop pipelining for application specific

datapaths in FPGAs,” IEEE Trans. Very Large Scale Integr. Syst., vol. 16,
no. 10, pp. 1268–1280, 2008.

[10] H. Rong et al., “Single-dimension software pipelining for multi-
dimensional loops,” in IEEE Proc. on CGO, 2004, pp. 163–174.

[11] S. J. Wilton et al., “The impact of pipelining on energy per operation in
field-programmable gate arrays,” in FPL. Springer, 2004, pp. 719–728.

[12] J. H. Yeung et al., “Map-reduce as a programming model for custom
computing machines,” in FCCM, 2008, pp. 149–159.

[13] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in 6th Symp. on OSDI, December 2004, pp. 137–150.

[14] L. Merritt and R. Vanam, “Improved rate control and motion estimation
for h.264 encoder,” in ICIP 2007, 2007, pp. 309–312.

[15] http://www.pages.drexel.edu/∼weg22/edge.html, accessed 2006.
[16] J. Lfberg, “YALMIP : A toolbox for modeling and optimization in

MATLAB,” in Proc. Conf. CACSD, Taipei, Taiwan, 2004.
[17] http://www.xilinx.com, “Xilinx power estimator user guide,” accessed

2009.

	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

