
Customizable Composition and Parameterization of

Hardware Design Transformations

Tim Todman, Qiang Liu, Wayne Luk

Department of Computing

Imperial College London

United Kingdom

{timothy.todman, qiang.liu205, w.luk}@imperial.ac.uk

George Constantinides

Department of Electrical Engineering

Imperial College London

United Kingdom

g.constantinides@ic.ac.uk

Abstract—A promising approach to high-level design is to start
initially with an obvious but possibly inefficient design, and apply
multiple transformations to meet design goals. Many hardware
compilation tools support a fixed recipe of applying design trans-
formations, but designers have few options to adapt the recipe
without re-writing the tools themselves. In addition, complex
transformations based on linear programming and geometric
programming are often not included. This paper proposes a new
approach that enables designers to customize the composition
and parameterization of different types of design transformations
in a unified framework, using a high-level language to control
a transformation engine to automate the application of design
transformations. Our approach is implemented by a tool based
on the Python language and the ROSE compiler framework,
which supports both syntax-directed transformations such as loop
coalescing, and goal-directed transformations such as geometric
programming. We illustrate how customizing the composition and
parameterization of design transformations can lead to designs
with different trade-offs in performance, resource usage, and
energy efficiency. We evaluate our approach on benchmarks
including matrix multiplication, Monte Carlo simulation of Asian
options, edge detection, FIR filtering, and motion estimation.

I. INTRODUCTION

To implement complex designs quickly, designers increas-

ingly turn to high-level design descriptions, which ease design

capture and design space exploration, and allow rapid proto-

typing and fast time to market. However, in order to meet

design goals, designers must apply multiple transformations to

optimize their design while maintaining the intended behavior.

Many current hardware compilation tools support a fixed

recipe of applying multiple design transformations, but design-

ers have few options to adapt the recipe without re-writing the

tools themselves. In addition, complex transformations based

on linear programming and geometric programming are rarely

included.

This paper describes a novel approach that combines cus-

tomization of transformations, and their automated application.

The key innovation of this approach is to enable users to

customize the composition and parameterization of transfor-

mations from a library of transformations including both

syntax-directed and goal-directed transformations as shown

in Fig. 1. Syntax-directed transformations involve matching

and transforming syntax patterns if some Boolean conditions

are met. Designers are allowed to specify target patterns, the

Initial design

Transformation

engine

Transformed

design

Meet

requirement

Compiler

Implementation

Library of transformations,

(a) syntax-directed, e.g.

Inline, loop merge...

(b) goal-directed, e.g.

geometric programming,

linear programming...

Yes

No

Fig. 1. Proposed approach for customizing design transformations.

conditions and how to transform the pattern. Goal-directed

transformations target complex transformations, where all pos-

sible transformation options are modeled in an optimization

problem such that the transformed designs meet the goals

specified by designers.

This paper makes the following contributions:

• We define requirements for a customizable transformation

engine combining multiple optimizations in a simple

composition where syntax-directed and one goal-directed

transformation can be sequenced together, and show how

our design and implementation meet the requirements.

• We refine our requirements, design and implementation

to allow more complex compositions and multiple goal-

directed transformations.

• We evaluate our approach on several benchmarks, show-

ing how it can be used to optimize for speed, resource

usage and power efficiency.

The rest of the paper is structured as follows. Section II

gives background and details related work. Section III shows

requirements for simple composition, showing how our design

and implementation meet them, while section IV shows how

we extend and modify the requirements, design and imple-

mentation for complex composition, where transformations

can be composed in several ways and multiple goal-directed

transformations can be used. Section V shows results from ap-

plying the approach to several benchmarks. Finally, section VI

concludes and gives ideas for future work.

II. BACKGROUND

A. Hardware compilers

There are several commercial hardware compilers, such

as Catapult C Synthesis [1], CoDeveloper [2], and Celoxica

DK Design Suite [3]. Each targets different C-like languages.

These compilers perform several optimizations, such as retim-

ing, common subexpression optimization, memory pipelining,

etc., which are mainly achieved by syntax-directed transfor-

mations. Rewriting a design from C/C++ to C-like languages,

such as Impulse C and Handel-C, is not trivial.

In the academic community, several efforts optimize high

level hardware design. Syntax-directed transformations, such

as code motion, loop transformation, dynamic renaming and

scalar replacement, are used in [4] and [5]. Goal-directed

transformations are implemented in [6] and [7]. Liu et al. [6]

propose a geometric programming approach to explore the

data reuse and loop-level parallelization design space in the

context of FPGA targeted hardware compilation. An integer

linear programming model is proposed in [7] for pipelining

outer loops in FPGA hardware coprocessors. However, all

these approaches need external support for transformations to

complete the optimization.

Liu et al. [8] identify two kinds of transformation, goal-

directed and syntax-directed, and combine them in one ap-

proach. Using syntax-directed and goal-directed transforma-

tions together allows goal-directed transformations to be sim-

plified, as they can rely on syntax-directed transformations to

render their input into a suitable form. Liu et al. concentrate

on integrating the two approaches, but do not automate the

compile process.

B. Compiler frameworks

Previous compilation approaches, SUIF [9] and ROSE [10]

provide a means of building compilers from components, but

choosing the next transformation is left to the user. CoSy [11]

has less common ways of composing transformations: com-

petitive and parallel, but it has the same limitations as other

approaches. All three approaches aim at software compilation,

whereas we primarily aim at hardware compilation.

Syntax-directed transformations for hardware compilation

have been explored by researchers like di Martino et al. [12]

on data-parallel loops written in C-source code, as part of a

synthesis method from C to hardware. Unlike our method they

do not allow user-written transformations. Compiler toolkits

such as SUIF and CoSy [11] allow multiple patterns to be

used together, but they do not support including goal-directed

transformations. Pattern matching and transforming can also

be done in tree rewriting systems such as TXL [13], but the

generality of such systems makes them difficult to incorporate

hardware-specific knowledge into the transformation process.

C. Build tools

The Make tool [14] is fine for building an executable from

a dependence graph, but does not support iteration; iteration

requires use of outside tools, such as shell scripts. Make allows

parts of a build to run in parallel, allowing independent parts

of a build to run on different processors. This is intended

to speed up large builds rather than comparing the results of

multiple transformations on the same inputs. Many other tools

exist to correct features of make, including Ant, Bjam, Aegis,

but these have no specific support for iteration or hardware

compilation.

Scripting languages such as Python [15] and Lua [16] have

good support for embedding in programs written in C. Our

approach extends scripting into a domain-specific language for

compilation. Many other scripting languages exist, but may

lack proper type systems or be overly complex.

III. SIMPLE COMPOSITION

Simple composition means combining a single goal-directed

transformation with multiple syntax-directed transformations.

A. Requirements

Common requirements:

• Allow multiple transformations: syntax-directed and one

goal-directed.

• Support common and domain-specific transformations.

• Compose and parameterize transformations.

• Playback for verification and reuse.

We now explain the requirements in detail.

Allow multiple transformations: Experience with previous

approaches such as SUIF and ROSE shows that the opti-

mization problem can be usefully broken down into multiple

optimization passes. Allowing multiple optimizations is thus a

minimum requirement for an optimizing compiler approach.

For simple composition, we only allow one goal-directed

transformation, whose goal should correspond to the overall

design goal; syntax-directed transformations can prepare the

goal-directed transformation’s input and refine its output.

Support common and domain-specific transformations: Re-

search in compilers has identified many useful optimizations;

we call transformations that have proved useful in many appli-

cation domains common transformations. By contrast, domain-

specific transformations are only useful in one application

domain. Previous work [8] shows that combining common and

domain-specific transformations allows users to achieve design

goals by choosing a sequence of suitable transformations.

Compose transformations: For simple composition, we only

allow sequence composition: calling several transformations,

with output of one being input to another. Sequence is useful

for providing initial patterns for goal-directed transformations,

or when the design input is in a known form.

Playback for verification and reuse: Playback requires

recording into a logfile at each step: the design and trans-

formation parameters used, and the choice of next step. The

recording can then be played back, either on the same design

(verification), or on other designs (reuse).

Verification: a key requirement of any optimization is that

the intended design behavior is preserved; clearly, a fast but

incorrect design is useless. Playback allows verification by

finding which step deviates from initial behavior.

If the final design fails to preserve initial design behavior,

the user can replay the script to step through the recorded

transformation sequence to find which step caused the failure,

much like single-stepping a debugger but with transformations

instead of program lines. This step could then be removed from

the script, debugged separately, different parameters used or a

pre-requisite added.

While we do not consider formal verification in this paper,

the same stepwise approach could also be used. The frame-

work could formally verify that the design after a step is the

same, or has the same properties as the design before that step.

Reuse: successful compilation compositions may be reused

for other designs. For example, in DSP filter implementation,

designs with different numbers of taps can benefit from same

transformation sequence. Other sequences might optimize

for particular targets: for example, we have found that one

compiler can get a good speedup from inlining, merging,

normalization and scalar replacement.

B. Design

To meet the requirements described above, we propose the

following design for the transformation engine: a customizable

approach for source-to-source compilation, with fixed compo-

nents for common tasks such as front end (parser), back end

(unparser) and utilities such as a symbol table and means of

composing transformations together. Each input design is first

parsed resulting in an abstract syntax tree (AST) and symbol

table. The designer can then apply different transformations

to the AST: either standard transformations such as loop

unrolling, or custom transformations for a particular domain

or application, attempting to optimize for their design goals.

When the goals have been met, the back end renders the

transformed design back into C source code. To implement

the final design, we translate from C to Handel-C, then use

the Handel-C compiler to generate a hardware description that

can be compiled using FPGA vendor tools. Currently, the C to

Handel-C translation is manual, but this could be mechanized

or a tool such as C-to-Verilog [17] used.

We consider each transformation as a function that takes as

input parameters:

• Current design: including AST and symbol table.

• Platform constraints: number of multipliers, memories,

DSP resources, and so on.

• Design goals: for now restricted to the overall optimiza-

tion goal – speed, size, power.

• Transform-specific parameters: for example, loop tiling

might specify what tile size or range of tile sizes to use.

and produces as output:

• Transformed design: if the transformation was success-

fully applied.

• Output parameters: as a key-value list, such as loop

partition scheme and operation pipelining scheme, show-

ing how the design was transformed and allowing later

transformations to benefit from any analysis results from

the current transform.

Goal-directed transformations may have several specific

parameters:

• Objective: optimization goal

• Pattern: required design characteristics for designs tar-

geted by the model.

• Input design parameters: these include the properties or

specifications of a design, such as loop structure parame-

ters (number of loops, loop bounds, parallelizability), ar-

ray variable parameters (number of array references, data

reuse options of each reference), data flow information

(number of data flow levels, computation types), and so

on.

• Platform parameters: target hardware platform parame-

ters give the physical constraints, including target device

(on-chip computation resources, on-chip memory size,

on-chip memory bandwidth), off-chip memory (band-

width, latency, ...) and so on.

• Constraints: optional constraints, which could be speci-

fied by designers.

We provide a transformation library, containing multiple

syntax-directed and goal-directed transformations, and a re-

source monitor, showing current available resources.

Both the approach as a whole, and each individual transfor-

mation, are source-to-source. Keeping the design at the source

level has the advantage of avoiding complications of compiling

to hardware description languages; however, we cannot take

advantage of any optimizations that can be done at lower

levels and rely on downstream tools to provide them. The

purpose of our approach is to complement lower-level tools by

customizing optimizations at a high level, rather than replacing

the lower-level tools.

Our design meets the requirements as follows:

Allow multiple transformations: Separating each transfor-

mation into independent units allows multiple transformations

to be used. By requiring as little as possible from each

transformation, we allow multiple kinds of transformation to

be used.

Support common and domain-specific transformations: Pre-

vious work shows that combining common and domain-

specific transformations together is sufficient to optimize

realistic benchmarks. ROSE already provides a library of

optimizations including loop optimizations; we reflect these

into our tool. Our tool allows custom transformations to extend

those in the library.

C. Implementation

Our implementation is based on the ROSE framework with

a domain-specific language for syntax-directed transformation.

TABLE I
TRANSFORMATIONS FROM OUR LIBRARY USED IN EXPERIMENTS.

Goal-directed Description
GP1 Speed optimization exploiting data reuse and MapReduce
GP2 Speed optimization exploiting MapReduce and pipeline
GP3 Power optimization

Syntax-directed Description
LM Loop merging
LC Loop coalescing
DE Decompose expressions with the 3-address rule
RMD Remove “×/÷” operations
RF Reduce fanout of variables
Par Parallelize independent statements
Pipe Pipeline innermost loop

We use the ROSE framework because it is fairly mature,

has comprehensive support for C / C++, and contains many

existing features for program transformation including features

for function inlining and loop unrolling.

ROSE is written in C++, requiring developers to use C++

to build their compiler and add custom passes written in

C++. This approach is powerful, because all the facilities

of ROSE are available, and efficient, because the approach

is compiled using a conventional optimizing C++ compiler.

However, writing a custom compiler and adding custom passes

require extensive knowledge of ROSE.

In our approach, we adapt ROSE to be scripted by the

Python scripting language [15]; other scripting languages like

Lua could equally be used. We choose Python in particular

because it is well supported by the Boost Python library, a

quasi-standard way of reflecting C++ objects and classes into

Python [18]. Using a scripting language to control compilation

allows designers to take advantage of all the language facilities

for control and iteration. A further advantage of scripting lan-

guages is that the transformation engine can be used to extend

the scripting language command-line interpreter, meaning that

the user can experiment with interactively applying transfor-

mations to the program. If a good sequence of transformations

is found, the user can save the sequence in a script, allowing

the sequence to apply to other designs without interaction.

While the resulting compiler is slower than one developed

using ROSE directly, most of the compiler run time will be

taken up by transformations, rather than the transformation

engine choosing which transformation to apply. Should the

transformation engine logic prove to be too slow, we note

that scripting languages are slowly progressing to just-in-time

compilation, which will improve the speed of compiled code

while retaining the convenience of an interpreter.

Our implementation meets the remaining requirement –

playback for verification and reuse. Before each step, the

engine records the following information into a log file: the

current design after preceding transformations, the name of

next step, and the parameters to be used. This is all the

information needed to play the step back later, and is done

transparently and automatically. Each custom transformation

is responsible for recording its own parameters and anything

else needed to recreate the step later. We design our tool so

that as much of this as possible is done by the transformation

engine by default.

TABLE II
TRANSFORM PARAMETERS USED IN EXAMPLE.

Params Type Description

numLoop int number of loop levels

loopBound int Array upper bound of each loop after normalization

loopParallelizability bool Array 1: loop parallelizable, 0: otherwise

numArray int the number of arrays

numRAMBlock int number of on-chip RAM blocks

blockSize int size of each RAM block

memBandwidth int memory bandwidth

numMultiplier int number of on-chip multipliers

numCompSteps int number of computation steps

stepResource int Array resources required in each computation step

notAlign bool 1: data are not aligned between storage and

computation, 0: otherwise

recII int dependence constraint on initiation

interval of pipelining

D. Example

We show an example script for the matrix multiplication

benchmark; the results section shows the performance of

the resulting designs for this and other benchmarks. Table I

shows the library of available transformations; table II shows

transformation parameters. The sequence we apply is: GP1 -

DE - RF - Par - GP2. Python pseudocode for this sequence

is:

1: InDesign=parse("matmult.c")

2: Ini_design_params=[("numLoop1", 3),

("loopBound1", [64, 64, 64]),

("loopParallelizability1", [1, 1, 1]),

("numArray1", 3), ...]

3: Platform_params=[("numRAMBlock1", 168),

("blockSize1", 16384), ("memBandwidth1", 32),

("numMultiplier1", 168)]

4: (des1, Out_design_params)=GP1(InDesign,

Speed, Ini_design_params, Platform_params)

5: des2=decomposeExpressions(des1)

6: des3=reduceFanout(des2)

7: des4=parallelize(des3)

8: Ini_design_params=[("loopBound2", [64]),

("loopParallelizability2", [1]),

("numCompSteps2", 1), ("stepResource2", 1),

("numArray2", 2), ("notAlign", 0),

("recII", 1)]

9: Platform_params=[("memBandwidth2", 32),

("numMultiplier2",

168-param("numMultiplier1"))]

10: (OutDesign, Out_design_params)=GP2(des4,

Speed, Ini_design_params,

Platform_params, innermostLoop, tree)

11: unparse(OutDesign, "out.c")

where numbered source lines work as follows:

1) The input file is parsed into a variable InDesign.

2) parameters for the GP1 model are loaded into a variable

Ini_design_params as a list of key-value pairs.

Each transformation is responsible for checking its pa-

rameters are correct. Note that values can be integers,

booleans, strings or arrays of other values; we omit some

of the parameters for space reasons.

3) platform parameters are similarly put in another variable.

4) the GP1 transform is applied to InDesign, yielding

2. Create transformation sequence (N transformations)

i=0

4.

Verification

Final design

Perform

transformation

Update

resource

availability

Log transformation information

Report failure

i=i+1

i'th

transformation
Add resource and design

constraints to models

Syntax-directed Goal-directed

NoNo

Yes

1. Specify goals, target hardware platform

No

YesYes

3. Perform

transformations

Yes

NoPreserves

behaviour?

i=N?

Success? Success?

Perform

transformation

Fig. 2. Flowchart for applying goal-directed and syntax-directed transfor-
mations. The counter i can be used by the transformation engine to limit the
number of transformations applied, to limit the total compilation time. It is
used internally in the logfile to record which transformation applies at each
step.

des1.

5) three syntax-directed transformations are applied to

des1, yielding des4; none of these has any parameters.

8) parameters for the second goal-directed transform are put

in a key-value list.

9) platform parameters for GP2 are stored. Note that the

value for numMultiplier2 is calculated by using

the param function to retrieve the value of parameter

numMultiplier1.

10) the GP2 transform is run.

11) finally, the design is unparsed to an output file.

Each source code line corresponds to one iteration of the

loop in step 3 of Fig. 2.

IV. COMPLEX COMPOSITION

A. Requirements

Complex composition extends and refines the requirements

for simple composition to:

• Allow multiple goal-directed transformations.

• Allow further ways to compose transformations.

In more detail:

Allow multiple goal-directed transformations: we restrict

simple composition to one goal-directed transformation, which

effectively restricts the overall optimization goal to that of

the goal-directed transformation. With multiple goal-directed

transformations, multiple optimization goals can be pursued;

for example, sequencing goals for speed then power gives the

lowest power design meeting a speed constraint. The goals

achieved by the former transformation become the constraints

for the current one, so transformations optimize designs with-

out affecting former achievements.

Allow more ways to compose transformations: using mul-

tiple goal-directed transformations requires more ways to

compose transformations together. To allow this, we require

each transform to have a notion of success or failure: success

means the transformation has been applied without errors;

failure means it could not match pattern, or the design is not

in the correct format (syntax-directed), or it could not achieve

the goal (goal-directed). This allows more ways of composing

transformations:

Conditional sequence: this requires each transformation

to succeed before the next is applied. If a transform fails,

the whole sequence could fail (where the design is left

unchanged), or the design after the last success could stand.

Two kinds of conditional may be used: and-then and or-else;

and-then requires that every transformation in the sequence

succeeds; or-else continues until the first transformation that

succeeds.

Competitive: given the same input, run two transformations

and compare their output; the one with better metrics is

chosen.

Parallel: apply transformations simultaneously to separate,

independent parts of design, enabling the use of computing

clusters to speed up design space exploration.

Parameterization: some transformations can be parameter-

ized to give designers finer control. The parameters could be

values, such as design parameters and platform parameters, or

other transformations.

Pre- and post-requisites: one transformation can use another

to pre-transform its input, e.g loop normalization before many

loop optimizations. This simplifies many transformations.

Joining transformations into single unit: analogous to join-

ing expressions and statements into a procedure or function;

for example, 2D loop tiling can be implemented using 1D

loop tiling with loop interchange. Using one transformation

to implement another saves development effort and eases

transform verification. This can combine common sequences

for particular domains or inputs together.

B. Design

To meet the first requirement, allow multiple goal-directed

transformations, we extend the parameters of goal-directed

transformations to allow finer control:

• Force transformation: (optional) designers specify trans-

formation to perform, even though characteristics targeted

by the models are not present in the current design.

For example, the geometric programming model [19] for

mapping the MapReduce pattern can apply to a design

not exhibiting its required pattern, in order to pipeline

the design.

• Output parameters: for conditional sequences, each trans-

formation should update a parameter indicating whether

it successfully applied or not.

• Constraints: for a sequence of goal-directed transforma-

tions, the transformations may be combined into one if

their models are compatible; for example, two geometric

programming (GP) models may be combined into another

which is also a GP model.

• Output design parameters: outputs of models are the

parameters of the optimized design found, for example,

chosen data reuse options, loop partition scheme, opera-

tion pipelining scheme; these show how the design was

transformed.

To meet the second requirement, we extend the design of our

framework to allow complex composition of transformations.

Our transformation engine uses the following strategy for

sequence, conditional sequence and competitive compositions

of goal-directed and syntax-directed transformations:

(1) Specify design goals and the target hardware platform.

(2) Choose transformations from the library, specify trans-

formation parameters, and determine the transformation

composition.

(3) Perform transformations.

(a) if Sequence is chosen (designers have good under-

standing of the input code), then

(i) Before each goal-directed transformation, add

resource constraints to the model based on the

information shown by the resource monitor, and

if this transformation will work on the same code

part where the previous goal-directed transfor-

mation ran, then the design goal achieved in the

previous goal-directed transformation is added to

the model as constraints.

(ii) After each transformation, record the transfor-

mation status (success or failure) and the trans-

formation scheme in the log file and the resource

monitor updates the availability of resources

after each goal-directed transformation, and go

to the next transformation.

(iii) Pass the final transformed code and the log file

to the verification step (4).

end if

(b) if Conditional is chosen (designers have basic under-

standing of the input code), then

(i) As step (i) in (a).

(ii) After each transformation, check the status of

the transformation.

if success then as step (ii) in (a).

else stop the transformations, report the failure

to designers, and go back to step (1).

end if

(iii) As step (iii) in (a)

end if

(c) if Competitive is chosen (designers have multiple

transformation sequences in mind), then

(i) Execute each sequence as Conditional, but if

failure, assign an extreme value (maximum for

minimization or minimum for maximization) to

the objective of the transformation sequence.

(ii) Compare the design objectives of the transfor-

mation sequences and choose the best sequence

when all sequences finish.

(iii) As step (iii) in (a).

end if

(4) Verify transformed design.

if all transformations are successful and legal then

Continue the compilation

else

Suspend the compilation, report to designers and go

back to step (1), where designers have chance to look

through the log file and rearrange transformations,

probably removing problematic transformations.

end if

This can be readily extended for further ways of composing

transformations. Fig. 2 shows the flowchart for this strategy.

C. Implementation

In addition to sequential composition, advanced composi-

tion also supports conditional sequence (and then and or else),

competitive, parallel (CoSy), parameterized, pre- and post-

requisites, and joining transformations into a single unit (our

goal-directed transformations can combine the goals into a

joint goal if mathematical models are compatible.

D. Example

An example of joining goal-directed transformations is

the goal-directed transformation GP2, which is obtained by

combining two separate models for optimizing pipelining and

MapReduce. The advantage of this combination over the

separate approaches is that we could find more optimal designs

which may not be reached in the separate approaches.

V. RESULTS

We follow the control strategy described above and apply

several transform compositions, with different input parame-

ters, to five benchmarks:

• multiplication of two 64 × 64 matrices (MAT64),

• Sobel edge detection (Sobel) [20],

• the full search motion estimation algorithm (FSME) [21],

• finite impulse response (FIR) filters of 3, 5 and 11 taps,

• Monte Carlo simulation (MCS) for Asian Option pric-

ing [22].

We apply three transformation sequences to the first three

benchmarks respectively; we choose each sequence for its

benchmark. For MAT64 and FIR, we also use competitive

composition to investigate the impact of different transforma-

tion orders and different input parameters. Moreover, Sobel

is transformed to achieve the most power-efficient design

meeting the speed constraints specified by designers. The goal-

directed transformations used in our approach also allow a

special case of composition: joining multiple goal-directed

transformations into a single mathematical model. We com-

pare joined and separate transformations applied to MCS.

All experimental results are obtained on our target platform,

containing a Xilinx XC2V8000 FPGA with four external static

RAM banks.

Sobel MAT64 FSME
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

Sequence1

Sequence2

Sequence3

Fig. 3. Execution times on the target platform (Xilinx XC2V8000) after
successive transformations, normalized so initial design takes unit time.

We optimize the speed of Sobel, MAT64 and FSME al-

gorithms on the target platformby respectively applying three

transformation sequences from the transformation library (ta-

ble I):

• Sequence1: LM–GP1–DE–RF–Par–GP2;

• Sequence2: GP1–DE–RF–Par–GP2;

• Sequence3: GP1–DE–RMD–Par–Pipe–LC.

Each transformation sequence is customized for a specific

benchmark. After verifying that the functionality is preserved,

we translate the design into Handel-C, synthesize, map and

place and route the transformed designs onto the target plat-

form. We currently translate the designs manually; this could

be done mechanically, using a tool such as C-to-Verilog [17].

Fig. 3 shows execution times, normalized so the initial design

takes unit time. For each benchmark, the first bar corresponds

to the initial design, the second bar to the design after the first

transformation in the sequence, and so on. For example, the

second bar for Sobel is the design after loop merging; the third

bar is the design after loop merging and GP1 goal-directed

transformation. We see that LM does not improve the speed

of Sobel; however, LM simplifies the Sobel loop structure and

thus facilitates the following GP1 transformation [8]. Fig. 3

shows similar cases. Overall, the transformation sequences

reduce the execution times on our target platform for Sobel,

MAT64 and FSME by factors of 88 times, 98 times and 57

times respectively.

Competitive transformation composition allows designers to

experiment with different transformations. In Sequence2, the

goal-directed transformation GP1 can run before GP2 (GP1-

GP2), or in the reverse order (GP2-GP1). To see the impact, we

apply Sequence2 with the two transformations in both orders

to MAT64; the results are shown in Fig. 4, where the y-axis

is in logarithm scale. This figure shows the speed-optimized

design Pareto frontiers generated by Sequence2 with GP1-GP2

and GP2-GP1 respectively, under different multiplier resource

constraints. After the transformation sequence with GP1-GP2

the total execution cycles of the MAT64 designs is up to

2.7 times less (in the worst case) than after the sequence

with GP2-GP1 under the same multiplier constraint. However,

0 20 40 60 80 100 120 140 160

10
1

Multipliers available on−chip

#
 E

x
e
c
u
ti
o
n
 c

y
c
le

s
 (

1
0

4
)

Design Pareto frontier

Designs proposed by GP1−GP2

Designs proposed by GP2−GP1

Fig. 4. Results for MAT64.

TABLE III
LINEAR REDUCTION VS TREE REDUCTION FOR FIR

Designs Exe time (ms) # FPGA Slices

Linear Tree Linear Tree

3-tap 0.68 0.69 70 89

5-tap 0.68 0.7 96 164

11-tap 1.32 1.35 155 369

for another design metric, required on-chip RAM blocks

(not shown), designs chosen by the GP2-GP1 transformation

sequence use about 5 times, on average, fewer RAM blocks

to achieve the same design speed as ones generated by the

GP1-GP2 sequence. Therefore, if there are enough memory

resources, then the transformation sequence with GP1-GP2

would be chosen; otherwise the sequence with GP2-GP1

may be better, depending on the design goal and parameters

specified by designers.

Moreover, the GP2 goal-directed transformation allows de-

signers to specify which reduce structure – tree or linear – to

use in the reduce phase of the MapReduce computation [19].

Different structures result in different system latency, through-

put and resource usage for different applications. Designers

can set transformation-specific parameters to specify which

reduce structure to use. Table III shows the results of applying

the GP2 transformation to FIR filters with 3, 5 and 11 taps.

We can see that in all three cases, GP2 results in designs with

similar execution times for either reduce structure, but using a

linear structure can reduce the number of slices by up to 2.4

times. Hence designers would choose the transformation with

the linear reduce structure. For other applications, this may

not be true, so designers would need to apply competitive

composition.

In the above examples, designers may specify the design

objective, choose transformations and specify the target hard-

ware platform. Our approach lets designers provide additional

constraints to some transformations.

The goal-directed transformation GP3, shown in Table I,

allows designers to specify target design speed when the

transformation objective is power optimization. We apply the

GP3 transformation to Sobel together with the transformations

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Execution time (ms)

P
o
w

e
r

(W
)

Power−efficient designs after transformation

Fig. 5. Power reduction transformation for the Sobel benchmark.

30 40 50 60 70 80 90 100 110 120
100

150

200

250

300

350

400

450

500

DSP48

#
 E

x
e

c
u

ti
o

n
 c

y
c
le

s

Designs after the transformations

GP2

Pipe−MapReduce

Fig. 6. Results for the MCS benchmark for Asian option pricing.

in Sequence1, but without GP1 and GP2. Fig. 5 shows the

resulting power-efficient designs, for different execution time

constraints. When the execution time constraint is tight, more

parallelism is needed and thus more resources used, resulting

in larger power consumption. When the target execution time

is less than 0.5 ms, the transformations cannot achieve the

goal at all, and report this to designers. If designers still want

to achieve this goal, then they must add other transformations

or choose a platform with more resources.

Our approach also supports joining goal-directed transfor-

mations with compatible mathematical models. Fig. 6 shows

the results when we transform the MCS algorithm for Asian

Option pricing by optimizing pipeline and MapReduce sepa-

rately (Pipe-MapReduce) and at the same time (GP2). It shows

that the joined transformation GP2 finds more optimal designs

under the same constraints, resulting in up to 1.22 times speed

improvement, or up to 1.27 times reduction in DSP48 block

usage.

VI. CONCLUSION

This paper proposes a novel approach that enables designers

to customize the composition and parameterization of design

transformations. Our approach is implemented by a tool based

on the Python language and the ROSE compiler framework,

which supports both syntax-directed transformations such as

loop coalescing, and goal-directed transformations such as

geometric programming. Current and future work includes

supporting further automation, such as automatic choice of

transformations and profile-driven optimization, as well as

verifying the correctness of the transformations.

ACKNOWLEDGMENT

The support of the FP6 hArtes project, EPSRC and Xilinx

is gratefully acknowleged.

REFERENCES

[1] Mentor Graphics, “Catapult C synthesis datasheet,” http:
//www.mentor.com/products/esl/high level synthesis/catapult
synthesis/upload/Catapult DS.pdf, accessed March 2010.

[2] Impulse Accelerated Technologies, “Impulse CoDeveloper C-to-FPGA
Tools,” http://www.impulseaccelerated.com/products universal.htm, ac-
cessed March 2010.

[3] Agility Design Solutions, http://www.agilityds.com, accessed March
2010.

[4] S. Gupta et al., “SPARK: a high-level synthesis framework for applying
parallelizing compiler transformations,” in Proc. Int. Conf. on VLSI

Design, 2003, pp. 461–466.
[5] Z. Guo et al., “Input data reuse in compiling window operations onto

reconfigurable hardware,” in ACM SIGPLAN/SIGBED Conf. LCTES.
ACM, 2004, pp. 249–256.

[6] Q. Liu et al., “Combining data reuse with data-level parallelization
for FPGA-targeted hardware compilation: A geometric programming
framework,” IEEE Trans. CAD., vol. 28:3, pp. 305–215, 2009.

[7] K. Turkington et al., “Outer loop pipelining for application specific
datapaths in FPGAs,” IEEE Trans. VLSI., vol. 16:10, pp. 1268–1280,
2008.

[8] Q. Liu et al., “Optimising designs by combining model-based and
pattern-based transformations,” in Proc. Int. Conf. on FPL, 2009, pp.
308–313.

[9] M. W. Hall et al., “Maximizing multiprocessor performance with the
SUIF compiler,” IEEE Computer, December 1996.

[10] M. Schordan and D. Quinlan, “A source-to-source architecture for
user-defined optimizations,” in JMLC’03: Joint Modular Languages

Conference, ser. LNCS, vol. 2789. Springer Verlag, Aug. 2003, pp.
214–223.

[11] ACE, “CoSy Compilers: Overview of Construction and Operation,” http:
//www.ace.nl/compiler/paper-construct.pdf.

[12] B. di Martino et al., “A technique for FPGA synthesis driven by
automatic source code synthesis and transformations,” Proc. FPL, 2002.

[13] J. R. Cordy et. al, “The TXL programming language,” November 2007,
version 10.5, http://www.txl.ca/docs/TXL105ProgLang.pdf.

[14] R. Stallman et al., GNU Make: A Program for Directing Recompilation,
for version 3.81. Free Software Foundation, 2004.

[15] M. Lutz, Programming Python: Object-Oriented Scripting. Sebastopol,
CA, USA: O’Reilly & Associates, Inc., 2001.

[16] R. Ierusalimschy, Programming in Lua, Second Edition. Lua.org, 2006.
[17] C to Verilog, “http://c-to-verilog.com/,” accessed May 2010.
[18] “Boost.python documentation,” version 1.42, accessed January 2010,

http://www.boost.org/doc/libs/1 41 0/libs/python/doc/index.html.
[19] Q. Liu et al., “Automatic optimisation of mapreduce designs by geo-

metric programming,” in Proc. Int. Conf. on FPT, 2009, pp. 215–222.
[20] http://www.pages.drexel.edu/∼weg22/edge.html, accessed 2006.
[21] V. Bhaskaran and K. Konstantinides, Image and Video Compression

Standards: Algorithms and Architectures, Norwell, MA, USA, 1997.
[22] http://www.interactivesupercomputing.com/success/pdf/caseStudy

financialmodeling.pdf, “Financial Modeling – Monte Carlo Analysis,”
accessed 2009.

