
Energy-aware optimisation for run-time reconfiguration

Tobias Becker and Wayne Luk
Department of Computing

Imperial College London, UK

Peter Y. K. Cheung
Department of Electrical and Electronic Engineering

Imperial College London, UK

Abstract—Run-time reconfiguration has been shown to pro-
duce power and energy efficient designs. However, it is im-
portant to take into account the energy overhead of the
reconfiguration process itself. This paper presents an analytical
model that covers the effects of power consumption and
configuration speed of the reconfiguration process. Based on
this model, a method is introduced that establishes the optimal
degree of parallelism for designs supporting partial run-time
reconfiguration. Our energy-aware approach is illustrated by
optimising designs for software-defined radio: a reconfigurable
FIR filter is shown to be up to 49% more energy efficient
and up to 87% more area efficient than a non-reconfigurable
design.

I. INTRODUCTION

Energy efficiency is a crucial aspect in battery-based
mobile applications to maximise the battery life. Energy
and power efficiency is also important in systems that are
connected to the grid. Lower power leads to less heat,
lower complexity of power supplies and cooling systems,
and reduced energy and system costs.

Reconfigurable devices such as FPGAs are a promising
technology to implement fast evolving applications such as
mobile communication. Rapid development of communi-
cation standards with ever increasing bandwidth and com-
plexity requires alternatives to traditional approaches relying
on ASICs and DSPs. The reconfigurability of FPGAs can
also be exploited to improve power consumption. A circuit
specialised to a certain condition can be more efficient than
a general-purpose design. Reconfiguration can be used to
update the circuit when the condition changes. However,
the device will also consume power during reconfiguration
which can influence the overall efficiency.

In this paper we study how power consumption during
reconfiguration influences the overall efficiency of a recon-
figurable application in terms of its energy per computation.
Our key contributions are:

• A simple device-independent model based on applica-
tion, device and implementation parameters that allows
us to analyse the energy efficiency of a design.

• An analysis of how reconfiguration and the degree of
parallelism in the design influence the energy efficiency.

• A method of design space exploration to quickly iden-
tify an implementation with maximum energy effi-
ciency.

• A case study demonstrating our approach.

The rest of the paper is organised as follows. Section II
presents the background and related research. Section III
presents our model, the analysis of energy efficiency depend-
ing on reconfiguration and parallelism in the implementation
and our strategy for design space exploration. Section IV
explains practical aspects of power estimation and measure-
ments. Section V demonstrates how our optimisation can
be performed on an example, showing a reconfigurable FIR
filter. Section VI concludes the paper.

II. BACKGROUND

FPGAs allow fast application development and post-
deployment upgradeability, but their flexibility comes at
the cost of area and power overheads compared to ASICs.
An FPGA can be between 17 and 32 times less area
efficient and between 7 and 14 times less power efficient
than an ASIC manufactured in the same technology [1].
FPGA vendors continue to address power challenges through
process technology and architectural improvements. Devices
specifically optimised for low-power operation can show
significant reductions in active and standby power [2].

The reconfigurability of FPGAs can be exploited to create
specialised designs that improve performance, reduce area
and reduce power. It has been shown that run-time reconfig-
uration can improve the functional density of a design [3].
The reconfigurable design becomes more efficient, the more
data are processed between reconfigurations. Reconfigurable
hardware can be employed in high-performance computing
where compute-intensive tasks are offloaded into reconfig-
urable modules [4]. The reconfiguration overhead has to be
carefully balanced against the hardware speed-up in order
to archive good overall performance. The performance of a
reconfigurable design can also be improved by exploring the
degree of parallelism in the implementation [5].

The reconfigurability of FPGAs makes them a partic-
ularly compelling architecture to realise software-defined
radio applications [6]. There is extensive research on re-
configurable signal processing components: results include
a reconfigurable FIR filter with 40% area reduction including
a framework for fast run-time generation of new configura-
tions [7] and a reconfigurable matched filter for UMTS with
improved configuration speed [8]. In another approach, the
reconfiguration time of an FIR filter is improved by reducing
the amount of logic that needs to be reconfigured [9].



A power-optimised Viterbi decoder has been developed
that is reconfigured depending on the signal-to-noise ra-
tio [10]. However, the power associated with the recon-
figuration process is not specifically addressed. The power
during the configuration process has been measured in a
Xilinx Virtex-E FPGA [11]. Power tends to ramp up during
initial device reconfiguration but remains fairly constant
during run-time reconfiguration. It has also been shown
that clock-aware placement strategies can lead to power
reductions [12].

An important aspect for the overall efficiency of a design
is how reconfiguration overheads relate to improvements
made in a reconfigurable design. We can judge the overall
efficiency of a design by the total amount of energy required
for a certain computation including reconfiguration. In the
following we develop an energy-aware analysis that shows
when a reconfigurable application becomes more energy
efficient than a standard one. Our approach, inspired by
previous work [5], includes the exploration of parallelism
for further energy optimisations in the reconfigurable design.
This method is orthogonal to other low-power optimisations
based on device architecture or process technology.

III. ENERGY OPTIMISATION

There are many applications that can benefit from re-
configuration and there are different opportunities of how
reconfigurability can be exploited. We can classify the
following scenarios:

1. Pre-deployment. The reconfigurability of the device is
used for fast prototyping and development. It is possible to
make changes late into the design process.

2. In-field upgrade. A configuration providing new fea-
tures or bug-fixes is loaded into the device. In this case the
device is usually rebooted.

3. Infrequent reconfiguration. The design uses run-time
reconfiguration occasionally to adapt to a new processing
environment. In this case, the reconfiguration overhead is
usually insignificant and may be hidden by the application.
A reconfigurable Viterbi decoder that adapts to the signal-to-
noise ratio is an example of infrequent reconfiguration [10].

4. Frequent reconfiguration. The design uses run-time
reconfiguration frequently as part of the application. The in-
fluence of the reconfiguration overhead on performance and
energy efficiency is significant and needs to be considered.
Reconfigurable high-performance computing is an example
involving frequent reconfiguration [4].

The last scenario is the most challenging because re-
configuration overheads can have a significant impact. In
the following we analyse how the energy efficiency can be
improved in such a scenario. We use several application,
implementation and device parameters for our energy opti-
misation. Application parameters are:
• Number of packets or data items n that are processed

between reconfigurations
• Number of processing steps s in the algorithm

A reconfigurable implementation is characterised by the
following parameters:
• Area requirement of the implementation A
• Amount of parallelism p in the implementation
• Processing time tp for one packet or datum
• Reconfiguration time tr
• Power consumed during processing Pp

• Computation power Pc, a component of Pp

• Power overhead Po, a component of Pp

• Power consumed during reconfiguration Pr

Finally we use the following device parameters:
• Data throughput of the configuration interface φconfig

• Configuration size per resource or unit of area Θ
We consider two energy optimisation approaches. In the

first, we analyse the energy overhead of reconfiguration and
identify when a reconfigurable design becomes more energy
efficient than a non-reconfigurable one. In the second ap-
proach we analyse how the degree of parallelism influences
the energy efficiency.

A. Energy efficiency in reconfigurable designs

The energy required to process n data items in a non-
reconfigurable implementation is given by equation 2. Note
that even a non-reconfigurable design might require a pa-
rameter reload between processing data sets. This can have
an influence on its energy consumption.

Etotal = Ep + Eload (1)
= Pp · tp · n+ Pload · tload (2)

The energy normalised per datum is given in equation 3.
For practical data set sizes n, it is often possible to neglect
the energy influence of the parameter reload.

Etotal,n = Pp · tp +
Pload · tload

n
≈ Pp · tp (3)

For a reconfigurable design, the energy to process n data
items is given as follows:

Etotal = Ep + Er (4)
= Pp · tp · n+ Pr · tr (5)

The reconfiguration time tr can be calculated based on
the area requirement A of a design:

tr =
Θ ·A
φconfig

(6)

Θ is a device specific constant and specifies the number
of bytes required to configure a particular device resource.
φconfig is the configuration data rate and depends on the
configuration interface and the configuration controller. We
can normalise equation 5 to n:

Etotal,n = Pp · tp + Pr ·
Θ ·A

φconfig · n
(7)



A reconfigurable design often has the benefit of con-
suming less processing power Pp and having higher per-
formance, i.e. lower tp. A reconfigurable design is also
smaller than a non-reconfigurable version. In order to be
more energy efficient than the non-reconfigurable design,
the savings in Ep must be larger than the overhead in
reconfiguration energy Er. To keep Er low, it is important
to reconfigure the smallest possible area A with the highest
available configuration speed φconfig . Configuring between
larger datasets n also increases the efficiency.

B. Exploring parallelism

We now consider how parallelism in the implementation
of a run-time reconfigurable design can influence its energy
efficiency. Many algorithms can be scaled between a small
and slow serial implementation and a large and fast parallel
implementation. Previous work demonstrates that the degree
of parallelism can be used to optimise the performance of a
reconfigurable design [5]. We now perform a similar analysis
for energy.

The upper three diagrams in figure 1 illustrate three
different temporal and spatial mappings of an algorithm
with four steps, and the implication on processing time,
reconfiguration time and area. One processing element is
characterised by tp,e, the basic processing time per pro-
cessing element, and tr,e, the basic reconfiguration time per
processing element. The processing time tp for one data
item in an algorithm with s steps and an implementation
with parallelism p is:

tp =
tp,e · s
p

(8)

Parallelism speeds up processing of data but slows down
reconfiguration. This is because a parallel implementation
will require more area than a sequential one, and recon-
figuration time is directly proportional to area. The recon-
figuration time tr of an implementation with p processing
elements is therefore:

tr = tr,e · p (9)

We now analyse the power and energy consumption
in a reconfigurable design. Instead of static and dynamic
power, we consider power components that scale with p and
components that remain constant. We consider processing
power Pp to be a combination of computation power Pc and
power overhead Po. We assume that each processing element
incurs a certain computation power Pc,e. The computation
power Pc is hence directly proportional to p:

Pc = Pc,e · p (10)

The computation energy Ec for processing n data items is:

Ec = Pc,e · p · tp · n = Pc,e · tp,e · s · n (11)

The energy associated with computation is independent
of p and is constant for an algorithm with given s and n.

During processing, we will also find a power overhead
Po that is not directly associated with computation. This
overhead may be static power only. However, there can
be further elements to this power overhead e.g. the power
consumption of auxiliary circuits such as clock managers.
This power component is constant and does not scale with p.
The energy overhead Eo encountered during the processing
of n data items is inversely proportional to p:

Eo = Po · tp · n = Po ·
tp,e · s · n

p
(12)

Finally, we have to consider the power and energy con-
sumed during the reconfiguration process. We assume that
reconfiguration power Pr is constant. For Pr we do not have
to consider the power overhead separately. Reconfiguration
energy simply scales with reconfiguration time regardless of
the distribution of its components. The reconfiguration en-
ergy Er grows with reconfiguration time tr, and is therefore
proportional to p:

Er = Pr · tr = Pr · tr,e · p (13)

The total energy for processing n data items is therefore:

Etotal = Ep + Er = Ec + Eo + Er (14)

= Pc,e · tp,e · s · n+ Po ·
tp,e · s · n

p
+ Pr · tr,e · p

(15)

The total energy normalised to n is:

Etotal,n = Pc,e · tp,e · s+ Po ·
tp,e · s
p

+ Pr ·
tr,e · p
n

(16)

Figure 2 shows the normalised energy per datum over p
for the parameters s = 128, n = 10, 000, tp,e/tr,e = 5·10−4

and Po/Pr = 0.5. A variation of either n or tp,e/tr,e with
the factor a leads to different optima. Larger datasets or
higher processing time to reconfiguration time ratios (faster
reconfiguration) push the optimum towards more parallel
implementations. Smaller data sets or slower reconfiguration
shift the optimum to a more serial solution.

In order to find the optimal degree of parallelism that
minimises the energy per datum, we calculate the partial
derivative of equation 16 with respect to p:

∂Etotal,n

∂p
= −Po · tp,e · s

p2
+
Pr · tr,e
n

(17)

To find the minimum we set equation 17 to 0 and solve
for p:

popt =

√
Po · tp,e · s · n
Pr · tr,e

(18)



A, tr

tp

A, tr

tp

A, tr

tp

t

P

t

P

t

P

p = 4 p = 2 p = 1

tp tr

Pc

Po

Pc

Po
Pr

Pc,e

tr,e

tp,e

tp,e

tr,e

Pp

tp tr tp tr

Pc

Po
Pr Pr

Figure 1. Different temporal and spatial mappings of an algorithm with s = 4. The upper diagrams show processing time, reconfiguration time and area.
The lower diagrams show the influence of p on power for n = 1. We have to minimise the energy represented by the grey rectangles.

The result popt is usually a real number which is not a
feasible value to specify parallelism. One should choose a
p value which divides s and is close to popt. If p ≤ 1, then
a fully serial implementation is the most efficient and for
p ≥ s, a fully parallel implementation is the most efficient.

This optimisation is independent of computation power
Pc. It balances the energy associated with the power over-
head Po and the energy associated with reconfiguration
power Pr. Graphically this corresponds to reducing the
combined area of the grey rectangles in figure 1. The area
of the white rectangles is constant.

C. Optimisation steps

In the previous section we describe how a variation in the
degree of parallelism of the implementation can be used to
optimise a design for energy. This effect may be observed
in many designs that require several similar processing steps

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32 64 128

p

E

a=0.01

a=0.1

a=1

a=10

a=100

Figure 2. Normalised energy per datum for parameter variations of dataset
size n, or the processing to configuration time ratio tp,e/tr,e.

such as multiply-accumulate operations in digital filters,
butterfly operations in FFTs or substitution boxes in encryp-
tion. When developing several implementations with varying
degrees of parallelism, design parameters may not scale
exactly as assumed previously. For example, some designs
may incur an area overhead for serial implementations while
in other cases, parallelising a design may cause an area
overhead. It is possible to perform an optimisation by simply
building and measuring designs for all possible variations of
p. However, this will require a long time.

Instead, we can use equation 18 to quickly explore the
design space based on parameters derived from just one
implementation. Even if parameters do scale not exactly
as assumed, our exploration will still indicate where the
optimum can be found. After determining popt using equa-
tion 18, we implement a new design with a practical p value
close to popt. We then measure its parameters and check
the resulting energy efficiency. If the design is less efficient
than predicted, p has to be moved closer to the value of
the original implementation. If the design is more efficient,
then p can be moved further out. Our exploration can be
summarised by the following 8 steps:

1) Derive s and n from application.
2) Obtain Φconfig and Θ for target device.
3) Implement one design and determine tp, A, Pr and

P0.
4) Calculate tr, tp,e and tr,e using equations 6, 8 and 9.
5) Find popt from equation 18 and determine a practical

value for p.
6) Build design for p.
7) Verify if design matches predicted parameters.
8) If necessary refine result by moving p up or down.



If a design scales well, then the above method will find
the optimum right away. If parameters vary, a reiteration of
steps 6 and 7 may be necessary. This is still considerably
less effort than building all possible design variations.

IV. POWER MEASUREMENTS

Our optimisations can be performed based on power
estimation tools or power measurements. Power estimation
tools offer a fast and simple way of determining the power
consumption of a design, but may be limited in accuracy.
Power estimation tools usually also lack support for recon-
figuration power. Power measurements are more accurate but
require a target board with power measurement facilities as
well as adequate measuring equipment.

Processing power may be calculated with reasonable
accuracy using power estimation tools. With power estima-
tion tools it is also straightforward to identify computation
power Pc and the power overhead Po caused by static
power and additional non-reconfigurable circuits. For power
measurements, Po can be determined by building a design
with all components that are not affected by reconfiguration
and measuring its power consumption. This design should
include clock managers running at their targeted clock rate.
Xilinx power estimation tools currently do not support power
estimation for partial reconfiguration. Reconfiguration power
Pr has therefore be measured on the board.

FPGA power measurements can be obtained by measuring
the current in the device supply rails. However, wiring
a multimeter directly into the supply rails may not be a
suitable measurement technique. FPGAs are sensitive to core
voltage variations. For example, Xilinx Virtex-5 FPGAs have
to stay within 50 mV of the specified core supply voltage
of 1 V . The voltage drop over the internal shunt resistor in a
multimeter can easily exceed this limit if higher currents are
drawn. Instead it is preferable to insert a precision current
sense resistor with a small enough resistance into the supply
rail and measure the voltage drop over the resistor.

All our experiments are implemented on the Xilinx
ML505 board and power results are based on FPGA core
current measurements. The ML505 board does not provide
core current measurement facilities as a standard feature.
The board was therefore modified by inserting a precision
current sense resistor between the voltage regulator and the
FPGA core supply rails. We measure the voltage drop across
the resistor with a digital storage oscilloscope.

V. CASE STUDY

In software-defined radio we can identify many compo-
nents that can benefit from reconfiguration. Examples are
FIR filters, FFTs, correlators, the CORDIC algorithm and
error correction such as Viterbi or Turbo codes. These basic
blocks are used in different communication standards with
varying parameters [13] and may require reconfiguration.
These components also offer the opportunity to explore the
degree of parallelism in their implementation.

We demonstrate our optimisations on the example of a
reconfigurable FIR filter. FIR filters are used in many stages
of a radio receiver or transmitter and may require some
form of modification. Examples of filter modifications are
coefficient reloading to change the filtered frequency band,
or template reloading in a matched filter. A flexible filter can
be implemented as a non-reconfigurable filter that provides
additional circuitry to reload parameters into the design. As
an alternative, the filter can be reconfigurable where each
instance is specific and optimised to one set of parameters.
A filter modification is then carried out through run-time
reconfiguration. In the following, we first analyse the energy
efficiency of a reconfigurable filter and compare with a non-
reconfigurable counterpart. In the second part of our case
study, we explore how the degree of parallelism can be
used to further improve energy efficiency. We perform our
analysis on the example of an 80-tap FIR filter that has to
process 10,000 16-bit samples between parameter updates.

Our experiments are conducted on the Xilinx ML505
board which contains a Virtex-5 XC5VLX50T FPGA.
Virtex-5 FPGAs contain an internal configuration access
port (ICAP) which can provide a maximum configuration
throughput of φconfig = 400MB/s. ICAP can be used
in the HWICAP core [14] in combination with a Micro-
Blaze softcore processor to control reconfiguration. When
using this core, we measure a configuration throughput
of only 5MB/s. However, Claus et.al. recently presented
an improved ICAP controller that provides a throughput
of 300MB/s [15]. In Virtex-5 FPGAs, the configuration
size per unit of area is ΘCLB = 295.2bytes/CLB or
ΘLUT = 36.9bytes/LUT [16].

A. Comparing reconfigurable and non-reconfigurable de-
signs

We implement our 80-tap FIR filter in a reconfigurable
and a non-reconfigurable version. The filters are designed in
VHDL and synthesised with Xilinx XST 11 synthesis tools
using IEEE arithmetic libraries. The non-reconfigurable filter
provides a port to reload filter coefficients. Coefficients
are loaded into a register chain and a reload requires
80 clock cycles. The reconfigurable filter contains hard-
coded coefficients. The synthesis tools use this to create
optimised fixed-coefficient multipliers. We implement one
reconfigurable version of the design with an embedded
configuration controller based on a MicroBlaze processor
and the HWICAP core. This system creates an overhead in
terms of logic utilisation and power. We also create a second
version of the reconfigurable design based on an external
configuration controller. No logic and power overhead is
added to the design. Even though an external controller
will add some general overhead to the system, it could still
be a lot more efficient than a MircoBlaze-based processor
system. This scenario can be considered the best case in
energy efficiency.



LUTs fmax tp[ns] Pp[W ] Ep[µJ ] Pr[W ] tr[µs] Er[µJ ] Etotal[µJ ]

reconfigurable, MB, φconfig = 5MB/s 12867 182 5.49 1.36 74.7 0.44 69755 30692 30767
reconfigurable, MB, φconfig = 300MB/s 1 2 1162 512 586
reconfigurable, ext, φconfig = 5MB/s 9452 182 5.49 1.23 67.9 0.19 69755 12695 12763
reconfigurable, ext, φconfig = 300MB/s 1162 211 279
non-reconfigurable, 80 cycle coeff reload 26134 100 10 3.43 343 3.8 0.8 3 346

3 3 3

note 1: total size of design including MicroBlaze, only 9452 LUTs are reconfigured
note 2: fmax applies to FIR, not MicroBlaze
note 3: coefficient reload instead of reconfiguration

Table I
COMPARISON OF A NON-RECONFIGURABLE DESIGN WITH RECONFIGURABLE DESIGNS USING AN INTERNAL MICROBLAZE CONFIGURATION

CONTROLLER (MB) AND AN EXTERNAL CONFIGURATION CONTROLLER (EXT). ALSO SHOWN ARE FAST AND SLOW CONFIGURATION SPEEDS.

Table I shows the parameters of our three designs. The
MicroBlaze-based reconfigurable design requires less than
half of the logic resources than the non-reconfigurable
version. The MicroBlaze system also requires some BRAM
resources which are not shown in this comparison. The
reconfigurable design with external reconfiguration requires
64% less logic resources than the non-reconfigurable design.
The maximum clock frequency also increases from 100 MHz
to 182 MHz. The processing power is reduced by 60% for
the MicroBlaze-based design and by 64% for the design
with external reconfiguration. Area and power savings and
the performance increase can be explained given the fact
that more efficient fixed-coefficient multipliers are used
in the reconfigurable design. These improvements lead to
significant reductions in the processing energy. However,
reconfiguration can incur an energy penalty that may offset
the improvements in processing energy. Table I shows the
total energy to process 10,000 samples in our reconfigurable
designs for two different reconfiguration speeds. The slow
speed of 5MB/s corresponds to what can be achieved
with an unoptimised HWICAP core, and the fast speed
of 300MB/s corresponds to what has been demonstrated
in [15]. The results show that slow configuration leads to
significant energy penalties that make the reconfigurable
designs less efficient than the non-reconfigurable ones. Even
the MircoBlaze design with fast reconfiguration is less
efficient than the design without reconfiguration. However,
the design with external reconfiguration is 19% more energy
efficient.

Figure 3 shows the normalised energy efficiency of our de-
signs over a range of data set sizes. For large data sets, all re-
configurable designs approach an energy of 6.8nJ/sample.
This is 5 times more efficient than the non-reconfigurable
design with 34.3nJ/sample. However, slow reconfigura-
tion speeds as well as energy overheads caused by the
reconfiguration controller lead to fast deterioration of energy
efficiency for smaller data sets. To obtain improvements in
energy efficiency through reconfiguration, it is important to
develop reconfiguration mechanisms with high speed and
low power overhead.

B. Exploring parallelism

We now demonstrate how our design exploration method
can be used to further optimise the design. As step 1,
we determine the application parameters as s = 80 and
n = 10, 000. For Viretx-5 with fast reconfiguration, we
obtain φconfig = 300MB/s and ΘLUT = 36.9bytes/LUT
(step 2). We use the reconfigurable design with external
configuration as initial implementation. This design is fully
parallel, i.e. p = 80. The power overhead Po = 350mW
is measured on a configured device with clock managers
running but without any FIR logic, and tp, A and Pr are
obtained from table I (step 3). As step 4, we calculate
the processing time per element as tp,e = 5.49ns using
equation 8, and the reconfiguration time per element as
tr,e = 14.5µs using equation 6 and 9. Using equation 18
we can calculate popt = 24.1 (step 5). We choose p = 20
as a practical value. According to equation 16, we predict
the energy for this design to be 17.8nJ/sample. We now
build a design for p = 20 and obtain its parameters (step 6).
Table II shows circuit size, maximum clock rate, time
and energy parameters for designs with p ranging from
80 down to 5. This is for illustration purposes; not all

0

20

40

60

80

100

120

140

160

1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08

n

E
 [
n
J
/s
a
m
p
le
]

non-reconf

reconf, fast, ext

reconf, fast, MB

reconf, slow, ext

reconf,slow, MB

Figure 3. Energy efficiency over dataset size n for MicroBlaze (MB) and
external (ext) reconfiguration and with various configuration speeds.



VHDL design CoreGen design

p LUTs fmax Pp tp,e tr,e Ep,n Er,n Etotal,n LUTs fmax Pp tp,e tr,e Ep,n Er,n Etotal,n

[mW ] [ns] [µs] [nJ ] [nJ ] [nJ ] [mW ] [ns] [µs] [nJ ] [nJ ] [nJ ]

80 9452 182 1236 5.49 14.5 6.8 21.1 27.9 12039 300 1928 3.33 18.5 6.4 27.0 33.4

40 6278 145 908 6.89 19.3 12.5 14.0 26.5 6652 300 1276 3.33 20.4 8.5 14.8 23.3

20 5058 120 778 8.33 31.1 25.9 11.3 37.2 3321 300 774 3.33 20.4 10.3 7.4 17.7

10 3129 120 630 8.33 38.4 42.0 7.0 49.0 1674 300 550 3.33 20.4 14.7 3.7 18.4

5 1774 110 398 9.09 43.6 57.9 3.9 61.8 841 300 452 3.33 20.5 24.1 1.9 26.0

Table II
VHDL AND COERGEN IMPLEMENTATIONS OF THE RECONFIGURABLE FIR FILTER FOR VARIOUS p AND A DATASET SIZE OF n = 10, 000.

0

10

20

30

40

50

60

70

5 10 20 40 80

p

E
 [
n
J
/s
a
m
p
le
]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

a
re
a

E total,n

E p,n

E r,n

LUTs

Figure 4. Energy efficiency and area for different levels of parallelism p in
VHDL implementation.

of these designs would be built when using our method.
A breakdown of the energy components and circuit size
is also illustrated in figure 4. For p = 20, we find that
Etotal,n = 37.2nJ/sample (step 7). This is worse than
expected and can be explained with the fact that the clock
frequency drops and that circuit size does not scale as well
as expected. As step 8, we move p back closer to the original
value and try p = 40. For this value we do find an optimum.
The design uses 26.5nJ/sample which is 5% less than the
fully parallel design and 23% less than the original non-
reconfigurable design. The design with p = 40 requires 6278
LUTs which is 34% less than the fully parallel design and
76% less than the original non-reconfigurable design.

We now reimplement the same reconfigurable filter with
Xilinx CoreGen. Filters are implemented using distributed
arithmetic and fixed coefficients. Parallelism cannot be di-
rectly specified in CoreGen, but it can be implied by setting
clock rates and data rates accordingly. We first build a fully
parallel version of the design and perform our optimisation
again from step 3. Table II shows that the fully parallel
version requires more area and power and is less energy
efficient than the comparable VHDL implementation.

The power overhead for this design is measured as Po =
356mW and we calculate tp,e = 3.33ns and tr,e = 18.5µs.
All other parameters are identical to the previous case. Using

0

5

10

15

20

25

30

35

40

5 10 20 40 80

p

E
 [
n
J
/s
a
m
p
le
]

0

2000

4000

6000

8000

10000

12000

14000

a
re
a

E total,n

E p,n

E r,n

LUTs

Figure 5. Energy efficiency and area for different levels of parallelism p in
CoreGen implementation.

0

10

20

30

40

50

60

70

80

90

100

5 10 20 40 80

p

E
 [
n
J
/s
a
m
p
le
]

n=1000

n=10,000

n=100,000

n=1000,000

Figure 6. Energy efficiency for different levels of parallelism p and various
data set sizes n in CoreGen implementation.

equation 18, we calculate popt = 16.8. A practical value for
p is 16. However, CoreGen can only efficiently generate
designs where parallelism is reduced by powers of 2. We
therefore choose the closest practical value p = 20. Using
equation 16 we calculate the energy for this design to be
16.7nJ/sample. The real energy according to table II is
17.7nJ/sample which is close to what we expect. The
design with p = 20 is indeed the optimal design and requires
47% less energy than the fully parallel CoreGen design and



49% less energy than the original non-reconfigurable design.
The design with p = 20 has a size of 3321 LUTs which is
72% less than the fully parallel CoreGen version, and 87%
less than the original design.

Table II shows that the CoreGen design scales better than
the previous VHDL implementation. The clock rate remains
constant and the circuit size scales proportionally to p. This
causes the CoreGen design to become more efficient than the
VHDL version as p is reduced. A breakdown of the energy
efficiency is illustrated in figure 5.

The previous analysis considers a fixed dataset size of
n = 10, 000. Figure 6 shows the efficiency of the CoreGen
design when the dataset size varies. For a dataset size of
1000, a fully serial implementation is the best choice for
a reconfigurable design. However, in our case this is 15%
less energy efficient than the non-reconfigurable design.
Larger dataset sizes push the optimum to fully parallel
implementations which are all more energy efficient than
the non-reconfigurable design.

VI. CONCLUSION

We analyse the energy efficiency of reconfigurable and
non-reconfigurable designs including the overhead caused by
reconfiguration. Our analysis is based on a simple analytical
model that allows us to evaluate the energy efficiency based
on a set of application, device and implementation param-
eters. Using our model we can perform a fast design-space
exploration to identify the most efficient implementation
without building and measuring all design variations. We
conduct a case study of a reconfigurable FIR filter and
show that fast reconfiguration speeds and low-power re-
configuration are essential to making reconfigurable designs
beneficial. We also evaluate how changing the degree of
parallelism in the implementation can influence the overall
energy efficiency. A CoreGen implementation scales exactly
as assumed in our model, and our model is also useful for
a VDHL implementation that scales less well. A refinement
of the results leads us to the optimal solution. Current and
future work includes studying the effect of this optimisation
on a wide range of applications, as well as automating our
energy-aware approach.

ACKNOWLEDGEMENTS

The support of Xilinx, UK EPSRC and FP7 HiPEAC is
gratefully acknowledged.

REFERENCES

[1] I. Kuon and J. J Rose, “Measuring the gap between FPGAs
and ASICs,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203–
215, Feb. 2007.

[2] T. Tuan, A. Rahman, S. Das, S. Trimberger, and S. Kao, “A
90-nm low-power FPGA for battery-powered applications,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 26, no. 2, pp. 296–300, Feb. 2007.

[3] M. Wirthlin and B. Hutchings, “Improving functional density
using run-time circuit reconfiguration,” IEEE Transactions on
VLSI Systems, vol. 6, no. 2, pp. 247–256, 1998.

[4] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Exploiting
partial runtime reconfiguration for high-performance reconfig-
urable computing,” ACM Transactions Reconfigurable Tech-
nology and Systems, vol. 1, no. 4, pp. 1–23, 2009.

[5] T. Becker, W. Luk, and P. Y. K. Cheung, “Parametric design
for reconfigurable software-defined radio,” in ARC ’09: Pro-
ceedings of the 5th international workshop on Reconfigurable
Computing. Springer, 2009, pp. 15–26.

[6] M. Cummings and S. Haruyama, “FPGA in the software
radio,” Communications Magazine, vol. 37, no. 2, pp. 108–
112, Feb 1999.

[7] K. Bruneel, F. Abouelella, and D. Stroobandt, “Automatically
mapping applications to a self-reconfiguring platform,” in
Design, Automation and Test in Europe. IEEE, 2009, pp.
964–969.

[8] I. Kennedy, “A dynamically reconfigured UMTS multi-
channel complex code matched filter,” in Field-Programmable
Technology. IEEE, 2005, pp. 199–206.

[9] A. H. Gholamipour, H. Eslami, A. Eltawil, and F. Kurdahi,
“Size-reconfiguration delay tradeoffs for a class of DSP
blocks in multi-mode communication systems,” in Field-
Programmable Custom Computing Machines, Annual IEEE
Symposium on. IEEE Computer Society, 2009, pp. 71–78.

[10] R. Tessier, S. Swaminathan, R. Ramaswamy, D. Goeckel,
and W. Burleson, “A reconfigurable, power-efficient adaptive
Viterbi decoder,” IEEE Transactions on VLSI Systems, vol. 13,
no. 4, pp. 484–488, 2005.

[11] J. Becker, M. Hübner, and M. Ullmann, “Power estimation
and power measurement of Xilinx Virtex FPGAs: trade-offs
and limitations,” in 16th Symposium on Integrated Circuits
and Systems Design, SBCCI 2003. IEEE Computer Society,
2003, pp. 283–288.

[12] J. Lamoureux and S. J. E. Wilton, “On the trade-off between
power and flexibility of FPGA clock networks,” ACM Trans-
actions Reconfigurable Technology and Systems, vol. 1, no. 3,
pp. 1–33, 2008.

[13] W. Tuttlebee, Software Defined Radio: Enabling Technolo-
gies. Wiley, 2002.

[14] Xilinx Logic Core: OPB HWICAP, Xilinx Inc., July 2006.

[15] C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hübner,
and J. Becker, “A multi-platform controller allowing for
maximum dynamic partial reconfiguration throughput,” in
Field Programmable Logic and Applications. IEEE, 2008,
pp. 535–538.

[16] Virtex-5 Configuration Guide v2.1, Xilinx Inc., October 2006.


