
Run-time Reconfiguration for a
Reconfigurable Algorithmic Trading Engine

Stephen Wray, Wayne Luk, Peter Pietzuch
Department of Computing, Imperial College London

London, United Kingdom
{sjw06,wl,pp}@doc.ic.ac.uk

Abstract—In this paper we present an analysis of using
run-time reconfiguration of reconfigurable hardware to modify
trading algorithms during use. This provides flexibility in
algorithm design, enabling the implementation to be reactive
to changes in market conditions, increasing in performance.
We study what can be achieved to reduce performance loss in
algorithms while reconfiguration takes place, such as buffering
information during this time. Our results show our average
partial reconfiguration time is 0.002091 seconds, using historic
highest market data rates would result in about 5,000 messages
being missed or require buffering. This is the worst case
scenario, normally the system would only require a fraction of
messages. The reconfiguration time is acceptable if it is under
the required limit by the user to prevent business performance
suffering.

Keywords-Algorithm Trading; Run-Time Reconfiguration;

I. INTRODUCTION

Algorithmic trading is a large part of the electronic
trading landscape which has been evolving from the 1970s.
Algorithmic trading is designed to solve problems faced
by conventional trading of stock by human traders. First,
an increased market volume as computers were used more
frequently in communicating trades, the cost of trading
dropped, which led to investors trading more frequently. This
increase eclipse paratactical methods of manual management
because in the 40 years leading up to 2001, the daily volume
on the New York Stock Exchange increased 500 fold [1].
Second, market spreads have become tighter and latency
dropped, making it more difficult for people to carry out
trading of large volumes. The prevalence of algorithmic
trading, the daily volume traded is still increasing, requiring
faster and more powerful computers.

Equity trading is one individual purchasing shares from
another, through a stock exchange. Buyers and sellers place
orders on the exchange with a price, orders trade if the
prices align. The price of a stock changes depending on the
economy, news, supply and demand. An algorithmic trading
engine is designed to split large orders into smaller orders
before sending them to the exchange. The means the order
can be executed more consistently than a human trader. The
engine can react quickly to market fluctuations and handle
greater volumes of orders. The engine makes its decision on
received information, order parameters dictate how the order

should be traded and market data updates convey the current
market conditions [2]. Smaller orders don’t affect the market
as larger orders, in addition they conceal the activities of the
investor and achieve a better overall price.

Reconfigurable hardware is a highly desirable platform
for an algorithmic trading engine. Benefiting the features
of reconfigurable hardware, such as low latency and low
standard deviation on performance, producing a highly de-
pendable system. This has been realised before [3], but
has had little published research carried out in the area.
Research has likely to have been carried out but remained
unpublished because of holding a competitive advantage for
the owners in the industry. One difference that needs to be
addressed between software and hardware implementations
is how to deal with the limited resources of FPGAs. FPGA
chips are available in multiple sizes, large chips may be able
to accommodate tens of algorithm instances. This increases
device costs and power consumption while resources would
be wasted by infrequently used components. For this reason,
in this paper we will use the run-time reconfiguration feature
offered by many FPGAs so that smaller, less expensive chips
can be used while affording the flexibility of supporting a
large number of algorithms.

We show that the amount of time to complete a partial
reconfiguration of the device changing algorithm instances is
acceptable. This allows the cost of reconfiguration measured
in terms of price performance to remain low. The ability
for the user to deploy alternate algorithms increases the
possibility that the change will compensate for any loss and
by improving performance. The contributions of this paper
include the following:

• An overview of why run-time reconfigurations use is at-
tractive in an algorithmic trading engine; in Section III.

• A solution for storing instances to deploy on different
market conditions; in Section IV.

• Evaluation and comparison to a related software solu-
tions, illustrating its potential; in Sections V and VI.

This paper also covers related background work and mate-
rial that motivates this research; in Section II. A comparison
to a software implementation and the relation to run-time
reconfiguration of hardware based systems; in Section III.



FPGA

Orders

Algorithm #2Algorithm #1Algorithm #0 Algorithm #4

Splits

Updates Algorithm #3

(a) Before partial reconfiguration.

FPGA

Orders

Algorithm #3Algorithm #2Algorithm #1Algorithm #0

Splits

Updates

(b) After partial reconfiguration.

Figure 1. 1(a): The FPGA has space for the new algorithm to be placed.
1(b): The FPGA includes Algorithm #3, connected and processing data.

II. RELATED WORK

Inspiration for this work was previous research in related
financial fields. [4] presented using FPGAs to accelerate
market data processing, which is an important feature of
an algorithmic trading engine. [5] shows the effectiveness
of using FPGAs in financial calculations related to those
performed by the algorithms. The financial media has also
covered how FPGAs could be used within electronic trading.
A report [6] shows that FPGAs are beginning to get market
penetration where previous research has helped, shown in
[4]. Article [7] explores the demand for such ability but also
the problems that exist with these types of architectures.

Similar work in using run-time reconfiguration to make
implementations more flexible while retaining processing
ability has already been shown in [8]. This research was
applied in the similar area of network packet analysis which
has many similar traits to an algorithmic trading engine.
[9] showed run-time reconfiguration of a software defined
radio, it is not immediately relevant but many of the same
problems with buffering or not buffering information during
the transition period apply in this field.

III. RUN-TIME RECONFIGURATION

Figures 1 and 2 show the process of partial reconfigu-
ration from a high-level perspective. The first scenario has
the enough capacity on the device to place an additional
algorithm but the second scenario doesn’t have this luxury.
After placement the data feeds and output are connected,
processing data starts. The process doesn’t intrude on the op-
eration of any algorithms that aren’t modified, they are able
to continue working at full performance. The performance of
algorithms implemented in hardware was explored and some
limitations discovered to using this type of architecture [2].
One concern was supporting a large number of algorithms

FPGA

Orders

Algorithm #1Algorithm #0 Algorithm #2 Algorithm #3

Splits

Updates Algorithm #4

(a) Before partial reconfiguration.

FPGA

Orders

Algorithm #4Algorithm #0 Algorithm #1 Algorithm #2

Splits Algorithm #3

Updates

(b) After partial reconfiguration.

Figure 2. 2(a): The FPGA has no space and an existing algorithm, #3 must
be removed. 2(b): Algorithm #3 has been removed and replaced with #4.

with limited resources, the available space on the FPGA
chip. This paper is going to explore using run-time recon-
figuration to support a large number of implementations with
limited resources.

Parameters of the algorithm can be altered to allow the
device to maximise its performance. On high market data
update throughput it would be appropriate to change the
order batch size to larger than the current number of orders
being processed. If it cannot be increased enough, then
increasing it to minimise wastage by making the batch size
close to a factor of the total number of orders to process
has a similar effect. With an increased depth of market,
the update batch size can be increased to improve accuracy
of decision making, using more information. There may be
occasions where an algorithm could be modified to make it
more effective in the short term. Alternatively one algorithm
may prove popular one day, it would improve performance
to increase the number of instance of the same algorithm to
keep up with demand.

All of these situations lead themselves to using the run-
time reconfigurable features provided by many FPGAs that
allow for implementations to be modified or fully changed
quickly. The disadvantage is that it takes a notable amount of
time, especially when dealing with latencies in the microsec-
ond realms. During this time, performance is reduced and
trading opportunities may be lost. For this reason, we need
to know how long example reconfigurations would take,
during when no processing can be completed. In algorithmic
trading, updates can be dropped and left unprocessed or
buffered for processing later. Generally only storing the
last good update is required as it contains all the current
information for the current market state. If the algorithm
tried to trade on updates that had expired then it may
trade incorrectly, causing a detrimental effect on its business



 A10,10 . . . A10,n

...
. . .

...
Am,10 . . . Am,n


Figure 3. A matrix of configurations for a single algorithm (A) varying
by order (m) and update (n) batch size. Groups of matrices form a library.

performance. This is because liquidity it was targeting may
no longer be available when the trade is sent. However some
algorithms may require this information for other purposes
such as statistics or internal state. For the time being, the
algorithms that we are interested in only require the last
good update when resuming processing.

A software implementation designed to load algorithms
during runtime, has similarities the hardware implementa-
tion. However as previously discussed, the ability to create
a new algorithm during the trading day, complete testing
and compilation is impractical because of time limits. Unlike
our hardware version, there is no need to compile a library
of specific variations and store them separately. This is
because an algorithm’s memory footprint is small compared
to the data that it stores and so having a large number of
algorithms ready to accept information in a software based
environment is possible. Memory is finite but we assume
that the system has sufficient memory to operate. As each
algorithm uses a quantity of time on the processing unit to
execute, there is no concern over the implementation size
of the algorithm and data representation size is coarsely
grained. This relieves many of the problems faced by
the hardware implementation. The software system can be
thought of as having all the implementations ready and
having to load them every time it wants to use them, much
like how a reconfigurable hardware device would have to be
reconfigured to use another algorithm. However for software,
loading the code from memory is a natural overhead of the
system and extremely quick compared to reconfiguring a
hardware device. Therefore there is little benefit in designing
a software system in this way, in addition the reconfigurable
architecture affords many methods of increasing perfor-
mance through specialisms compared to software features.

IV. RUN-TIME RECONFIGURATION LIBRARY

Since the process of compiling, testing and generating a
hardware bitstream with placement information takes a sig-
nificant amount of time (more than an hour), it is impractical
to generate reconfigurations on the fly. Our solution is to
build a library of existing implementations which have been
tailored to different scenarios that can be quickly deployed to
a target device. The size and granularity of the library can
be determined by the user, based on a number of factors,
including the scenarios that they expect to encounter and
the capacity of their device. Figure 3 shows a possible set
of configurations for an algorithm to be pre-generated for

Table I
SIZE AND RECONFIGURATION TIME OF THE ALGORITHM.

Nslices Ncolumns Tpartial

A5,5 512 4 0.001394
A5,10 538 4 0.001394
A5,15 462 3 0.001046
A5,20 558 4 0.001394
A10,5 665 5 0.001743
A15,5 641 5 0.001743
A20,5 770 5 0.001743
A10,10 662 5 0.001743
A15,15 718 5 0.001743
A20,20 737 5 0.001743

use during a trading day. The variables m and n are only
bound by the requirements of the use and the ability for the
implementation to be placed on the target device.

Trading activity through the trading day can be coarsely
predicted by expecting higher volumes at the start and end of
the trading period. In addition there is a notable bump in load
during the afternoon when the USA starts trading. Future
activity increases may have fore warning if a client informs
the operators that they will be placing a significant number
of orders. Load can be expected to rise after important news
is announced which may affect the markets, the time of this
may be known before the announcement. It is to be expected
that during times of increased activity fewer algorithms
will be used but they will provide better utilisation. During
times of less activity, a wider range of algorithms could be
selected to provide better trading functionality. This fine-
grained approach to selecting algorithms given the current
market environment, gives the user a lot of control, with
performance benefits in both high and low activity periods.

V. EXPERIMENTAL RESULTS

The hardware implementation was developed in Handel-
C [10], which is a subset of the C language with extensions
specific for FPGA development. The implementation was
compiled into Electronic Design Interchange Format through
Mentor Graphics DK Design Suite 5.2 before Xilinx ISE
Webpack 11.1 placed and routed the target chip [2]. We
use the Xilinx Vertex 5 xc5vlx30 FPGA to produce results
from analysis. The xc5vlx30 is an array of 80 rows and
30 columns, totalling 4,800 available slices [11]. A total of
8,374,016 configuration bits and 6,376 configuration frames,
each frame is 1,312 bits [12]. A single column contains
4800/30 = 160 slices or 212.5 frames. The xc5vlx30’s
reconfiguration clock set up to 50MHz with a 16 bit data
path, providing 800 Mbit/s transfer [12]. Using the above
information with information from our design, we can
calculate the time to reconfigure the target device under
a number of scenarios. Table I shows these results from
variations created from an existing algorithm.

Figure 4 shows the how the algorithm scales in three
different scenarios. The first scenario varies the order batch
size, this increases orders processed throughput. Increased



Figure 4. Size scaling graph for the participate algorithm.

in times of high market activity, or decreased to save
resources. The second scenario varies the update batch
size, this increases the algorithms decision making accuracy.
Increased in times of large market depth, or decreased to
save resources. The third scenario varies both order and
update batch size. This delivers the advantages and disad-
vantages of both previous scenarios. The graph shows the
implementation space requirements. The resource utilisation
increases as the parameters increase. This is a trend as
the actual utilisation varies depending on how effective the
compiler is with optimising the implementation. On batch
sizes which are multiples of ten there is generally a higher
level of optimisation.

The device is reconfigured a column at a time, we
calculate the reconfiguration time per columns for this device
is 0.00035 seconds. We can now deduce how many messages
would be missed or need buffering in this time. A historic
maximum peak in market data information can be take
as 2,526,103 messages per second recorded on February
11, 2010 [13]. This peak is the aggregate of 15 american
markets and presents a worst case scenario. Using this
information, we find that ˜880 messages would be missed.
A system would only need fraction of these updates though.
Slow stocks would normally have no updates within this
reconfiguration time, busy stocks may receive a couple.
Using a 32 bit data representation and an update entry batch
size of 10, each update requires 640 bits of storage. This
would allow 2MB of storage to hold 25,000 updates.

VI. CONCLUSION

We have looked at using run-time reconfiguration to
change an implementation during the trading day, making
it more effective and flexible. This has been an area of
concern for implementing an algorithmic trading engine in
reconfigurable hardware. We have shown that the device
can maintain high utilisation making it highly cost effective
while not loosing the ability to implement multiple complex
algorithms. To show the loss is minimal, we have shown
through current peak market data update rates how many
messages would have been missed. This was taken from a
large number of consolidated stock exchanges as a worst

case scenario, where a production system would consume
much less information.

We have presented a solution to reduce the time to deploy
algorithms by pre-compiling and storing a selection of im-
plementations. These can be deployed quickly given market
conditions. The compilation and testing of the implemen-
tation is completed before the algorithm are required. We
have also discovered that compilation optimisations carried
out vary depending on the size of the implementation.
Shown in our results where an increase in computation
does not necessarily result in an increase in resource usage.
When generating a library, it would be beneficial to remove
inefficient designs to prevent their use.

ACKNOWLEDGMENT

We would like to thank Qiang Liu and Tim Todman at
Imperial College London for their help with the Mentor
Graphics DK Design Suite and Xilinx ISE. Additionally we
would like to thank the three anonymous reviewers for their
invaluable feedback that enabled this paper to be improved.

REFERENCES

[1] NYSE, “Homepage,” http://www.nyse.com, Mar 2010.

[2] S. Wray, W. Luk, and P. Pietzuch, “Exploring algorithmic
trading in reconfigurable hardware,” in Application-specific
Systems, Architectures and Processors, July 2010.

[3] Automatedtrader.net, “FPGA’s - Parallel perfection?” Auto-
mated Trader Magazine Issue 02, July 2006.

[4] G. Morris, D. Thomas, and W. Luk, “FPGA accelerated low-
latency market data feed processing,” in High Performance
Interconnects, 2009, Aug. 2009, pp. 83–89.

[5] A. Tse, D. Thomas, and W. Luk, “Accelerating quadrature
methods for option valuation,” in Field Programmable Cus-
tom Computing Machines, 2009, April 2009, pp. 29–36.

[6] I. Schmerken, “Credit Suisse hires Celoxica for low-latency
trading and market data,” FinanceTech, Nov 2009.

[7] R. Martin, “Wall Street’s quest to process data at the speed
of light,” Information Week, Apr 2007.

[8] S. Yusuf et al., “Reconfigurable architecture for network flow
analysis,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 16, no. 1, pp. 57–65, Jan. 2008.

[9] T. Becker, W. Luk, and P. Y. Cheung, “Parametric design
for reconfigurable software-defined radio,” in ARC ’09: Pro-
ceedings of the 5th International Workshop on Reconfigurable
Computing: Architectures, Tools and Applications, 2009, pp.
15–26.

[10] Handel-C Language Reference Manual, Mentor Graphics.

[11] Xilinx, Virtex-5 Family Overview, Feb 2009.

[12] ——, Virtex-5 FPGA Configuration User Guide, Aug 2009.

[13] Market Data Peaks, “Homepage,”
http://www.marketdatapeaks.com/, Mar 2010.


