
Dynamic Scheduling Monte-Carlo Framework for
Multi-Accelerator Heterogeneous Clusters

Anson H.T. Tse, David B. Thomas, K.H. Tsoi, Wayne Luk

Department of Computing
Imperial College London, UK

{htt08,dt10,khtsoi,wl}@doc.ic.ac.uk

Abstract—Monte-Carlo (MC) simulation is an effective tool
for solving complex problems such as many-body simulation,
exotic option pricing and partial differential equation solv-
ing. The huge amount of computation in MC makes it a
good candidate for acceleration using hardware and distributed
computing platforms. In this work, we propose a novel MC
simulation framework suitable for a wide range of problems.
This framework enables different hardware accelerators in a
multi-accelerator heterogeneous cluster to work collaboratively
on a single application. It also provides extension interfaces to
adaptively balance the workloads according to the cluster status.
Two applications are built using this framework to demonstrate
its capability and flexibility. A cluster with 8 Virtex-5 xc5vlx330t
FPGAs and 8 Tesla C1060 GPUs using the proposed framework
provides 44 times speedup and 19.6 times improved energy
efficiency over a cluster with 16 AMD Phenom 9650 quad-core
2.4GHz CPUs for the GARCH asset simulation application. The
Efficient Allocation Line (EAL) is proposed for determining the
most efficient allocation of accelerators for either performance
or energy consumption.

I. INTRODUCTION

To increase the raw computation capacity of a system, one
can increase the computational power of the processing unit,
or increase the number of processing units. Domain specific
processors with specialized instructions or logic blocks usually
outperform traditional CPUs due to their more efficient use of
silicon area and higher hardware parallelism. So it is common
to see Digital Signal Processing (DSP) chips and Field Pro-
grammable Gate Array (FPGA) devices used as accelerating
co-processors in high performance computing (HPC) systems.
Due to recent advances in programming environments, Graph-
ics Processing Units (GPUs) are also attractive to be used as
accelerators when building supercomputing systems.

Techniques from distributed computing have been a so-
lution for HPC for many years. The computation task in
an application is decomposed into smaller tasks which are
performed by computing nodes which communicate through
a network. While it is intuitive to combine these two methods
to further improve the performance of the system, there are
still some key challenges when building practical applications
for a multi-accelerator heterogeneous cluster.

The first challenge is the difference in programming models
and difference in tools between conventional software pro-
gramming and these hardware accelerators. Having different
types of accelerators within the system makes the situation
even more complex as they communicate with the CPU in

different ways. This complicated application structure and the
high non-recurring engineering (NRE) cost per application be-
come the major barriers when utilizing heterogeneous clusters.

The second challenge is the different types of hardware
accelerators are usually customized for specific computation
and communication patterns. Thus the performance of them
will vary from application to application. Some accelerators
may outperform others in computational speed while some
accelerators may consume less energy. How to efficiently
schedule the tasks for different accelerators is one of the
challenging problems. On top of this is the synchronization
and data transfer overhead, which increases the uncertainty of
the overall achievable performance.

The third challenge for a distributed HPC system is to dis-
tribute tasks efficiently. The overhead will become dominant
as the number of tasks increases, according to the law of
diminishing returns. The communication between distributed
tasks will contribute to the overhead. This suggests that
applications with a large number of divisible tasks, and a small
number of inter-task communications will benefit the most.

Focusing our research on the Monte-Carlo simulation prob-
lems enables a better system optimization in a domain specific
way. Therefore, we address the above challenges by designing
a versatile distributed framework on the heterogeneous cluster
architecture targeted in Monte-Carlo problem domain. The
main contributions of this work include:
• A scalable distributed Monte-Carlo framework for multi-

accelerator heterogeneous clusters is proposed. In this
framework, various computational units including CPUs,
GPUs and FPGAs work collaboratively to share the
workload in the simulation process.

• Various load balancing schemes are modeled and eval-
uated for the proposed framework. Dynamic runtime
scheduling is enabled to improve the utilization efficiency
of all available computing resources in the system.

• Two applications are developed and mapped in the pro-
posed framework. The performance of different dynamic
scheduling policies in these practical examples is eval-
uated. The speed and energy consumption trade-off of
different accelerator allocations is discussed and analyzed
with the Efficient Allocation Line (EAL) approach.

In the paper, Section II presents previous work in the
related systems and applications. Then Section III explains the
details of our proposed distributed MC framework. Section IV



presents the models and implementations of different dynamic
scheduling policies. Section V presents the implementation
details of two applications (Asian-Option pricing and GARCH
asset simulation) using the proposed framework. Section VI
evaluates the measured results of these two applications run-
ning on a cluster of accelerated computers. Different dynamic
scheduling policies are compared and the speed and energy
consumption trade-off between different accelerator allocation
policies is discussed. Finally, Section VII summarizes our
achievements and future work.

II. RELATED WORK

Systems with FPGA devices as accelerators have been
studied and developed in both academic and industrial fields.
In 2004, the Cray XD1 computer [1] achieved 58 GFlops with
12 Opteron CPUs and 6 Xilinx Virtex-II FPGA devices on a
single motherboard. In 2007, a cluster with 64 Virtex-4 FPGA
devices was built in the Maxwell project [2]. Each FPGA in
the Maxwell cluster can achieve up to 2.5 times speedup in a
face recognition application, and over 300 times speedup in a
Monte-Carlo option pricing application when compared with
the software implementations.

GPU computing platforms often have a larger number
of floating point units and higher operating frequency than
FPGA devices can support. The programming interface of
GPU devices, such as CUDA [3], also helps to promote their
popularity in HPC systems. In 2008, an updated version of
the TSUBAME (Tokyo-tech Supercomputer and Ubiquitously
Accessible Mass-storage Environment) system [4], achieved
56.43 TFlops for solving dense linear equations. In addition to
custom vector processors, this supercomputer is also equipped
with 170 nVidia Tesla C1070 cards.

In 2009, the Quadro Plex (QP) Cluster [5] was built by
NCSA in UIUC. For each of the 16 nodes in the QP prototype,
there are two AMD Opteron CPUs, four nVidia G80GL GPUs
and one Xilinx Virtex-4 LX100 FPGA. This system may
achieve 23 TFlops (single precision) theoretically. In 2010, the
Axel cluster [6] from Imperial College London demonstrated
the collaboration between heterogeneous accelerators. With
Xilinx Virtex-5 FPGAs and nVidia C1060 GPUs working
together, this 16-node cluster achieved over 22 times speedup
in a N-body simulation application over a 16-node CPUs only
cluster.

Financial applications in banks usually require supercom-
puting power for either processing huge amount of raw data
or simulating pricing models repeatedly. FPGA platforms
have been used to accelerated the Monte-Carlo simulation for
financial instruments [7], [8]. In [9] the authors studied the
performance of a GPU cluster, which is 2.8 times faster and
consumes 28.3 times less energy than a CPU cluster.

III. HETEROGENEOUS FRAMEWORK

Flexibility for the application programmers; scalability of
the framework; and efficiency of the resource utilization are
the three major concerns of our distributed framework. There-
fore, we designed our heterogeneous Monte-Carlo framework
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Fig. 1. The overall framework.

without creating another layer in programming language level
and without altering the original tool chains of each type
of accelerators in order to provide the flexibility for the
application programmer. The framework provides a unified
hierarchical model such that a Monte-Carlo simulation is
divided into sub-tasks and distributed to the lower layers
recursively. It is highly scalable as a simulation task can
be distributed across different accelerators in a single server
node, across different server nodes in a cluster or even across
several heterogeneous clusters. Extensible dynamic scheduling
policies can be designed in the distributor processes such that
the sub-tasks can be allocated to the worker process based on
the computational performance or even energy consumption.

A. Overall hierarchy

The overall framework for distributed Monte-Carlo simu-
lation on a multi-accelerator heterogeneous cluster is shown
in Fig. 1. There are two major processes in this framework:
MC distributors and MC workers. MC distributors wait for the
Monte-Carlo parameters and task size as a form of MC request
from their parent MC distributor or from the user. The MC
distributor then partitions the task and distributes the sub-tasks
to their child MC distributors or MC workers. No simulation is
done on the MC distributor. Their functionality is implied by
their name – to distribute the Monte-Carlo simulation tasks to
their connecting child processes. Each MC worker is respon-
sible for the execution of part of the simulation. They pass the
simulation parameters to the underlying “kernel” and get the
partial simulation result back from it. In a multi-accelerator
environment, each “kernel” holds a specific computational
hardware resource such as FPGA, GPU or CPUs.

Fig. 1 only shows a two layer MC distributor network. In
fact, the framework is highly scalable since there could be
more than two and no upper limit for the number of layers of
MC distributors. Additional layers of MC distributors could be
inserted between the user node and the cluster. For example,
when there are 3 heterogeneous clusters (A,B,C) from different
organizations, they could collaborate by inserting a layer of 3
MC distributors namely DA, DB and DC. The MC distributer
at the user node distributes the sub-tasks to DA, DB and DC.
DA then further partitions and distributes the sub-tasks to the
MC distributors of the nodes in cluster A. Similarly for DB
and DC.
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B. MC processes

The MC workers are the main simulation units. Fig. 3 shows
the work flow of the MC worker. The MC workers wait for the
MC request (MC parameters and the task size), then forward
the MC request to their computation hardware (FPGA, GPU
or CPUs) and execute the kernel via the hardware driver.
When the computation results are returned, the MC workers
report them to their parent MC distributor. The reported
results include the aggregated simulation results and the actual
completed task size by the kernel. The actual completed task
size could differ from the MC request due to hardware specific
constraints (e.g. number of cores and memory limit).

The MC distributors are key elements in the distributed
Monte-Carlo framework. The work flow of the MC distributor
is shown in Fig. 2. The MC distributors wait for the MC
request from their parent process or user input, then they
partition the MC request to several sub-tasks based on the
scheduling policy. The partial MC requests for those sub-tasks
are then sent to the child MC distributors or MC workers.
When one of the child processes reports the partial results,
the MC distributors aggregate the results until the task is
completed (the sum of reported task completion size = the
required task size in the MC request). When the task is not
completed yet, the MC distributor adjusts the sub-task size
for the reporting process according to the scheduling policy.
Another partial MC request is sent to the reporting process
with an updated sub-task size. When the task is completed,
the MC distributors report the aggregated result to the parent
process (or user). The “task size” discussed here can be the
number of simulations, the number of particles or any form of
computation tasks of that particular Monte-Carlo simulation.

The intra-node communication between MC distributor and
MC workers within the same node is realized by interprocess
communication channel (IPC). The inter-node communication
between MC distributors of different nodes is realized by the
TCP/IP channel with MPI as the session layer.

IV. SCHEDULING POLICIES

In a multi-accelerator heterogeneous cluster, the computa-
tional performance differs between different nodes and be-
tween different accelerators of the same node as well. Im-
proper task distribution could lead to a drastic performance
reduction.

For example, consider a node consisting of one FPGA and
one CPU, and the processing speed of FPGA and CPU is
1000 simulations per second and one simulation per second
respectively. If 2000 simulations are required and the MC
distributor simply distributes 1000 simulations to the MC
worker of FPGA and CPU equally at the beginning, the total
execution time will be 1000 seconds and the FPGA will be
idle for 999 seconds. Such inefficient task allocation leads
to poor performance and imbalanced resource utilization. In
contrast, if the MC distributor distributes one simulation to
both MC workers and distribute another one simulation to
them after they reported the result, the execution time is around
2 seconds computation time plus a large amount of message
passing overhead and latency between hardware and software.

For the above simple example, one may be able to de-
termine the “optimal task distribution” by pilot running the
simulation in each of the devices and distribute the tasks
according to their computational performance (1000:1 in this
case) provided that the computational time is deterministic
for each accelerator. However, such deterministic assumption
is often invalid as many Monte-Carlo simulation problems
involve non-deterministic run-time (such as solving PDEs).
The computation performance for some devices (such as CPU)
also depends heavily on the server status.

Therefore, the scheduling policy is a critical factor for the
collaborative computing performance in a multi-accelerator
heterogeneous cluster. Our solution involves introducing one
static and two dynamic scheduling policies. The dynamic
scheduling policies enable the task size allocated to the child
processes to grow adaptively according to their performance.
The performance evaluation of these policies will be discussed
in Section VI. The initial task size for all child processes is
defined as TSinit. The task size for child i at the jth time of
simulation is defined as TSi

j . Therefore, TSi
1 = TSinit for all

i. The remaining uncompleted task size of the MC distributor
is defined as Rd.

A. Constant-Size policy

The Constant-Size scheduling policy is the simplest form of
static scheduling policy in which the task size stays constant
for each child at all times. The Constant-Size scheduling policy
is defined as:

TSi
j+1 = min(TSi

j , Rd) (1)

The number of TSinit (TSi
1) is critical for constant-size

scheduling policy. A small value of TSinit might cause a
large amount of message passing overhead. A large value of
TSinit might cause the slowest MC worker to affect the overall
computation performance.



B. Linear-Incremental policy

The Linear-Incremental scheduling policy is defined as:

TSi
j+1 = min((TSi

j + c), Rd), (2)

where c is a constant. It is a dynamic scheduling policy which
increases the task size of the MC worker linearly. Eventually,
the task size allocated for the faster child TSi1

j1 is larger than
the slower child TSi2

j2 as j1 > j2. The task size allocated
to each child will grow proportionally to their corresponding
processing rate slowly.

C. Exponential-Incremental policy

The Exponential-Incremental scheduling policy is defined
as:

TSi
j+1 = min((TSi

j ×m), Rd), (3)

where m is a constant. This dynamic scheduling policy in-
creases the task size of the MC worker exponentially with
a factor of m. Similar to Linear-Incremental policy, the task
size allocated for the faster child will be larger than the slower
child after a period of time. The task size allocated to the child
processed will grow proportionally to their processing rate at
a much faster rate.

D. Other possible policies

Apart from the basic scheduling policies stated above, we
can also employ a mixed scheduling policy, such as using
Linear-Incremental policy at the beginning and then change
the policy to Constant-Size after certain iteration. The schedul-
ing policy in this framework is highly flexible and can be
optimized for any goal. It is up to the application engineer
to design their own scheduling policies for their own target.
For example, If the energy usage of the MC worker can
be profiled and fed back to the MC distributor, an Energy-
Equal scheduling policy can be defined such that each MC
worker consumes the same amount of computational energy.
An energy-efficient MC worker keeps computing most of the
time, while a less energy-efficient MC worker will be idle
occasionally to keep the same amount of energy usage. The
idle accelerators can therefore be used in another application.

V. APPLICATIONS

We have implemented two applications in our proposed
framework, namely
• Asian option pricing using control variate method,
• GARCH asset simulation.

A. Asian option pricing using control variate method

Asian options are a kind of derivative: a financial instrument
whose value is dependent on the price of some underlying
asset such as a bond or stock. Unlike simpler options, which
provide a payoff depending on the instantaneous price of the
underlying, arithmetic Asian options provide a payoff depend-
ing on the arithmetic average price of the underlying during
the option life-time. This averaging makes arithmetic Asian

options cheaper and less sensitive to market manipulation, but
also means there is no closed-form solution for the pricing.

Monte-Carlo methods provide an accurate way to price
Asian options, but have slow convergence, so a huge number
of simulations is needed. Therefore, arithmetic Asian options
are perfect candidates to be priced using a multi-accelerator
heterogeneous cluster.

The payoff of an arithmetic Asian call option is:

payoff = max

(
0,

1
n + 1

n∑

i=0

Si −K

)
. (4)

where Si is the asset price at time i, K is the exercise price and
n is the number of steps. The estimated payoff is calculated
using Monte-Carlo simulation.

The control variate method is a variance reduction technique
which estimates the target value x using a control variable y.
The variable ȳ is computed using the same set of random
data used in the computation of x̄. The true expected value of
E(y) should be calculable using a closed-form solution. The
estimated value of x is adjusted by the difference between true
value of E(y) and estimated ȳ.

Therefore, apart from simulating the payoff of the Asian
option, the payoff of a correlated European option is also
simulated at the same time using the control variate Monte-
Carlo (CVMC) algorithm [10], [11].

B. GARCH asset simulation

Financial equations are often based on many assumptions.
The most famous Black-Scholes equation relies on a constant
volatility assumption [12]. In fact, it is well-known that the
volatility is stochastic. Monte-Carlo simulation is the only
way to evaluate the financial derivatives when stochastic
volatility is taken into account. One of the most commonly
used stochastic volatility models is Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) models [13]. One of
the GARCH models commonly used is GARCH (1,1) where
the volatility (σ) and the asset price (υ) is given by the
following equations:

σi =
√

a0 + a1ε2i−1 + a2σ2
i−1 (5)

εi = σi ×W (6)
υi = υi−1 + µ + εi (7)

The W is a Gaussian random number. Parameters a0, a1

and a2 are usually determined empirically using maximum
likelihood methods.

C. FPGA kernels

For both applications, we design the FPGA kernels as
shown in Fig. 4. There are two main types of components
in the design: one or more identical Monte-Carlo cores, and
a single shared Coordination Block (CB). The MC cores
contain a Gaussian random number generator (GRNG) core
and a simulation core. The GRNG uses the piecewise linear
generation method [14] which produces a stream of 24-bit
fixed-point random numbers, with a period of 2128. The quality
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of the stream has been checked with the Chi-squared test for
sample sizes up to 232, and shows no significant deviation
from the Gaussian distribution.

The MC core in our Asian option pricing application is
capable of generating random asset price paths, calculating
payoffs of the Asian option and European option, and ac-
cumulating the payoffs and payoffs related statistical result.
In other words, each MC core is capable of executing the
MC part of CVMC Algorithm. Multiple identical MC cores
are instantiated to make the maximum use of the device. The
required number of simulations is distributed equally to each
MC core.

The MC core in our GARCH asset simulation application is
responsible for the generation of random numbers, simulation
of the stochastic volatility movement, and simulation of the
asset movement with respect to the volatility.

The Coordination Block (CB) manages the MC cores,
allowing them to work in parallel to price the same option.
The CB is also responsible for communicating with the host by
accepting MC request and reporting MC results. The Gaussian
random number generators in MC cores are also initialized by
the CB. Different sequences of bits are connected to different
Gaussian random number generators as the random seeds.
The CB can also be viewed as a MC distributor employ-
ing Constant-Size scheduling policy. Constant-Size scheduling
policy is the best choice as all MC cores finish the computation
in the exact same cycle.

The hardware architecture of the simulation core for Asian
option pricing is shown in Fig. 5. The dynamic input parameter
is the Gaussian random number W generated by GRNG. There
are many pipelined loops in the hardware. The number of
pipelined stages must be identical for all the pipelined loops
in order to guarantee a consistent computation schedule. Let p
be the maximum number of pipeline stages for these pipelined
loops. Pipelined registers are added to ensure the number of
pipelined stages of all loops equal to p. As the feedback result
will reappear only after p stages, we simulate a batch of p paths
at the same time by interleaving the computations. The grey
boxes in Fig. 5 indicate the pipelined registers.

The hardware architecture of the simulation core for
GARCH asset simulation is shown in Fig. 6. The grey boxes
in Fig. 6 indicates the pipelined registers inserted to balance
the number of pipeline stages for all feedback updating loops
for the stochastic volatility and asset prices.

Our FPGA kernels target a Xilinx xc5vlx330t FPGA chip on
an Alpha Data ADM-XRC-5T2 card, which contains 51,840
slices, 192 DSP48E and 324 BlockRAM units. We design
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our hardware architectures for both applications manually in
VHDL to maximize performance. The design is synthesized,
mapped, placed and routed using Xilinx ISE 10.1.03. Single
precision floating point arithmetic is used. The number of MC
cores for Asian option pricing is 10. The number of MC cores
for GARCH asset simulation is 12. The summary of resource
consumption for both applications is shown in Table I.

D. GPU kernels

Graphics Processing Units (GPUs) have been used for
acceleration in many application domains. They are Single
Instruction Multiple Data (SIMD) computing devices. Paral-
lelizable tasks are executed on the GPU as a “kernel” by a
computation grid. The “kernel” is executed by all threads in
parallel with the same code, but on different sets of data.

The co-processing flow of GPUs provides a good match
to our design framework. The MC request containing MC
parameters and task size is firstly copied to the GPU data



TABLE I
XC5VLX330T FPGA RESOURCE CONSUMPTION

Asian option pricing GARCH simulation
MC Cores 10 12
Resource Used % Used %
Slices 44,118 85% 37,205 71%
FFs 130,195 62% 118,261 57%
LUTs 79,587 38% 59,313 28%
RAM 10 3% 12 3%
DSP48Es 180 93% 192 100%

memory. The MC results are copied back to the memory of
the MC worker after the execution of the GPU kernel.

We design our CUDA kernels for Asian options pricing
and GARCH asset simulation using two procedures, namely
Gaussian random number generator procedure, and a path
simulation procedure.

In the Gaussian random number generator procedure, uni-
form random numbers are first generated and stored in the
GPU’s global memory space using the Mersenne Twister
algorithm in parallel with all threads. Then the uniform ran-
dom numbers are transformed into Gaussian random numbers
using the Box-Muller method [15]. The memory space for
storing Gaussian random numbers is allocated by the MC
worker once at the beginning. In our target implementation
on nVidia Tesla C1060, 2GBytes are allocated, which can ac-
commodate 512MBytes of single-precision Gaussian random
number. Such memory constraints may lead to the completed
number of simulations to be less than the requested number
of simulations, which will be notified by the MC worker to
its parent.

In the path simulation procedure of Asian option pricing,
each thread simulates the price movement path as in the
CVMC Algorithm and computes the Asian and European
option result in the shared memory. In the path simulation
procedure of GARCH asset simulation, each thread simulates
the volatility dynamics as in Equation 5 and updates the asset
price accordingly.

E. CPU kernels

In both applications, we implement the CPU kernels in the
C language and use the Intel Math Kernel Library (MKL)
for the random number generation. The Mersenne Twister
algorithm is used as the random number base and Box-Muller
is used for Gaussian number transformation. The code is
compiled with Intel compiler (icc) 11.1 with -O3 maximum
speed optimization options and SSE enabled. OpenMP is used
to parallelize the computation with the multi-core capabilities
of CPUs. The parallel FOR #pragma directive is used to
parallelize the main loop, so that loop iterations can be
executed in parallel using multiple CPUs.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the results of the two appli-
cations used in our framework. We investigate the effect of
different dynamic scheduling policies on the computational
performance using the Asian options pricing engine in Sec-
tion VI-A. The performance, energy consumption and efficient

TABLE II
PERFORMANCE OF ASIAN OPTION PRICING

FPGA GPU CPUs Collarboration
Brand Xilinx Nvidia AMD -
Type Virtex-5 Tesla Phenom -
Model xc5vlx330t C1060 9650 -
Freq. 200MHz 1.3GHz 2.3GHz -
Qty 1 1 2 1 + 1 + 2
Time 18.3s 25.5s 399.6s 11.8s
Speedup 21.8x 15.7x 1x 33.8x
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100 1000 10000 100000TS_init

Time (s)
Constant-size
Linear-incremental (c=TS_init)
Exponential-incremental (m=2)

Fig. 7. The performance comparison for different scheduling policies.

accelerator allocation will be discussed using the GARCH
asset simulation example in Section VI-B. We carry out our
experiments on an accelerator cluster, which consists of 8
server nodes. Each server node consists of two AMD Phenom
9650 Quad-Core 2.3GHz CPUs, one nVidia Tesla C1060 GPU
and one Xilinx Virtex-5 xc5vlx330t FPGA.

A. Dynamic scheduling analysis of a single node

The performance of different accelerator combinations for
the pricing of an Asian call option is studied. The compu-
tational and load-balancing performance of different dynamic
scheduling policies is also presented. We choose a 10-year
arithmetic Asian call option with parameters S0 = 100,
K = 105, v = 0.15, r = 0.1, T = 10 and steps = 365.
The number of Monte-Carlo simulations is 10,000,000.

The performance comparison for the pricing of Asian option
with individual accelerators and multi-accelerator collabora-
tion is shown in Table II. The optimized multi-threaded CPU
kernel executed by two AMD Phenom 9650 quad-core CPUs
is used as the comparison reference. It can be seen that a
speedup of 21.8 times is achieved by the xc5vlx330t FPGA.
For the GPU, a speedup of 15.7 times is achieved by the Tesla
C1060. For the collaboration with FPGA, GPU and 2 CPUs,
a speedup of 33.8 times is achieved using Linear-Incremental
policy with TSinit = 1000.

The collaborative computation time results of using FPGA,
GPU and CPU kernels in one node with different scheduling
policies are shown in Fig. 7. The Constant-Size, Linear-
Incremental and Exponential-Incremental policies are used in
the MC distributor with different TSinit values. From the
figure, when TSinit is small, the Constant-Size policy suffers
from large overhead and thus long computation time. For
large TSinit, all policies suffer from reduced performance
due to the waiting of the completion of the slowest kernel.
The shortest computation time achieved is 11.8 seconds when



TABLE III
PERFORMANCE OF THE GARCH ASSET SIMULATION OF DIFFERENT

ACCELERATORS AND NUMBER OF COLLABORATIVE NODES

Using 2 CPUs per node only
Number of nodes 1 2 4 8
Time (ms) 1,162,725 660,687 360,129 162,018
APCC (W) 49 78 146 300
AECC (J) 56,973.53 51,533.58 52,587.83 48,605.40

Using FPGA per node only
Number of nodes 1 2 4 8
Time (ms) 38,969 19,691 10,458 5,418
APCC (W) 5 11 21 43
AECC (J) 194.85 216.60 219.62 232.97

Using GPU per node only
Number of nodes 1 2 4 8
Time (ms) 64,299 32,308 16,310 8,252
APCC (W) 97 192 350 676
AECC (J) 6237.00 6203.14 5708.50 5578.35

Using FPGA and GPU per node
Number of nodes 1 2 4 8
Time (ms) 24,706 12,822 6,825 3,636
APCC (W) 102 203 392 683
AECC (J) 2520.01 2602.86 2675.40 2483.40

Using both FPGA, GPU and 2 CPUs per node
Number of nodes 1 2 4 8
Time (ms) 24,595 12,884 7,167 4,391
APCC (W) 130 270 506 908
AECC (J) 3197.35 3478.68 3626.50 3987.03

Linear-Incremental policy is used with TSinit = 1000, and it
is used as the result for Table II.

In this Asian option pricing application, maximum per-
formance is achieved when TSinit = 1000 under Linear-
Incremental policy. However, other applications may achieve
the maximum performance under different policy and with
different variables. It is because each application has its partic-
ular set of parameters, and different communication overhead.
Fig. 7 is just a demonstration of how the performance can
differ with different starting task size under different dynamic
scheduling policies.

B. Performance, energy and efficiency analysis of accelerator
allocation of a cluster

Acceleration performance versus energy consumption is
an important factor when considering the efficiency of an
accelerator. As a result, it is also one of the main concerns
in our evaluation of the proposed framework and we use the
GARCH asset simulation application for the evaluation. We
study 5 different methods for allocating computational devices
in the cluster for collaborative computation:
• CPUs only: use two Phenom CPUs in each node
• FPGA only: use one xc5vlx330t FPGA in each node
• GPU only: use one Tesla C1060 GPU in each node
• FPGA and GPU: use one xc5vlx330t FPGA and one Tesla

C1060 GPU together in each node
• FPGA, GPU and CPUs: use one xc5vls330t, one Tesla

C1060 and two Phenom CPUs together in each node
We measure the additional power consumption for compu-

tation (APCC) with a power monitor. APCC is defined as the
power usage during the computation time (run-time power)
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Fig. 8. The computation time of GARCH asset simulation.

minus the power usage at idle time (static power). The static
power of each cluster node is approximately 210W. In other
words, APCC is the dynamic power consumption for that
particular computation. The additional energy consumption for
computation (AECC) is defined by the following equation:

AECC = APCC× Total Computational Time. (8)

Therefore, AECC measures the actual additional energy con-
sumed for that particular computation.

The speed and power consumption of the GARCH asset
simulation for different accelerator combination in the multi-
accelerator cluster is studied. The number of Monte-Carlo
simulation is 100,000,000 and one asset is simulated. Linear-
Incremental scheduling policy is employed on each MC dis-
tributor of the cluster node with TSinit = 1000. Constant-
Size scheduling policy is employed at the higher level MC
distributor in the user node with TSinit = 100M, 50M,
25M and 12.5M for a cluster with 1, 2, 4 and 8 nodes.
The computation time, APCC and AECC results are shown
in Table III.

As expected, an increase in the number of active nodes
generally decreases the time for computation. From the results,
we can see that the cluster using 8 FPGAs and 8 GPUs
is the fastest (3.6s) even when compared with the cluster
using all 8 FPGAs, 8 GPUs and 16 CPUs. We believe that
the use of the CPUs decreases the response time for the
MC distributor and MC worker processes. Therefore, the
computational performance gain of using CPUs is offset by
the decrease in response time of MC processes, reducing the
overall performance. The cluster using 8 xc5vlx330t FPGAs
and 8 Tesla C1060 GPUs is 44 times faster than the cluster
using 16 AMD Phenom 9650 CPUs. A graphical summary
about the computational time is shown in Fig. 8.

The increased number of active nodes increases the APCC
proportionally. However, the AECC remains roughly the same
level as the computation time is decreased proportionally at the
same time. We can see from the result that the cluster using
a single FPGA has the lowest AECC. A graphical summary
about the AECC is shown in Fig. 9.

We propose a new approach for identifying speed and en-
ergy efficient accelerator allocation, called Efficient Allocation
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Fig. 9. The AECC of GARCH asset simulation.

Line (EAL). A scatter plot graph is firstly constructed with the
computation time versus energy consumption for all acceler-
ator allocation combinations. The EAL is then constructed by
drawing a line linking the leftmost and bottommost allocations.
The allocations of computational devices along the EAL are
called “efficient” compared with the other allocations, as they
are either energy efficient (the lowest energy consumption at
a given computational time budget), or speed efficient (the
lowest computational time at a given energy budget). Fig. 10
shows the computation time versus the energy consumption
(AECC) of different accelerator allocations for the GARCH
asset simulation in our 8-node cluster. The solid line is the
EAL.

In this GARCH asset simulation application, FPGA is both
faster and more energy efficient than the other two compu-
tational devices (GPU and CPU). We can simply allocate as
many FPGAs as possible in the cluster. However, in the case of
one accelerator is more speed efficient, but less energy efficient
than the others, identifying the optimized device allocation
will be much more challenging. The EAL can then be used
for optimizing accelerator allocation. A dynamic scheduling
policy based on the EAL could also be developed such that it
allocates the tasks to the accelerators based on a certain energy
budget or time budget which can vary during run time.

VII. CONCLUSION

In this work, we propose a dynamic scheduling Monte-
Carlo framework for collaborative computation in a multi-
accelerator heterogeneous cluster. The load balancing process
is automated by employing dynamic scheduling policies using
the proposed framework. The framework is scalable and
extensible for a variety of dynamic scheduling policies. We
have shown that the proposed framework is viable by mapping
two applications involving financial computation.

From our results, the overall performance of a Monte-
Carlo simulation can be improved by allowing heterogeneous
accelerators to work collaboratively. We explore different
schemes of scheduling the workloads to the processing units
to better utilize the computing resources. We also explore the
speed and energy consumption trade-off for different acceler-
ator allocation, and we propose the Efficient Allocation Line
(EAL) as a method to identify the most efficient accelerator
allocations.
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Fig. 10. The computation time and energy consumption for GARCH asset
simulation in our cluster. The solid line is the Efficient Allocation Line (EAL).
2f2g4c denotes a design with 2 FPGAs, 2 GPUs and 4 CPUs.

Future work includes the automation for design develop-
ment in this framework. More sophisticated dynamic schedul-
ing policies will be designed and more complex Monte-
Carlo applications involving data-dependency will be tested
in our framework. We also intend to collaborate with other
institutes to form a “cluster of heterogeneous clusters” in
solving practical scientific problems.
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