
Convex Models for Accelerating Applications on
FPGA-Based Clusters

Qiang Liu, Tim Todman, Kuen Hung Tsoi and Wayne Luk

Computing Department, Imperial College
London, SW7 2AZ, UK

{qiang.liu2, timothy.todman, khtsoi, w.luk}@imperial.ac.uk

Abstract—We propose a new approach, based on a set of con-
vex models, to accelerate an application using a computing cluster
which contains field-programmable gate arrays (FPGAs). The
computationally-intensive tasks of the application are mapped
onto multiple acceleration nodes, and the datapaths on the nodes
are customized around the tasks during compilation. We propose
models for computation and communication on the FPGA-based
cluster, and formulate the design problem as a convex non-linear
optimization problem allowing design exploration. We evaluate
our approach on a cluster with 16 nodes for Monte Carlo
simulation, resulting in a design 690 times faster than a software
implementation.

I. INTRODUCTION

As the complexity and scale of current application algo-
rithms increase, a single-node computing engine may not
provide sufficient computational power. A popular way to get
more computing power from existing machines is to build
them into a cluster, where computing nodes are connected
by a network, which leaves the problem: how do we map an
application onto the cluster?
In this paper, we propose a compilation approach for

accelerating applications on a cluster with multiple computing
nodes. Specifically, the computationally-intensive tasks of the
application are mapped onto multiple acceleration nodes, such
that the customized datapaths on the nodes are generated
around the tasks, on a cluster based on field-programmable
gate array (FPGA) technology.
The aim of this work is to accelerate computations by

efficiently exploiting currently available parallel computa-
tional hardware, e.g. FPGAs. We especially wish to provide
Computer-Aided Design (CAD) optimization techniques to
improve productivity of system designers. We propose models
for computation and communication on FPGA-based clusters,
to allow design exploration and to predict system performance
at an early design stage. Given a target FPGA-based cluster
with a fixed number of nodes and limited resources on each
node, the approach determines design parameters, including
the number of segments of a task executing in parallel, how
to map these segments onto the nodes, and the datapath
and resource usage on each node, for efficient execution of
different applications.
Research on task mapping on different platforms has been

a hot topic. In previous work, each task may be a statement,
an instruction or a function, and heuristics [1] or integer linear
programming (ILP) [2] are used to solve the mapping problem.

The main differences of our approach from previous work
in this area are that: a) the target task contains loop nests
and is computationally-intensive; b) a task can be further
partitioned into parallel segments to improve parallelism, c)
the computation involved in each task and the communication
between tasks are modeled; and d) task mapping and datapath
customization are determined at the same time by solving
a convex non-linear optimization problem, leading to the
globally optimal design within the design space.
Our approach could be integrated into a design toolchain [3]

to automate designs on a cluster with heterogeneous compu-
tation nodes. Designers may also use the models proposed in
this paper on their own for design-space exploration, avoiding
the need to do this manually whilst allowing a hand-optimized
implementation.
The contributions of this paper are thus:
• an approach for concurrently mapping and customizing

computation tasks onto an FPGA-based cluster;
• models for computation and communication, and convex-

ity transformations for a convex nonlinear optimization
problem, leading to optimized designs; and

• evaluation of the proposed approach for Monte Carlo
simulation on a cluster with 16 nodes, each node con-
sisting of a central processing unit (CPU) and an FPGA,
with results showing that our method can find optimized
solutions within the design space.

The rest of the paper is organized as follows. Section II
surveys related work. Section III shows our approach, how we
develop the models for computation and communication, and
how we apply convexity transformations to enable formulating
design space exploration as a convex optimization problem.
Section IV shows results and evaluation, while section V
concludes.

II. RELATED WORK

Several FPGA-based computing clusters have been devel-
oped, including the commercial PICO [4] and research efforts
such as Maxwell [5] and Axel [6]. Our work targets different
tasks to different FPGAs, but could be adapted to other clusters
with a single configuration model, such as Cube [7].
Several researchers have studied the problem of mapping

task graphs to multiple FPGAs, either manually or auto-
matically. These efforts vary in several ways: size of task,
whether tasks can be subpartitioned, and optimization method.

978-1-4244-8983-1/10/$26.00 ©2010 IEEE

Hashemi and Ghiasi [8] assign task graphs to soft dual-
processor platforms using heuristics. Lam et al. [1] use tabu
search to map and schedule task graphs to heterogenous
systems. These approaches should yield solutions faster than
our approach, but our GP models should find solutions that
their heuristic approaches do not consider. However, overall
implementation time will be dominated by place and route for
all methods.
Much work has been done on scheduling and mapping

tasks for non-reconfigurable systems. For example, Bednarski
and Kessler [2] give an ILP formulation combining several
steps including instruction scheduling for VLIW systems.
Reconfigurable systems, however, have a much larger and
complex design space, which sometimes cannot be formulated
in an ILP. This paper proposes a convex non-linear formulation
for the problem.

III. PROPOSED APPROACH

In our approach, each computation task contains a loop
nest, so potentially both loop-level parallelism and instruction-
level parallelism can be exploited. If the loop nest in a task is
parallelizable, task execution follows a SPMD (Single Program
Multiple Data) model [9], where the same program executes
on different data sets in parallel without communication, and
a barrier point ensures all processes complete so that interme-
diate results from different processes can be collected and the
final result can be generated. Our approach exploits loop-level
pipelining for each process to customize the corresponding
datapath, and also allocates resources available on each node
between parallel processes.
The execution time of a task on a cluster includes two

parts: computation time tcomp and communication time tcomm.
Different cluster structures may need different computation
and communication models. Our target cluster uses an FPGA
on each node, so we derive an execution time model for
FPGA-based computation. Our approach is modular: it can
apply to other computing engines (e.g. GPGPUs) by replacing
the execution model. Previous work derives a similar execution
time model [10] for mapping an affine loop nest onto an
FPGA. However, mapping loops onto a cluster must consider
different design aspects.

A. Formulation

For a cluster, the intra-node and inter-node communication
costs have to be considered. For simplicity, we only present
the model for mapping a single-level loop; the multi-level case
can be similarly formulated.

tcomp = u× ii+Dmem +

I∑
i=1

di ×Di +MR×Dr (1)

tcomm = Commintra + Comminter (2)

Commintra = L/n× ID/Cintra +OD/Cintra (3)

Comminter =

{
0 if n = 1
n×OD/Cinter if n > 1

(4)

In the computation time model (1), a loop with L iterations
is mapped onto n cluster nodes and each node processes m
segments in parallel. Each segment has u = � L

n×m� loop
iterations which are pipelined with the initiation interval ii.
Dmem is the cost for reading/writing a datum from/to the
accelerator local memories. The computations inside the loop
body are scheduled in I levels following the as-late-as-possible
scheduling scheme, and each computation level could take
di(di ≥ 1) stages, each taking Di cycles. MR is the number
of computation stages for merging (reducing) results computed
in parallel on one node. Each stage has a delay of Dr cycles.
The communication time (2) is composed of two parts: the

intra-node and the inter-node communication costs. The intra-
node communication (3) includes inputting/outputing data
from/to controller to/from accelerator. ID is the number of
input data required in one loop iteration on the accelerator.OD
is the number of results generated on the accelerator. Cintra

is the intra-node communication bandwidth. The intra-node
communication can overlap with computations using FIFOs
if data in the computations are accessed in a constant stride.
Eq. (4) is the inter-node communication model. There is no
inter-node communication if the task is only mapped onto one
node; otherwise the results generated on each node must be
transferred to the other nodes to form final results. Cinter is
the inter-node communication bandwidth.
There are two main cases for MR and OD in many

algorithms as follows. Analyzing the input algorithms can
identify these two cases. We distinguish the two cases to
simplify the execution time models and allow the convexity
transformations described afterwards.
Case 1: the final result is generated by accumulation in the

original algorithms, e.g. using ‘+=’, ‘-=’, ‘min’ and ‘max’. In
this case, each node produces an intermediate value for the
output object and OD equals to the number of output objects
OB. If the computations on each node are partitioned into
m parallel segments, the intermediate result for each output
object can be generated by tree reduction, and thus MR =
�log2 m�.
Case 2: each node produces a set of elements of an output

object, e.g.A[i] = B[i]×C[i]. In this case, each node generates
R/n values for the output object, where R is the total number
of output data. Therefore, OD = OB ×R/n and MR = 0.

With this execution time model, we formulate the cluster
resource constraints. Eqs (5)–(8) give constraints on the loop
pipelining initiation interval variable ii. Eqs. (5) and (6) give
the computation resource constraints, whereWf is the number
of resources f required in one loop iteration, xf is number
of resources f allocated and Rif is the number of resources
f required in computation level i. It is the variable xf that
determines resource allocation between the parallel processes.
Eq. (7) is the data dependence constraint, where RecII is
the dependence distance. Eq. (8) is the memory bandwidth
constraint, where BW is the bandwidth requirement in one
loop iteration and Mb is the available memory bandwidth.
Eqs (9) and (10) are the constraints on the total available
computational resources and the number of cluster nodes.

Eq. (11) shows the lower and upper bounds of the number
of parallel partitions of a loop with L iterations.

Wf × x−1
f × ii−1 ≤ 1 (5)

Rif × x−1
f × d−1

i ≤ 1, 1 ≤ i ≤ I (6)

RecII × ii−1 ≤ 1 (7)

BW ×m×M−1
b × ii−1 ≤ 1 (8)

m× xf ≤ Resf (9)

1 ≤ n ≤ N (10)

1 ≤ n×m ≤ L (11)

We now have models for mapping a task with a loop nest
onto an FPGA-based cluster. The optimization problem is to
minimize texe = tcomp+tcomm, subject to Eqs.(5)–(11), where
integer variables m, n and ii are unknown. Once we obtain
the solution to the optimization problem, we will know how
many parallel segments a task can be partitioned, how these
segments are mapped onto the cluster, and how each segment
executes. However, the current formulation is not a convex
optimization problem, due to conditional branches in the inter-
node communication expression (4) and the logarithm in the
MR expression. This would make the optimization problem
hard to solve globally.

B. Convexity transform

We therefore perform convexity transformations on the
two expressions. We observe that the optimization problem
described above is similar to the geometric programming
problem [11], which is an optimization problem where the ob-
jective function and the inequality constraints are posynomials
with positive coefficients and all variables are positive. The
geometric programming problem can be easily transformed
into a convex form.
The logarithm in the MR = �log 2m� expression can be

approximated by a posynomial,
∑

i m
ai where 0 < ai < 1.

The number of terms of the posynomial and the values of ai
are determined by the range of m.
We reformulate the inter-node communication model. The

difference is that when n = 1 the communication cost is 1
cycle rather than 0. This small introduced error can be ignored
in practice.

Case1 : Comminter =

{
1 if n = 1
n×OB/Cinter if n > 1

(12)

Case2 : Comminter =

{
1 if n = 1
R×OB/Cinter if n > 1

(13)

Then, we introduce a new binary variable n′ and let

n′ ≥
a× n2 + b× n+ c

(a+ b+ c)× n
, 1 ≤ n ≤ N (14)

���������	
������������
�����
�������	
�����������	
�����
�

�	 ���� � ������

�� ���	 ���	

�� ���������
�
��������� �!������������ �!�� ��

������� �!���������� �!������������ �!

"

Fig. 1. MCS code segment.

where parameters (a, b, c) are a solution of the following
inequality system given N .

N × (N − 2)× a−N × b− (2N − 1)× c ≤ 0

a ≥ c, a ≥ 1, b ≥ 0, c ≥ 0 (15)

In this way,

n′ =

{
1 if n = 1
2 if n > 1

(16)

and the inter-node communication model becomes monomials.

Comminter =

{
n× n′ log2

(OB/Cinter) if Case1
n′ log2 (R×OB/Cinter) if Case2

(17)

Using this inter-node communication model and the loga-
rithm approximation, the optimization problem for mapping
a task onto the cluster is transformed to the integer geo-
metric programming problem, solvable by existing solvers
for a globally optimal solution. Capital letters in the above
formulations denote compile-time constant parameters. We
show some experimental results from using these models to
map a complex task onto the cluster in Section IV.

IV. RESULTS

We validate our proposed approach by applying it to Monte
Carlo simulation (MCS) [12]. We apply the optimization
models in section III to explore the design space of mapping
this application onto a cluster with 16 nodes, and to show
how the number of nodes of a cluster impact on performance.
Each node has an AMD Phenom CPU and a Xilinx Virtex-5
LX330T FPGA. The CPU has 4GBytes system memory and
the FPGA has 1GBytes local memory in four banks. The intra-
node communication is a PCI express (PCIe) bus. Through
the PCIe bus, the CPU can use DMA to transfer data between
the system memory and the FPGA local memory at a speed
of Cintraw = 170MBps for write and Cintrar = 230MBps
for read. Inter-node communication is via Gigabit Ethernet.
CPUs on different nodes communicate with each other by
broadcast and point-to-point on Ethernet at a maximum speed
of Cinter = 100MBps. The computation resource constraints
in each node are the number of DSP blocks and slices on a
Virtex-5 LX330T FPGA.
Monte Carlo simulation (MCS) has wide applications in

finance. Asian Option prices depend on the average price
observed over a number of discrete dates in the future; the

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0

0.25

0.5

0.75

1

1.25

1.5

The number of cluster nodes

E
xe

cu
tio

n
tim

e
(m

s)
 a

t 1
00

M
H

Fig. 2. The number of nodes vs speed in MCS.

mathematical model has no closed solution [13]. Therefore,
MCS performs many simulation trajectories to estimate the
price. This simulation contains two loops: the outer loop
controls the number of simulation trajectories, and the inner
loop sets several observation points during a contract period,
as shown in Fig. 1. Each simulation trajectory receives ran-
dom numbers and computes the price independently of other
trajectories. Therefore, there is no communication during the
MCS. As a result, we see that in Fig. 2 the execution time
of MCS keeps decreasing as the number of nodes increases,
and the speedup is more obvious when the number of nodes
is less than 50 for the size of the input data.
We accelerate MCS on the target cluster following the

design proposed by our approach and results are shown in
Table I. In this experiment, the simulation simulates 106

trajectories and each trajectory sets 12 observation points. The
execution time predicted by our model is 0.82 ms, while the
real execution time obtained in the experiment is 0.87 ms. The
relative error is 5.75%. When compared to the implementation
on a dual-core CPU, our design improves the speed by about
690 times. This significant speedup is due to the fact that
the MCS of Asian Option pricing involves no intra-node
and no inter-node communication. Moreover, given a speed
requirement, our approach is able to find the appropriate
number of cluster nodes from Fig. 2.

TABLE I
MCS OF ASIAN OPTION PRICING.

Design Parallel DSP Slices Freq Time
segments blocks (MHz) (sec)

This paper 96 192 42124 100 0.0008
(100%) (81%)

2-core CPU 8 threads 2400 0.6

V. CONCLUSION

We propose an approach to map computationally-intensive
tasks onto an FPGA-based computing cluster. Task mapping
and datapath customization are handled concurrently. We de-
rive the models of computation and communication of tasks on
an FPGA-based cluster, apply convexity transformations, and
formulate design space exploration as a convex optimization
problem while respecting the system structure and resources

on the target cluster. The problem is investigated in depth and
is transformed in a novel way into a geometric programming
problem. Results for Monte Carlo simulation on a 16-node
cluster show that the method allows the design space to be
explored, and the optimized design generated. Future work
includes extending the model to other kinds of accelerators
and to support the mapping of complex applications.

Acknowledgement. The support of an Imperial College London
Research Excellence Award, the FP7 REFELCT (Rendering FPGAs
for Multi-Core Embedded Computing) Project, the UK Engineering
and Physical Sciences Research Council, HiPEAC, Alpha Data,
nVidia, and Xilinx is gratefully acknowledged.

REFERENCES

[1] Y. M. Lam, J. G. F. Coutinho, W. Luk, and P. H. W. Leong, “Map-
ping and scheduling with task clustering for heterogenous computing
systems,” in Proc. Int. Conf. on Field Programmable Logic. IEEE,
2008.

[2] A. Bednarski and C. W. Kessler, “Optimal integrated VLIW code
generation with integer linear programming,” in Proc. Euro-Par 2006.
Springer LNCS 4128, Aug. 2006, pp. 461–472.

[3] W. Luk, J. Coutinho, T. Todman, Y. Lam, W. Osborne, K. Susanto,
Q. Liu, and W. Wong, “A high-level compilation toolchain for hetero-
geneous systems,” in Proc. Int. Conf. on SOC, 2009, pp. 9–18.

[4] G. Edvenson and M. Hur, “Accelerating bioinformatics searching and
dot plotting using a scalable FPGA cluster,” A Pico Computing Life
Sciences White Paper, November 2009.

[5] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons,
A. T. Alan Simpson, A. McCormick, G. Smart, R. Smart, A. Cantle,
R. Chamberlain, and G. Genest, “Maxwell – a 64 FPGA supercomputer,”
Engineering Letters, vol. 16, no. 3, 2008.

[6] K. H. Tsoi and W. Luk, “Axel: a heterogeneous cluster with FPGAs and
GPUs,” in Proc. Int. Conf. on FPGA, 2010, pp. 115–124.

[7] O. Mencer, K. H. Tsoi, S. Craimer, T. Todman, W. Luk, M. Y. Wong, and
P. H. W. Leong, “Cube: A 512-FPGA cluster,” in Proc. IEEE Southern
Programmable Logic Conference (SPL 2009). IEEE, 2009.

[8] M. Hashemi and S. Ghiasi, “Versatile task assignment for heterogenous
soft dual-processor platforms,” IEEE transactions on CAD of ICs and
systems, vol. 29, no. 3, March 2010.

[9] H. Zima and B. Chapman, Supercompilers for Parallel and Vector
computers. ACM press, 1990.

[10] Q. Liu, T. Todman, W. Luk, and G. Constantinides, “Automatic optimi-
sation of MapReduce designs by geometric programming,” in Proc. Int.
Conf. on FPT, 2009, pp. 215–222.

[11] S. Boyd and L. Vandenberghe, Convex optimization. Singapore:
Cambridge University Press, 2004.

[12] J. Makino, “The GRAPE project,” Computing in Science and Engineer-
ing., vol. 8, no. 1, pp. 30–40, 2006.

[13] http://www.interactivesupercomputing.com/success/pdf/caseStudy
financialmodeling.pdf, “Financial Modeling – Monte Carlo Analysis,”
accessed 2009.

