
Efficient Reconfigurable Design for
Pricing Asian Options

Anson H.T. Tse, David B. Thomas, K.H. Tsoi, Wayne Luk
Department of Computing

Imperial College London, UK

{htt08,dt10,khtsoi,wl}@doc.ic.ac.uk

ABSTRACT
Arithmetic Asian options are financial derivatives which have
the feature of path-dependency: they depend on the entire
price path of the underlying asset, rather than just the in-
stantaneous price. This path-dependency makes them diffi-
cult to price, as only computationally intensive Monte-Carlo
methods can provide accurate prices. This paper proposes
an FPGA-accelerated Asian option pricing solution, using
a highly-optimised parallel Monte-Carlo architecture. The
proposed pipelined design is described parametrically, facil-
itating its re-use for different technologies. An implementa-
tion of this architecture in a Virtex-5 xc5vlx330t FPGA at
200MHz is 313 times faster than a multi-threaded software
implementation running on a Intel Xeon E5420 quad-core
CPU at 2.5GHz; it is also 2.2 times faster than the Tesla
C1060 GPU at 1.3 GHz.

Keywords
FPGA, GPU, Asian option pricing, acceleration

1. INTRODUCTION
Arithmetic Asian options are examples of derivatives: fi-

nancial instruments whose value is dependent on the price
of some underlying asset such as a bond or stock. Unlike
simpler options, which provide a payoff depending on the
instantaneous price of the underlying, arithmetic Asian op-
tions provide a payoff depending on the arithmetic average
price of the underlying during the option life-time. This
averaging makes arithmetic Asian options cheaper and less
sensitive to market manipulation, but also means there is
no closed-form solution for the pricing.

Monte-Carlo methods provide a accurate way to price
Asian options, but have slow convergence, so a huge num-
ber of simulations is needed. FPGAs have previously been
explored for financial Monte-Carlo simulations, such as pric-
ing European and American options, as they can exploit the
large amounts of parallelism found in simulations. This pa-
per extends the scope of FPGA accelerated simulations to
include path-dependent Asian Options.

Our contributions are:

• A highly-optimized pipelined parallel FPGA architec-
ture for implementing Asian option pricing; this de-

This work was presented in part at the first international workshop on Highly-
Efficient Accelerators and Reconfigurable Technologies (HEART2010),
Tsukuba, Ibaraki, Japan, June 1, 2010.

sign is described parametrically to facilitate its re-use
for different technologies.

• A GPU algorithm for implementing Asian option pric-
ing based on CUDA API.

• Evaluation of the FPGA and GPU implementations
versus a single-thread implementation on CPU, show-
ing 313 times speedup for the FPGA, and 141 times
for the GPU.

2. ASIAN OPTIONS
An option is a type of financial instrument which provides

the owner of the option with the right, but not the obliga-
tion, to buy or sell an underlying asset such as a stock or
bond at some point in the future. A call option allows the op-
tion owner to buy the underlying asset for some pre-agreed
strike price K, while a put option gives them the right to
sell at price K. The decision to exercise the option (i.e. buy
or sell the asset) is always made by the option owner, and
the option issuer has to abide by that decision, so the op-
tion owner must pay the issuer to create the option. Hence
putting an accurate value on an option is critical for both
parties.

For simple European call options, the owner can exercise
only at the expiry date. If the underlying asset price S at
expiry date is higher than the strike price K, the owner can
profit by buying the stock at lower price K from the option
issuer and then immediately selling it at the higher price S
in the market, providing a gain of (S−K). If the underlying
asset price is lower than the strike price, S < K, then the
gain is zero because the option will not be exercised.

The payoff of European call option on expiry is

Pcall = max(S − K, 0) (1)

and the payoff of European put option at expiry is

Pput = max(K − S, 0). (2)

For an arithmetic Asian option [4], the payoff is calculated
using the arithmetic average of the prices over the life time
of the option. One advantage of this option type is that it
is more difficult for the option issuer to manipulate market
prices to reduce the option payoff, as the payoff depends on
the path followed by the asset price, not just the price at
expiry.

The payoff of an arithmetic Asian call option is:

Pcall = max

 

1

n + 1

n
X

i=0

S(ti) − K, 0

!

(3)



Table 1: An example of stock price paths (S0 =
1.00, K = 1.03, T = 2, r = 0.1)

Path: t = 0 t = 1 t = 2 Avg Payoff
Path 1 1.00 1.22 1.25 1.16 0.13
Path 2 1.00 1.18 1.41 1.20 0.17
Path 3 1.00 0.92 0.88 0.93 0.00
Path 4 1.00 1.11 1.32 1.14 0.11
Path 5 1.00 0.99 1.09 1.03 0.00
Path 6 1.00 1.16 1.09 1.08 0.05
Path 7 1.00 1.19 1.39 1.19 0.16
Path 8 1.00 0.91 0.86 0.92 0.00
Path 9 1.00 1.22 1.21 1.14 0.11
Path 10 1.00 0.94 0.84 0.93 0.00
Avg Payoff 0.07

where t1..tn are the times at which the asset price is ob-
served, and S(t) is the asset price at time t.

A common assumption is that asset prices move accord-
ing to a log-normal random walk. Under this model, price
of an European option at present time can be calculated
with a closed-form solution called the Black-Scholes Equa-
tion [1]. However, there is no such solution for arithmetic
Asian options, due to their highly path-dependent proper-
ties. Monte-Carlo methods are commonly used to solve this
problem. The idea is to generate a huge number of random
paths for each probabilistic variable, then take the average
of the results. We illustrate the idea with an pricing exam-
ple with the following parameters S0 = 1.00, K = 1.03, r =
0.1, T = 2 and steps = 2. Table 1 shows an example of stock
price paths. Firstly, 10 stock price paths from t = 0 to t = 2
are simulated. Then the average stock price for each path
is calculated as in ‘Avg’ column. The payoff of each path
is then calculated according to Equation 3 as in ‘Payoff’
column. Finally, the average payoff across all these paths
is calculated. The final result is the expected value of the
arithmetic Asian call option at t = 2. The arithmetic call
option value at present time can be obtained by discounting
this final answer backward by multiplying e−rT . The option
price in the above example is 0.057.

3. RELATED WORK
Financial analysis and pricing applications are often com-

putationally intensive, so there has been much interest in the
use of accelerators such as FPGAs and in this domain. Re-
search into FPGA-accelerated pricing can be broadly split
into two groups: lattice methods, which work backwards
from exercise time to the current price, using a pre-determined
lattice of asset prices and times; and Monte-Carlo methods,
which work forwards from the current asset price to expiry
time using multiple randomly chosen paths.

Lattice methods targeting FPGAs include binomial trees [3],
finite-difference methods [2], and Quadrature pricing [11].
Such algorithms are generally more efficient than Monte-
Carlo methods, but they cannot easily handle complex fea-
tures, such as path-dependence in Asian options.

Monte-Carlo methods are particularly suitable for imple-
mentation in FPGAs, as they contain abundant parallelism:
each asset-price path can be evaluated in parallel with any
other path, allowing exploitation of coarse-grained and pipeline
parallelism. An FPGA-accelerated Monte-Carlo application
covers pricing under the BGM interest rate model [12]. This
provides 25 times speedup over software, using an optimised
VHDL design and customised data widths. Other designs

Coordination Block

Gaussian random number 
generator core

Path simulation core

Result aggregation core

MC Core MC Core MC core

Host PC

MC core

Figure 1: Overall hardware architecture.

for European option have also been presented [10].
Recent work has focused on complex types of Monte-Carlo

simulation, such as correlated asset prices [7], American ex-
ercise features [9], and discrete-event simulations [8].

This paper extends parallel reconfigurable design for Monte-
Carlo simulation to include path-dependent arithmetic Asian
options, describing how path-dependency can be incorpo-
rated without sacrificing performance.

4. HARDWARE ARCHITECTURE
In this section, we present our hardware design for Asian

option pricing. As shown later, the operator latency is
described parametrically, facilitating the design to be re-
used in different technologies. Figure 1 shows the overall
hardware architecture. There are two main types of com-
ponents in the design: one or more identical Monte-Carlo
cores (MC); and a single shared Coordination Block (CB).
The Monte-Carlo cores contain a Gaussian random number
generator, a path simulation core and a result aggregation
core; each MC core is capable of generating random asset
price paths, calculating payoffs, and accumulating the av-
erage payoff. Multiple identical MC cores are instantiated
to make maximum use of the device, so the Coordination
Block manages the MC cores, allowing them to work in par-
allel to price the same option. The CB is also responsible
for communicating with the external controller, for example
a PC.

4.1 Monte-Carlo core
4.1.1 Gaussian random number generator

The Gaussian random number generator uses the piece-
wise linear generation method [6], which provides high-quality
fixed-point Gaussian samples, while using only a small amount
of logic and block-RAMs. To provide a good approximation
to the Gaussian distribution, two independent piecewise lin-
ear RNGs are used, both of which provide a good approx-
imation to the Gaussian distribution. The outputs of the
generators are then added together, providing a better ap-
proximation to the Gaussian distribution, due to the Central
Limit Theorem.

The resulting Gaussian RNG produces a stream of 24-
bit fixed-point random numbers, with a period of 2128. The
quality of the stream has been checked with the Chi-squared
test for sample sizes up to 232, and shows no significant
deviation from the Gaussian distribution.



Algorithm 1 Monte-Carlo pricing algorithm

payoffSum = 0
for i = 1 to NumberOfSimulation do

SumOfPrice = S0

S = S0

for i = 1 to Steps do

W ← NextRandomNumber
S ← Sedrift+vsqrdt×W

SumOfPrice ← SumOfPrice + S

end for

payoff ← SumOfPrice / (Steps+1) - K

payoff ← max(0,payoff )
payoffSum ← payoffSum + payoff

end for

Price ← e−rT (payoffSum/NumberOfSimulation)

4.1.2 Path simulation
Under Black Schole’s model where the stock price move-

ment is governed by a geometric Brownian motion process,
the stock price is given by the equation:

Si+1 = Sie
((r− v

2

2
)δt+v

√
δtW ) (4)

where r is the interest rate, v is the volatility of the underly-
ing stock price, δt is the time period between two time steps,
W is a Gaussian random number ∼ N(0, 1), Si is the under-
lying stock price at step i and Si+1 is the underlying stock
price at step i + 1. We could define the following equations:

drift = (r − v2

2
)δt (5)

vsqrdt = v
√

δt (6)

such that

Si+1 = Sie
drift+vsqrdt×W (7)

The values of drift and vsqrdt can be precomputed in ad-
vance and the path simulation core can simulate the stock
price movement with these two static values. The payoff of
arithmetic Asian options at expiry time is:

payoff = max(0,
1

n + 1

n
X

i=0

Si − K). (8)

The option price at present time is defined as the payoff
discounted backward to the current time as the following
equation:

OptionPrice = e
−rT payoff (9)

where T is the time to expiry. Therefore, we have the
Monte-Carlo Asian option pricing algorithm as shown in Al-
gorithm 1.

The hardware architecture of the price movement path
simulation based on the Algorithm 1 is shown in Figure 2.
The static input parameters include S0, K, vsqrdt, drift

and steps (number of simulation steps). The dynamic in-
put parameter is the Gaussian random number W . The
underlined parameter near each operator is the number of
pipeline stages (latency) of that operator. Therefore, it takes
da + dm + de clock cycles for W to reach the second multi-
plication operator.

There are 3 multiplexers namely MUXA, MUXB and
MUXC controlling the computation flow. MUXA selects
S0 at the beginning in order to calculate the S1 price. The

MaxExpMUXB
MUXA

S0

w
vsqrdt drift

S0
dm

da

de

dm
da

steps+1

Kdd

ds

Delay da - dm
S_path

S_sum

MUXC

0S_sum

asian_call_payoff

S_path

Figure 2: Architecture of the price movement path
simulation core. The underlined parameter denotes
operator latency.

Table 2: MUXs’ behavior in path simulation
MUX Selecting behavior:
MUXA Select S0 for first da + dm + de cycles.

Repeat: Select S0 for p cycles and then
select S path for p× (steps− 1) cycles

MUXB Select S0 for first 2da + dm + de cycles.
Repeat: Select S0 for p cycles and then
select S path for p× (steps− 1) cycles

MUXC Select 0 for first 3da + dm + de + dd + ds cycles.
Repeat: Select 0 for p× (steps− 1) cycles
and then select max() output for p cycles

signal s path indicates the updated S in the path and is feed
back to MUXA. Therefore, MUXA selects signal s path af-
terward to provide a loop for iterating next Si. The loop
containing MUXA and the second multiplication operator
is the “stock price updating loop”.

MUXB selects S0 at the beginning in order to compute the
sum of price S0 and S1 to the result signal S sum. S sum is
then feed back to MUXB to form the “sum of price updating
loop”. MUXB selects S sum afterward after the S0 + S1

computation.
The number of the pipelined stages must be identical for

all the pipelined loops in order to guarantee a consistent
computation schedule. Let p be the maximum number of
pipeline stages for these pipelined loops. Pipelined registers
are added to ensure the number of pipelined stages of all
loops equal to p. In this architecture, p = da. Therefore, a
da − dm cycles pipelined delay register is inserted after the
second multiplication operator for balancing.

As the computation is pipelined, the feedback result will
reappear at the MUXA and MUXB after p cycles. There-
fore, we simulate p paths at the same time in this pipelined
fashion. The computed 1 step of S for the first simulation
will arrive MUXA and MUXB just after the other p − 1
computations of the other simulations.

MUXC selects the output of max operator only when
that p simulations reached the end of the path (i.e. S path
reached Sn). Therefore, MUXC only selects the max opera-
tor output for p cycles as the asian call payoff at that mo-
ment, and selects value 0 for the rest of time. In conclusion,
p path simulations are completed after p×steps+3da+dm+
de +dd +ds cycles for the pipeline stages. The whole process
repeats and we could expect another p completed path sim-



MUXD

0

da

payoff_sum

MUXF

asian_call_payoff

payoff_sum

MUXE

Reg
DQ

CE
1

accr

da

0

final_sum

Figure 3: Architecture of the result aggregation
core.

Table 3: MUXs’ behavior in result aggregation
MUX Selecting behavior:
MUXD Select 0 for p × steps+

4da + dm + de + dd + ds cycles
and then select payoff sum afterward.

MUXE Don’t care for p× steps×Nbatch+
4da + dm + de + dd + ds cycles
and then select payoff sum for p cycles
and then select RegOut afterward.

MUXF Select 0 for p × steps×Nbatch+
5da + dm + de + dd + ds cycles
and then select AdderOut afterward.

ulations after another p × steps cycles. Table 2 summarize
the behavior of the MUXs in the path simulation core.

4.1.3 Result aggregation
The architecture of the result aggregation core is shown in

Figure 3. As discussed in Section 4.1.2, a batch of p payoff
results are generated for every p × steps cycles and passed
to the result aggregation core. These payoff results are ac-
cumulated until the number of batches reached the required
number of batches. Let Nbatch be the required number of
batches, Nmc be the required number of Monte-Carlo simu-
lations and C be the number of MC cores in the hardware.
Nbatch is defined as:

Nbatch = ⌈Nmc

p · C ⌉ (10)

MUXD selects 0 for the first p×steps+4da+dm+de+dd+
ds cycles for initialization, then it selects the accumulated
payoff (signal payoff sum) afterward to form a “sum of pay-
off loop”. When the number of batches reached Nbatch, we
have to aggregate the final p consecutive payoff sum values
together.

To aggregate these p consecutive values using a p-stage
pipelined adder, we make use of one direct feedback loop
and one feedback loop involving a register with special clock-
enable timing. MUXF selects 0 for initialization and selects
the output of the last adder afterward to form a direct feed-
back loop. MUXE only selects the payoff sum for p cycles
when the final p consecutive values are ready and then se-
lects the output of the register. The input of the register is
connected to the output of the last adder. In other words,
the register and MUXE form another feedback loop with a
register in the middle. Table 3 shows the behavior of MUX
in the result aggregation core.

The clock-enable of the D-type register is controlled by a

special signal sequence “accr”. The “accr” is set to 1 for
a dedicated timing so as to buffer the desired intermediate
output of the adder. The desired intermediate result stays
at the output of the register and the output of the MUXE.

If x is the index of clock cycle and p is the number of
pipeline stages, the sequence of signal “accr” is given by the
following equation:

accr(x) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1 if x mod 2k+1 = 2k − 1,

pk ≤ x < p(k + 1),
∀k ∈ N, 0 ≤ k ≤ log2(p)

1 if x mod 2k = 2k−1 − 1,

pk ≤ x < p(k + 1),
∀k ∈ N, log2(p) < k ≤ log2(p) + 1

0 otherwise
(11)

Let Yi be the values to be aggregated. From Equation 11,
Y1 + Y2, Y3 + Y4, ... are computed in the first p cycles and
Y1 + Y2 + Y3 + Y4, Y5 + Y6 + Y7 + Y8, ... are computed at the
second p cycles. Similarly,

Pp

i=1 Yi will be computed and
appear at register out. The number of cycles required to
obtain the final sum is ⌈p(log2(p) + 1)⌉.

This register, with a special clock-enable signal sequence,
is of general use for a design requiring a “reduce” function
in a “map-reduce” computation with commutative operator
with any number of pipeline stages. If a multiplier is used
as the commutative operator, the result of

Qp

i=1 Yi will be
computed at the register output instead of

Pp

i=1 Yi.

4.2 Coordination Block

4.2.1 Functional description
The Coordination Block is the main control unit of the

overall hardware architecture. It provides the communica-
tion with the host PC. The option parameters are first sent
from host PC to the Coordination Block. The Coordination
Block then distributes the parameters to all MC cores. The
communication time between the FPGA and PC is negligi-
ble as there are only a few bytes of input parameters and
results transferred between them.

The Gaussian random number generators in MC cores
are also initialized by the Coordination Block. Different se-
quences of bits are connected to different Gaussian random
number generators as the random seeds. The Coordination
Block also controls the overall timing of the computation.
It generates MUXs selection signals and 1 “accr” signal se-
quence to all MC cores as discussed in previous subsection.
The timing of generating these signals is followed strictly by
the requirement as in Table 2 and Table 3.

4.2.2 Path delay optimization
The counters, condition checking and controlling logic are

implemented in the CB only instead of in the MC cores.
In this way, the logic redundancy is significantly reduced.
However, the use of global controlling signals may suffer
from a decrease of clock rate due to a long critical path
delay.

Path delay consists of 2 parts: logic delay and routing de-
lay. When there are many computational cores, the routing
delay of the controlling signal to the farthest computational
core will be significant. If the logic delay of producing that
controlling signal is long as well, the performance of a par-
allel architecture will be drastically reduced.



For example, if we set a global controlling signal m to 1
after a complex “condition A” checking, the example hard-
ware code is as follow:

if Condition A then
m <= 1

end if

Assume that the logic delay for checking complex condition
A is 4ns. If there is only 1 MC core, the routing delay for
signal m from the logic result to the MC core is very short
(<1ns). Therefore, the total path delay is less than 5ns
and the hardware could be running at 200MHz. However, if
there are many MC cores, the routing delay to the farthest
MC core will be very long (up to 4ns in our experiment). If
the routing delay is 4ns, the total path delay becomes 8ns
and it could only be running at 125MHz, which is a drastic
performance reduction.

Therefore, the hardware design of CB is optimized care-
fully with path delay partitioning. For the above hardware
code, we divide it into two parts:

if 1 cycle before Condition A then
state <= SETM

end if

if state = SETM then
m <= 1

end if

The routing delay of setting an internal state to SETM is
very short (<1ns). Therefore, the path delay of the first part
is less than 5ns even with the complex condition A checking.

The logic delay of checking “state = SETM ” is also very
short (<1ns). Therefore, the path delay of the second part
including the long routing delay is still less than 5ns. As a re-
sult, the overall hardware could still be running at 200MHz.

This path delay partitioning optimization technique can
be applied to any hardware design involving one control
module sending controlling signals to multiple computational
cores. It is an essential technique to maintain a high clock
rate while maximizing the degree of parallelism.

5. GPU IMPLEMENTATION
Graphics Processing Units (GPUs) have been used for ac-

celeration in various application [5]. They are Single In-
struction Multiple Data (SIMD) computing devices. Paral-
lelizable tasks are executed on the GPU as “kernel” by a
computation grid. Each computation grid consists of a grid
of thread blocks. Each block and thread has a unique block
ID and thread ID. The “kernel” is executed by all threads
in parallel with the same code, but on different sets of data.
Intra-block communication between threads can be through
the shared memory. The inter-block communication can be
through the global memory. The speed of accessing thread’s
local register is the fastest. The speed of accessing shared
memory is faster than accessing global memory. Our im-
plementation on GPU is based on Compute Unified Device
Architecture (CUDA) API provided for nVidia GPUs. A
typical CUDA co-processing flow involve 4 steps:

• Copy processing data to GPU memory from main mem-
ory of the host.

• Instruct GPU to start processing.
• Wait till the threads inside GPU finished executing the

kernel in parallel.
• Copy the result back to main memory.

Table 4: FPGA resource consumption
16 MC Cores

Resource Used Utilization
Slices 41,968 80%
FFs 110,789 53%
LUTs 95,749 46%
RAM 16 4%
DSP48Es 192 100%

We design our CUDA implementation of Asian option pric-
ing by 2 procedures, namely Gaussian random number gen-
erator procedure and path simulation procedure.

5.1 Gaussian random number generator pro-
cedure

In this procedure, we first allocate the GPU’s global mem-
ory space for the total amount of random numbers that we
needed for the simulations. If the number of simulations is
N, the number of steps is M and single precision is used,
we allocate 4NM bytes of global memory in GPU. Then
we execute the Mersenne Twister random number genera-
tor kernel using all the threads to generate random numbers
at the memory space. A Box-Muller transformation kernel
is then executed on that memory space to form Gaussian
random numbers.

5.2 Path simulation procedure
In the path simulation procedure, each thread simulates

the price movement path as Algorithm 1 and sum up the
payoff in the shared memory. Therefore, these payoff sums
can be accessed by other threads in the same block. The first
thread in each block then sum up all the payoff sums within
the same block and stored it in the global memory location.
Finally, a final aggregation kernel is executed by 1 thread
only. This thread sums up the results by all blocks from the
global memory location and returns the total payoff sum to
the main program. The main program then compute the
option price from the returned result.

6. IMPLEMENTATION RESULT
Our FPGA implementation targeted a Xilinx xc5vlx330t

FPGA chip on an Alpha Data ADM-XRC-5T2 card, which
contains 207,360 slices, 192 DSP48E, 324 BlockRAM units.
We design our hardware architecture manually in VHDL to
maximize performance. The design is synthesized, mapped,
placed and routed using Xilinx ISE 10.1.03. The floating
operators used are from Xilinx Floating-Point Operator 4.0.
Single precision floating point arithmetic is used so that the
parameters in Figure 2 and Figure 3 are given by: da =
12, dm = 8, de = 14, dd = 27, ds = 12 and p = 12. There
are 16 MC cores in the design. The summary of resource
consumption is shown in Table 4. Our result shows that
no more MC cores can be fitted in the hardware, as all the
DSP48Es are used up for 16 MC cores.

The performance of different implementations of arith-
metic Asian call option pricing is evaluated. We choose an
arithmetic Asian call option with parameters S0 = 100, K =
105, v = 0.15, r = 0.1, T = 10 and steps = 3650. The num-
ber of Monte-Carlo simulations is 10,000,000. The accelera-
tion of FPGA implementations and GPU implementations is
compared to a reference software implementation. The ref-



Table 5: Performance comparison of pricing an
arithmetic Asian call option

FPGA GPU CPU

Type xc5vlx330t Tesla C1060 Xeon E5420
Frequency 200MHz 1.3GHz 2.5GHz
Time(s) 11.4s 25.31s 3580.97s
Speedup 313x 141x 1x
Max Power 34W 200W 80W

erence PC contains an Intel Xeon E5420 2.5GHz processor
with 16GB RAM. The software implementation is written
in the C language with the gsl library and compiled us-
ing gcc with speed optimization options -O3 using OpenMP
multi-threaded API. The number of threads used in software
implementation is 4 in order to fully utilize the 4 cores in
Xeon E5420. The targeted GPU is nVidia Tesla C1060 with
4GB of on board RAM. The summary of the performance
comparison is shown in Table 5.

From the results, it can be seen that a speedup of 313
times is achieved by the xc5vlx330t FPGA. For the GPU,
a speedup of 141 times is achieved by Tesla C1060. The
xc5vlx330t FPGA is 2.2 times faster than the Tesla C1060
GPU. The time for pricing an arithmetic Asian option is
reduced from 1 hour to 11.4 seconds.

The maximum power usage of different devices is also es-
timated in Table 5. The power usage of xc5vlx330t is esti-
mated by Xilinx XPower Estimator 11.4.1 with toggle rate
100% and clock rate 200MHz. Since in our design all the
flip-flops do not actually toggle all the time, setting the tog-
gle rate to 100% is just to estimate the upper bound of
power usage. It is interesting to note that the xc5vlx330t
FPGA demonstrates higher performance in speed than the
GPU and CPU, and consumes less power. If we have a
cluster of PCs with Intel Xeon 2.5GHz without communica-
tion overhead between the nodes, then a cluster with 313 PC
nodes would achieve the same performance as an xc5vlx330t
FPGA. However, the energy consumption of that cluster
would be 736 times more than an xc5vlx330t FPGA.

7. CONCLUSION
This paper presents a high performance hardware archi-

tecture for Asian option pricing. A CUDA based GPU im-
plementation is also presented for performance comparison.
To our knowledge, this is the first reported hardware im-
plementation that accelerates the arithmetic Asian option
pricing algorithm. By exploiting efficient Gaussian random
number generators, massive parallelism and highly pipelined
datapath, our FPGA implementation is faster than a compa-
rable multi-threaded software implementation by 313 times,
and it is faster than a CUDA based GPU implementation by
2.2 times. The maximum power consumption of the FPGA
is also estimated to be much lower than those for the CPU
and the GPU. This performance improvement in speed and
in power consumption offers a practical solution to financial
institutions to reduce option pricing time and costs, with
considerable energy savings.

The presented hardware architecture demonstrates a prac-
tical reference design for high performance path-dependent
financial simulation. With a slight modification of the path
simulation core, the hardware architecture can be used for
pricing any exotic and path-dependent financial options in-
cluding lookback options and barrier options.

Future work includes the design of a distributed financial
computation framework in a heterogeneous cluster with FP-
GAs, GPUs and CPUs. The automated generation of the
proposed efficient architectures will also be investigated.

Acknowledgments. The support of Imperial College Lon-
don Research Excellence Award, UK Engineering and Phys-
ical Sciences Research Council, Alpha Data, nVidia, and
Xilinx is gratefully acknowledged.

8. REFERENCES
[1] F. Black and M. Scholes. The pricing of options and

corporate liabilities. Journal of Political Economy,
81(3):637–654, 1973.

[2] Q. Jin, D. Thomas, and W. Luk. Exploring
reconfigurable architectures for explicit finite
difference option pricing models. In Proc. Int. Conf.
on Field Programmable Logic and Applications, pages
73 –78, 2009.

[3] Q. Jin, D. B. Thomas, W. Luk, and B. Cope.
Exploring reconfigurable architectures for
binomial-tree pricing models. In Proceedings of the 4th
international workshop on Applied Reconfigurable
Computing, pages 245–255. LNCS 4943.
Springer-Verlag, 2008.

[4] A. G. Z. Kemna and A. C. F. Vorst. A pricing method
for options based on average asset values. Journal of
Banking & Finance, 14(1):113–129, March 1990.

[5] L. Pan, L. Gu, and J. Xu. Implementation of medical
image segmentation in CUDA. Proc. Int. Conf. on
Technology and Applications in Biomedicine, pages
82–85, May 2008.

[6] D. B. Thomas and W. Luk. Non-uniform random
number generation through piecewise linear
approximations. In Proc. Int. Conf. on Field
Programmable Logic and Applications, pages 1–6,
2006.

[7] D. B. Thomas and W. Luk. Sampling from the
multivariate Gaussian distribution using
reconfigurable hardware. In Proc. IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM), pages 3–12, 2007.

[8] D. B. Thomas and W. Luk. Credit risk modelling
using hardware accelerated Monte-Carlo simulation.
In Proc. IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2008.

[9] X. Tian and K. Benkrid. American option pricing on
reconfigurable hardware using least-squares Monte
Carlo method. In Proc. Int. Conf. on
Field-Programmable Technology, pages 263 –270, 2009.

[10] X. Tian, K. Benkrid, and X.Gu. High performance
Monte-Carlo based option pricing on FPGAs.
Engineering Letters, 16(3):434–442, 2008.

[11] A. H. T. Tse, D. B. Thomas, and W. Luk.
Accelerating quadrature methods for option valuation.
In Proc. IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2009.

[12] G. Zhang, P. Leong, C. Ho, K. Tsoi., D.-U. Lee,
C. Cheung, R. Cheung, and W. Luk. Reconfigurable
acceleration for Monte-Carlo based financial
simulation. In Proc. Int. Conf. on Field-Programmable
Technology, pages 215–224. IEEE, 2005.


