
Programming Framework for Clusters with
Heterogeneous Accelerators

Kuen Hung Tsoi, Anson Tse, Peter Pietzuch and Wayne Luk
Department of Computing, Imperial College London

{khtsoi, htt08, prp, wl}@doc.ic.ac.uk

ABSTRACT
We describe a programming framework for high performance
clusters with various hardware accelerators. In this frame-
work, users can utilize the available heterogeneous resources
productively and efficiently. The distributed application is
highly modularized to support dynamic system configura-
tion with changing types and number of the accelerators.
Multiple layers of communication interface are introduced
to reduce the overhead in both control messages and data
transfers. Parallelism can be achieved by controlling the ac-
celerators in various schemes through scheduling extension.
The framework has been used to support physics simulation
and financial application development. We achieve signif-
icant performance improvement on a 16-node cluster with
FPGA and GPU accelerators.

1. INTRODUCTION
Dedicated hardware accelerators can achieve orders of mag-

nitude speedup when compared with CPU based implemen-
tations. The processing element (PE) of these accelerators
usually contains tens to hundreds of ALUs such as graphics
processing units (GPUs) or deeply pipelined data paths on
the field programming gate array (FPGA) devices. At the
expense of program control flexibility, these PEs can outper-
form the modern CPUs by massive parallelization and off
load the most computational intensive task from the CPUs.
The large amount of on-chip fast caches and tightly coupled
off-chip memory also contribute to performance improve-
ments. High performance clusters (HPCs) with dedicated
accelerators offer practical solutions in real world applica-
tions [3,6].

Despite these obvious advantages of accelerator clusters,
the number of systems and applications is not comparable
to the number of CPU-centric HPCs. These accelerators are
usually more expensive than CPU in terms of unit price. To
maximize the cost effectiveness of a system, the potential of
the PEs must be fully exploited. This can be a challenge to
application developers since, unlike CPU programming, it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HEART2010 ’2010 Tsukuba City, Japan
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

requires information of the PE’s internal hardware architec-
ture, different vendor-specific tool chains and even different
programming languages.

For example, VHDL programming skills and knowledge of
the internal resources of the FPGA are critical for optimiz-
ing the kernel performance on FPGA accelerators. The lo-
cal memories of these accelerators form a complex memory
hierarchy. Without a unified flat memory space, the pro-
grammers need to explicitly manage the memory systems
and move data between them. This overhead reduces pro-
ductivity, constrains the achievable speedups, and increases
the difficulty in kernel optimization. Integrating different
types of accelerators in the system worsen the situation. To
avoid this complexity, most applications utilize a single type
of accelerator even when other types of accelerators sit idle
in the system. These difficulties and complexities appear re-
peatedly in many applications and systems. A general pro-
gramming framework is desirable to unify the application
development practice and improve developer productivity
for heterogeneous clusters.

The proposed research targets a cluster with FPGA and
GPU accelerators [14]. Based on this hardware architecture,
we study the software stack of heterogeneous clusters. Our
main aim of this work is to create an easy to use, flexible and
efficient framework for developing distributed applications.
The framework should be supported by a set of application
programming interfaces (APIs) such that developers can uti-
lize the accelerators in a familiar software environment. Ab-
straction and modularization of the framework will help to
minimize the effort of including or excluding different types
of accelerators in the applications. More importantly, these
different accelerators can work collaboratively on a single
application to maximize the efficiency of the system. The
major contributions of this work include:

• A general programming framework for heterogeneous
accelerators in cluster systems. This framework in-
cludes an execution model for applications to distribute
the computation to collaborative accelerators. It also
includes a modular programming model such that new
types of accelerators can be utilized by applications
without recompiling the original program code.

• A set of APIs for developing distributed applications
on heterogeneous clusters. These APIs enable various
schemes of control flow and data transfer between the
accelerators. It also provides extension interfaces for
static and dynamic load balancing. These interfaces
enhance both productivity and efficiency.

• Several applications targeting the Axel cluster using
the proposed programming framework. To demon-
strate its feasibility and capability, we develop appli-
cations for physics simulation, financial simulation and
event-driven message filtering using the framework. The
performance of these applications is evaluated on a 16-
node cluster with GPU and FPGA accelerators.

The rest of this paper is organized as follows. Section 2
reviews the development framework in previous accelerator
clusters. Section 3 presents the architecture of the cluster
platform in this work. Section 4 explains the structure and
execution model of the distributed applications in the pro-
gramming framework. Section 5 presents the application
programming interfaces for building applications. Section 6
evaluates the results and performance. Finally, section 7
summaries the findings and achievements.

2. RELATED WORK
In 2005, SGI announced the RC100 Blade which can sup-

port CPU blades and FPGA blades in the same host system.
The SGI proprietary NUMAlink technology provided a flat
memory view to the programmers and function calls to the
RASC Abstraction Layer to enable data transfer between
PEs. The computation kernels running on the Xilinx Virtex-
4 LX200 FPGAs were developed separately using high level
language synthesizers.

In 2007, a cluster with 64 Virtex-4 FPGA devices was built
in the Maxwell project [11]. Linux systems are running inde-
pendently on each node and communicate through MPI [8].
A custom framework called Parallel Toolkit (PTK) [2] was
used as middle-ware between user applications and vendor
specific drivers. This toolkit is based on the request-grant
model of abstract hardware types to manage FPGA resources
and to transfer data. It relied on the assumption that the
program is already parallelized in CPU level and requires
explicit CPU-FPGA communication.

In 2009, the Quadro Plex (QP) Cluster [6] was built by
NCSA in UIUC. For each of the 16 nodes in the QP pro-
totype, there are two AMD Opteron CPUs, four nVidia
G80GL GPUs and one Xilinx Virtex-4 LX100 FPGA. This
system can theoretically achieve 23 TFlops (single preci-
sion). A runtime framework called Phoenix [10] was pro-
posed to schedule the threads to vitalized CPUs. This frame-
work did not manage the FPGA and GPU accelerators.

In 2010, the Axel cluster [14] demonstrates collaboration
between heterogeneous accelerators. The development en-
vironment, however, requires programmers to manually and
statically assign the work load to Xilinx Virtex-5 FPGAs
and nVidia C1060 GPUs.

All these development frameworks and programming mod-
els require an efficient way of utilizing the accelerators and
re-compiling the code when the accelerator types change.
Also, the workload distribution are often managed by the
runtime systems which have little knowledge of the compu-
tation and communication pattern of the application.

3. HARDWARE ARCHITECTURE
The proposed framework can be adapted to different clus-

ters with arbitrary heterogeneous accelerators. To realize
and evaluate the framework, we perform our experiments
on the Axel cluster. The Axel cluster adopts the nonuni-
form nodes uniform system (NNUS) approach in which het-

Gigabit

Ethernet

HCN1

HCNx

System

I/O

Multi−Bank Memory

1G Bytes

Xilinx V5 LX330T

customisable logic

System Memory

4G Bytes DDR2

Video Memory

4G Bytes GDDR3

AMD Phenom X4

9650 Quad−Core

nVidia Tesla C1060

240 streaming cores

Heterogeneous Computing Node (HCN)

Infiniband

Gigabit Ethernet

Fast Serial Link

HCN0

P
C

Ie
 B

us
: 8

~
16

 la
ne

s;
 4

~
8G

B
ps

Infiniband

Figure 1: Axel Hardware Architecture.

erogeneous PEs are hosted in a single node. All nodes are
uniform with the same abilities. The single program multi-
ple data (SPMD) programming paradigm is suitable for this
NNUS architecture. Since all the nodes are identical at sys-
tem level, multiple instances of user application can easily
be distributed to the multi-node cluster.

Figure 1 is an overview of the Axel cluster which currently
includes 16 nodes. There are three different types of PEs
in a single node: an AMD Phenom Quad-Core CPU, an
nVidia Tesla C1060 card [9], and a Xilinx Virtex-5 LX330
FPGA hosted on an ADM-XRC-5T2 card [1]. Each node
independently runs a copy of the Linux operating system.
Although only GPUs and FPGAs are currently included in
the cluster, it is possible to support other type of accelerators
in a similar system architecture.

The intra-node communication between PEs is based on
PCIe system bus where the GPU and FPGA use separate
channels and thus can transfer data simultaneously without
blocking. The cluster wide communication is based on Giga-
bit Ethernet through the NIC port on each node. The ver-
satility and flexibility of Gigabit Ethernet is at the expense
of high latency and indeterministic communication. To ad-
dress this problem, a second inter-node network is added
using the four GTP interfaces in the FPGA platform.

There are large amounts of local memory associated with
each PE. This creates a physically non-uniform memory hi-
erarchy within a node. The bandwidth between the PEs and
their associated local memory is much higher than the com-
munication bandwidth between PEs. Thus data partition
and distribution are critical for performance in the cluster.

4. APPLICATION STRUCTURE

4.1 Distributed Modules
The most distinct character of this proposed framework

from most other systems is the multiple executables struc-
ture in a single application. One module in the framework is

node 2gcc
MPI

gcc
OpenMP CUDA Xilinx ISE

module_0.c module_1.c module_2.c

*.cu

module_3.c

*.vhd

M ctrl 0 M comp 1 M comp 2 M comp 3

data

W1 W2 W3

W0

CPU GPU FPGA

W0

application *.bit

group 1

node 1

group 2

Figure 2: Distributed Application Structure.

Network

comp

FPGA RAM

accelerator

M ctrl

idle

initialize

data

kick start

done

data
data ready

data ready (size)

idle

read data

idle

time time

write data

File System
or

M

Figure 3: Module interactions.

a full featured executable for a specific task targeting a spe-
cific PE. The active instance of a module is called a worker.
A group of workers collaborate on a single node. A running
application is a collection of groups of workers. Parallelism
is achieved by distributing the workload to the active work-
ers of the application. Figure 2 illustrates this distributed
application structure.

A module can be either for computation or for control.
The computation modules, Mcomp1..Mcomp3, carry the ap-
plication kernels which are accelerated by the targeted PEs.
The control module, Mctrl, commands and synchronizes the
Mcomp to complete the application. An application consists
of at least one Mctrl and one Mcomp.

Similar to a stand alone application targeting a single
accelerator, Mcomp interfaces to the vendor specific device
driver to initialize and configure the PE; download the data
to the accelerator local memory; monitor and synchronize
the hardware; and collect the results from the accelerator.
The major difference of Mcomp from a stand alone applica-
tion is its interaction with Mctrl. Figure 3 shows an exam-
ple of the interaction during an application execution using
the FPGA accelerator. Instead of reading data and stor-
ing results actively, Mcomp starts being idle. Mctrl prepares
the data and signals Mcomp to start working. After fin-
ishing accelerator computation, Mcomp reports the status to
Mctrl and becomes idle again. Besides controlling the Mcomp

in the group, Mctrl also communicates with Mctrl in other
groups and performs data read/write. A single Mctrl can
master multiple Mcomp although only one Mcomp is shown
in Figure 3. Another important task of Mctrl is to launch
the associated Mcomp as described in section 4.2.

Since each module targets a single type of accelerator, the
management of adding and removing accelerators to and
from the application is similar to managing files in a direc-
tory. This modular structure ensures that a module will
continue to function correctly regardless of other modules.
This feature provides flexibility in application development.
For example, the application can start functioning as soon
as any of the accelerator modules is ready, and it can be
gradually improved as new modules become ready. Unlike

other systems which hardwire the application in a single ex-
ecutable, re-compilation of the whole application is not nec-
essary in this framework when updating the accelerators.

Another benefit of this distributed module structure is
that the original tool chains of the accelerators are preserved
as shown in Figure 2, improving productivity. Integrating
the accelerators in a unified program description usually re-
quires an abstraction layer involving source-level translation
or syntax extension. In this framework, the absence of this
abstraction layer improves ease of use and efficiency. Appli-
cation developers for different accelerators can use the most
familiar tool chains to develop and optimize modules, based
on the unified communication API.

4.2 Auxiliary Information
Isolating the accelerator kernels in independent modules

introduces an integrity problem of the application, since
none of the modules have knowledge about the capability
or even existence of other modules. This information, ex-
cluded from program code, is captured in a auxiliary meta
file call the Application Configuration File (ACF). The ACF
plays an essential part in this framework.

The ACF is in XML format and is placed in a networked
file system such that all Mctrl can access it. It is created by
application programmers to chain up all the required mod-
ules in the applications. The ACF provides the controlling
modules three types of important information: (i) the avail-
able modules, (ii) the groups and workers with them, and
(iii) the communication between groups. An example of
ACF is shown below. Its content forms a recipe showing
how the application will be executed in the cluster.

<application name="myapp">

<module id="0" name="./myapp_m0"
type="io" pe="cpu"> </module>

<module id="1" name="./myapp_m1"
type="compute" pe="gpu"> </module>

<module id="2" name="./myapp_m2"
type="compute" pe="fpga"> </module>

<group id="0" ofst="0" size="5">
<worker module="0" ofst="0" size="0"></worker>
<worker module="1" ofst="0" size="3"></worker>
<worker module="2" ofst="3" size="2"></worker>

</group>

<group id="1" ofst="5" size="5">
<worker module="0" ofst="0" size="0"></worker>
<worker module="1" ofst="5" size="2"></worker>
<worker module="2" ofst="7" size="3"></worker>
<output id="0"></output>

</group>

</application>

The first section of the example ACF indicates three avail-
able modules in the application. Key attributes, such as
the path to executable in the file system and the target PE
types, are also included. Each module is assigned a unique
identity. The second and third section in the ACF create
two groups of workers for the application. There are three
workers mapped to the three modules in each group. Like
the module, each group is given a unique identity. The ofst

and size attributes indicate the starting offset and the size
of the data assigned to each group. The data assignment in-
cludes key information for an array data structure, while the

actual interpretation of these two attributes depends on the
implementation of user modules. The data are further di-
vided and assigned to the workers in the group using similar
work attributes. For example, the second worker in group
1 is an instance of module 1 which will process two data
entries starting from the fifth entry. If the assigned data
size is 0, the workers, which are usually taking the control
role, will not process any data. The last element in group 1
requests the Mctrl in the group to send the finished data to
the Mctrl in group 0.

Users can create application specific attributes in the ACF
and retrieve the values later in the Mctrl using the provided
APIs. Also, the interpretation of the predefined attributes
is controlled by user program. Some structures, such as
the output element, can even be bypassed in applications if
a specific scheme has been captured in the program code.
The ACF gives developers significant freedom to configure
the execution of an application in the cluster.

4.3 Execution Models
The life cycle of a distributed application is presented

here. After all necessary modules are created by their spe-
cific building tools and the ACF is created to configure the
execution scheme, the application is ready to be launched.

A user will launch the Mctrl module through the MPI
system. The remote process manager of the MPI system
is used to create multiple instances of the Mctrl module in
the cluster nodes. There is no indication of which nodes
are used in the application, since this information cannot be
determined at compile time. The available resources are dy-
namic in a multi-user multi-application environment. Thus
the programming framework can integrate well with third
party resource management tools, such as the Torque/Maui
system installed in the Axel cluster. There is also no limi-
tation to a one-to-one mapping between groups in software
and nodes in hardware, as long as there are no conflict of
accelerator requirements.

Once the worker for an Mctrl instance is created, it reads
and parses the ACF file. By default, it maps its RANK in
the MPI system to the group ID. This can be altered by
sending the WHOAMI request to the RANK0 node. Then it
creates other worker instances by loading the corresponding
modules into memory. After that, it creates the message
queue for all the workers as a control channel. This Mctrl

worker may read the data from network shared data storage
or receive data from a remote Mctrl worker.

To minimize the data transfer overhead, the Mctrl worker
will store the data in shared memory which all workers are
allowed to access. Application specific data protection and
synchronization are implemented in the user code section.
The controlling worker then sends a DATRDY message to each
Mcomp worker, and tells them the remapped data offset and
size in the shared memory.

After receiving the DATRDY message, the Mcomp worker
start loading the computation to the targeted hardware ac-
celerator. The processed results from the accelerator are also
stored in shared memory. An Mcomp worker indicates the
completion of its work by sending a DATRDY message back.

Once the Mctrl worker receives this message, it marks the
data segment processed. If all data are marked processed,
the Mctrl worker enters the data collection stage. Depend-
ing on the application, it may send the data in the shared
memory to remote Mctrl workers as instructed by the ACF,

Image
Executable

FPGA

CPU Executable
Image

GPU

Task Wrapper Data
SHM IPC

SW driver

Runtime Resource Manager

HW

Task
Software SHM IPC

Data Task Wrapper

driver

Node X Node Y

MPIMSG IPC Control Application Master

Figure 4: Communications in the heterogeneous

programming framework.

or writes them to a file, or iterates to send DATRDY to the
Mcomp workers again.

The Mctrl worker can be terminated according to user
program code or by sending an APPEND message to it. The
Mctrl worker will broadcast the APPEND message to the group
and wait until all other workers have terminated before ter-
minating itself.

The application programmers can instruct the Mctrl work-
ers to periodically send information requests to a predefined
node. The returned information is a complete data struc-
ture in the ACF format. By doing so, users can dynamically
adjust the execution scheme to obtain the most desirable
trade-offs fro this application.

5. PROGRAMMING INTERFACE

5.1 Communication Interface
There are four different types of communication APIs in

the heterogeneous accelerator cluster as shown in Figure 4.
The first type is at the lowest level, involving communica-
tions between the Mcomp workers and the targeting acceler-
ators. The API for this type is provided by the accelerator
vendors or the application programmers. The functions in-
clude configuring FPGA devices with bitstreams and copy-
ing memory contents from host memory to GPU memory.

The second type covers the control messages between work-
ers within a group. Since all workers of the same group reside
in the same node, this API is built on top of the message
queue POSIX inter process communication (IPC). The 1K
byte message packet has the format of a destination worker
ID followed by the message type and user defined contents.
Besides system predefined message types such as DATRDY and
APPEND, user are free to create custom types. The user de-
fined content area is useful for small and frequently changing
data such as system parameters.

The third type covers large amounts of data communica-
tion between local workers. Based on the shared memory
POSIX IPC, special APIs are needed to map array variable
in user applications to the created shared memory blocks.
The number of memory copies and data movement over-
head is significantly reduced while all the synchronization
and protection of the data are not explicit to application
programmers.

The last type covers communication between remote work-
ers from different groups. This set of APIs is a warper
around the MPI functions calls. The main idea is to encap-
sulate the MPI related details and provide a group-worker
view for global communications. Currently, only point-to-
point and all-to-all schemes are supported.

5.2 Design Automation
The rich set of APIs makes the framework very flexible

but also requires attention to implementation details. A

method that would reduce the need for such details is desir-
able to further improve developer productivity. Observing
that there are similar pattern in the applications structures,
we decide to provide a template-based code generation tool.
There are code patterns which are required in all applica-
tions, such as the parsing and analyzing of the ACF and
the termination of workers. These processes are relatively
static from application to application. Thus we put them
into the static section which will be emitted directly from
the template codes.

There are also code patterns which depend on parameters
of the application. These parameters are usually defined
before the implementation of the modules. For example,
the structure and size of the main data variables in an ap-
plication are usually known in early stages. Thus we can
allow users to enter the reference, type, size and read/write
patterns of these variables. Code segments such as creat-
ing the shared memory and filling in the contents can easily
be generated according to user information. Another pa-
rameterizable code pattern involves global communications.
There are common communication schemes as suggested by
the MPI function calls. We allow users to select from these
common schemes and related them to data variables. Code
segments of sending and receiving these data can then be
generated automatically.

The control logic and the computations are the core el-
ements of an application. These control patterns are often
different between applications. However the development
framework imposes limitations on how the control mecha-
nism is implemented. Since the framework forces an event-
driven flow based on message passing, the main loop in a
module usually consists of the process of idle listening and
message parsing. The code generation tool creates this basic
main loop structure as a skeleton or place holder, allowing
users to provide application specific control later.

Despite its simple mechanism, this template-based code
generator can produce a complete application based on a
few user inputs. This will reduce development time and
help users focus on the accelerator kernel and control logic
optimizations.

5.3 Scheduler Extension
A straight forward implementation using the framework

will turn the application to static load distribution, since the
subsets of data assigned to each worker and its associated
accelerators are explicitly specified in the ACF.

Assuming that parallelism is achieved by distributing and
processing small subsets of data concurrently, the perfor-
mance gain depends on the sequence of workers that take
the longest time. A static schedule may not be efficient
since workers finished earlier cannot help. This problem of
unbalanced load cannot easily be addressed at design time
when the ACF is created. The estimated performance of
the accelerated kernels is usually not sufficiently accurate
and the runtime performance may also be affected by input
data or parameters. Also, in a cluster system, new com-
puting resources may be available due to the termination of
other applications. A static schedule cannot take advantage
of new resources.

To enable a dynamic scheduler to adapt to the actual ker-
nel performance and run-time conditions, special arrange-
ment in the distributed application must be made. First,
the work load distribution must not depend on the ACF,

and should be acquired by the Mctrl at run time. This can
be supported by assigning 0 to all size attributes in the ACF.
Second, there must be a central facility to coordinate the
load distribution process. Every time a group finishes the
assigned work, the Mctrl in the group will send the DATRDY

message to the scheduler. Depending on the recorded per-
formance of this group, the scheduler assigns a new batch of
data for the group to process. Various scheduling schemes
can be applied to achieve different optimization goals. A sec-
ond level of scheduling process is performed by every Mctrl

worker to balance the load of the local Mcomp workers. As
discussed before, the data structure in ACF can be used to
alter the data size assigned to each group.

The challenge here is that the ACF data are sent inde-
pendently from the actual assigned data. To eliminate the
synchronization requirement between scheduler control and
data transfer, the Mctrl workers are forced to accept data
through global communication APIs only when the control
and data are from the same sources. Using these methods,
a dynamically scheduled Monte Carlo simulation is imple-
mented and various scheduling schemes are evaluated.

6. IMPLEMENTATION RESULTS
Three example applications are implemented on the Axel

cluster using the proposed programming framework. These
three applications have different computation requirements
and communication patterns which exercise various aspects
of the cluster. All FPGA acceleration kernels are devel-
oped using VHDL and implemented using the Xilinx ISE
11.5 tools. The GPU kernels are compiled using CUDA 2.2
tools. The accelerator results are compared with an AMD
Phenom Quad-Core CPU. All floating point computations
are performed in IEEE-754 single precision format.

6.1 N-Body Simulation
N-body simulation is a process to model the interaction

between N particles under gravitational forces in space [7].
In this example, we implemented a second order 3D N-body
simulation application on the Axel cluster. To compute the
acceleration vectors of moving particles, the distances be-
tween them and every rest particles are computed.

There is no data dependency within a simulation itera-
tion. So the FPGA design can be deeply pipelined and
high throughput is achieved. The particles are arranged
into small groups and assigned to different Mcomp workers
including the GPU and FPGA kernels. Each worker com-
putes the acceleration vectors of the assigned particles and
broadcasts the results. The final updates of positions and
velocities are performed by a CPU-centric worker. Since all
workers need to access the most update positions of all the
particles for the current simulation, the all-to-all broadcast
global communication increases the overhead.

The workload is distributed to GPU and FPGA in an
asymmetric way, since the measured performance of FPGA
is higher than that of the GPU. This schedule is static and
produced after each kernel is fully tested.

6.2 Pub/Sub Matching
The publication/subscribe model is for applications in-

cluding web services and financial monitoring [4]. The model
enables subscribers to set matching rules to filter interested
events. A two step algorithm [5] is implemented with FPGA
acceleration kernels and tested on the Axel cluster. There

Figure 5: Performance results.

are currently no GPU version of this application.
The input events are independent and distributed to dif-

ferent Mcomp workers for parallelization. The outputs con-
tain lists of triggered subscribers which are also independent.
There are only fixed-point number comparison operations
in the algorithm. The performance is limited by the FPGA
off-chip memory bandwidth and the synchronization process
between the two steps.

The workload is evenly distributed to FPGA accelerators.
Since there is no correlation between the matching processes
of different events and no final results need reduction, the
design scales linearly with the increase in nodes.

6.3 Monte Carlo Simulation
Monte Carlo simulation is a useful tool to solve complex

problems [12,13]. We have developed an option pricing ap-
plication using Monte Carlo simulation. The major com-
putation is to simulate the paths of option price movement
in a mathematical model. This application includes both
FPGA and GPU acceleration kernels and supports dynamic
scheduling using the method described in section 5.3.

The inputs to the system are a set of random variables.
Each of these variables contributes to a step in the pricing
path. The put and call payoffs of all the simulated paths
are collected to compute the final expected value. There is
no data dependency between simulated paths.

Since the application produces random variables to ini-
tialize the design, there is no external input for both the
FPGA and GPU kernels. The random sequences are gener-
ated within the acceleration kernels. The workload is dis-
tributed by assigning different sets of paths to the Mcomp

workers. The workers partially reduce the results of the as-
signed paths and send them to a single data sink where the
final expected values are computed.

6.4 Results
Figure 5 shows the achieved speedup of the hardware ac-

celerators based on the proposed programming framework.
The results of a single GPU and a single FPGA are com-
pared with that of a four-thread software version running
on the Quad-core CPU. The hybrid cluster result is a com-
parison of a 16-node heterogeneous accelerator cluster to a
16-node CPU only cluster. Since there is no GPU imple-
mentation of the Pub/Sub application, the cluster version
of Pub/Sub utilizes the FPGA accelerators only.

7. CONCLUSION
This paper presents a framework for improving produc-

tivity and efficiency of application development in a cluster
environment targeting heterogeneous hardware accelerators.

The modular structure for modules and configuration files
enables rapid development and easy extension. Current and
future work includes improving run-time optimization such
as dynamic load balancing, and supporting a wide range of
applications and hardware platforms.

Acknowledgments
The support of Imperial College London Research Excel-
lence Award, UK Engineering and Physical Sciences Re-
search Council, Alpha Data, nVidia and Xilinx is gratefully
acknowledged.

8. REFERENCES
[1] Alpha-Data Parallel System Ltd. ADM-XRC-5T2

User Manual, 2008.

[2] R. Baxter and et al. The FPGA high-performance
computing alliance parallel toolkit. In Proceedings of
the Second NASA/ESA Conference on Adaptive
Hardware and Systems, pages 301–310, 2007.

[3] T. Endo and S. Matsuoka. Massive supercomputing
coping with heterogeneity of modern accelerators. In
Proceedings of IEEE International Symposium on
Parallel and Distributed Processing, pages 1–10, 2008.

[4] P. T. Eugster and et al. The many faces of
publish/subscribe. ACM Computer Survey,
35(2):114–131, 2003.

[5] F. Fabret et al. Filtering algorithms and
implementation for very fast publish/subscribe
systems. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data,
pages 115–126, 2001.

[6] M. Showerman et al. QP: A heterogeneous
multi-acceleator cluster. In 10th LCI International
Conference on High-Performance Clustered
Computing, Boulder, Colorado, March 2009.

[7] J. Makino. The GRAPE project. Computing in
Science & Engineering, 8(1):30–40, Jan.-Feb. 2006.

[8] Message Passing Interface Forum. MPI: A Message
Passing Interface Standard Version 2.1, 2008.

[9] nVidia Co. Tesla C1060 Computing Processor Board,
Sep. 2008.

[10] A. Pant, H. Jafri, and V. Kindratenko. Phoenix: A
runtime environment for high performance computing
on chip multiprocessors. In 17th Euromicro
International Conference on Parallel, Distributed and
Network-based Processing, pages 119 –126, 2009.

[11] R. Baxter et al. Maxwell - a 64 FPGA supercomputer.
In Proceedings of NASA/ESA Conference on Adaptive
Hardware and Systems, pages 287–294, 2007.

[12] X. Tian and K. Benkrid. High performance
quasi-monte carlofinancial simulation: FPGA vs. GPP
vs. GPU. ACM Transaction on Reconfigurable
Technology and Systems, to appear, 2010.

[13] A. H. T. Tse, D. B. Thomas, and W. Luk.
Accelerating quadrature methods for option valuation.
In Proc. IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2009.

[14] K. H. Tsoi and W. Luk. Axel: A heterogeneous cluster
with FPGAs and GPUs. In Proc. ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays (FPGA), pages 115–124, 2010.

