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Abstract— We present an automated method for finding feasible
placements of regions on partially reconfigurable Field-Programmable
Gate Arrays (FPGAs). Such reconfigurable regions are placed at design
time, and can be allocated to different modules at run time. We consider
regions that support relocatable modules. A model is introduced that
enables masking out non-matching resources for relocatable modules,
with an algorithm to find a suitable region placement for such modules.
We also consider communication constraints and fragmentation. In a
case study involving software-defined radio, we demonstrate that our
algorithm increases the number of relocatable regions that can be placed
on a device. The average configuration storage size is reduced by a factor
of 5.2 when using the proposed relocation approach, which also leads to
improvement in compilation time.

I. INTRODUCTION

Run-time reconfigurable FPGAs allow the development of pow-
erful and flexible systems. Computational tasks are implemented as
reconfigurable modules and loaded into the FPGA when needed. This
technique can increase performance and reduce area requirements and
power consumption [1]. However, run-time reconfiguration demands
additional design efforts [2]. The reconfigurable modules have to
be isolated from the static part of the system. Also at run time,
reconfiguration has to be managed and controlled.

Traditional FPGAs provide a regular and homogeneous fabric of
identical configurable logic tiles. However, in recent years FPGA
architectures became increasingly heterogeneous and now provide a
range of hardened functional blocks [3]. The most common type of
heterogeneous resources are block RAMs (BRAMs) and DSPs.

In this paper we consider the placement of partially reconfigurable
regions (PR regions) on heterogeneous FPGAs where the allocation of
reconfigurable modules is limited to these pre-defined regions. The
need to pre-define regions is practical and consistent with current
design techniques [2]. Placing these regions on the FPGA is a
design-time task and regions have to satisfy the requirements of
computational tasks that can be implemented in such regions. Later at
run time, physical implementations of tasks, so-called reconfigurable
modules, can be allocated to these regions. Our placement approach
targets heterogeneous architectures and attempts to find regions that
allow bitstream relocation such that one reconfigurable module can be
allocated to all regions in the device. This approach has the benefits of
reducing configuration storage and design time, since with relocation,
only one version of each module needs to be produced and stored.

II. BACKGROUND

Task placement for reconfigurable systems has often been pre-
sented as a run-time problem that allows fully flexible 2D-placement
on the FPGA [4], [5]. This allows to optimise the placement of a
reconfigurable module depending on its size and the available free
area. However, such an approach suffers from fragmentation issues
when several differently sized tasks are subsequently loaded into
the device. Furthermore, research on 2D-placement often neglects
the communication infrastructure that would be necessary to connect
tasks. Another disadvantage is that there is no fixed number of tasks

that can always be guaranteed to execute concurrently. The number of
tasks that can operate in parallel depends on the size of these tasks
as well as the current fragmentation of the device. Finally, fully-
flexible 2D-placement methods are usually based on the assumption
of a fully homogeneous device architecture. However, devices have
become increasingly heterogeneous in recent times. These techniques
are therefore not applicable to modern devices.

As an alternative, the device can be partitioned into several
PR regions at design time. At run time, reconfigurable modules
can be allocated to free regions. This approach is used in many
state-of-the-art reconfigurable systems [6], [7], [8] since it is a
practical design technique for current heterogeneous architectures [2].
It avoids fragmentation issues at run time and allows to include
a communication infrastructure during the design phase. It also
simplifies the problem of run-time allocation. Tasks can simply be
assigned to free regions or, if congestions is a concern, priority-based
decisions can be made [9].

However, most reconfigurable systems with predefined PR re-
gions employ non-relocatable modules which are specific to one
particular target region in the device. Hence, separate versions of
each reconfigurable module need to be generated if several PR
regions exist. Relocatable modules have the advantage of reducing
the configuration storage size since only one bitstream version has
to be stored. In a system with m regions, the storage size is reduced
by a factor of m. Likewise, it reduces the time needed for physical
implementation because only one version has to be mapped, placed
and routed. With single configuration bitstreams reaching a size of
tens of megabytes [3] and increasingly long place and route times, a
reduction in storage size and design time can be an important design
improvement.

Module relocation on heterogeneous architectures usually suffers
from the fact that identical regions have to be found [10], [11],
[12]. With the increasing level of heterogeneity in modern devices
it can be difficult or even impossible to find identical regions. A
recent method is proposed that simplifies relocation on heterogeneous
architectures by identifying a compatible subset of components in the
target regions [13]. Regions are not fully identical but non-matching
resources are masked out and are only used for routing. At run
time, a controller performs simple modifications to the bitstream in
order to accommodate the module in different regions. However, the
placement of reconfigurable regions is done manually.

The contribution of this paper is automating such a region place-
ment. Unlike previous work which considers fully flexible placement
on homogeneous architectures or pre-defined PR regions without
relocation, our approach focusses on enabling relocation in practical
systems with pre-defined PR-regions on heterogeneous devices.

III. FPGA ARCHITECTURE MODEL

We consider a system where certain tasks are implemented in
hardware as reconfigurable modules. A PR region is a dedicated
region in the FPGA that can hold one reconfigurable module at a time.



Reconfigurable modules are dynamically allocated to PR regions
depending on application requirements. A reconfigurable system
usually contains a static part S and several PR regions Ri. The aim
of this paper is to find a feasible placement for these PR regions al-
lowing the inclusion of heterogeneous resources and communication
constraints. Regions have to be non-overlapping and large enough to
accommodate reconfigurable modules.

In the following we describe how we model architecture, applica-
tion and implementation. The architecture can be a tile-based device
such as Virtex-4 or Virtex-5 or a column-based device such as Virtex-
2, Virtex-2 Pro or Spartan-3. The application is a reconfigurable
system with n tasks, m PR regions and a static system part.

In order to describe resources required by a module or provided by
a region, we introduce the n-tuple u. Each tuple component represents
the number of a certain type of resource. For the remainder of this
paper, we use a 3-tuple that represents the resources CLB, BRAM
and DSP: u = (uclb, ubram, udsp). However, the tuple can be easily
extended if necessary.

We model the FPGA architecture as a two-dimensional array,
where each array element represents an atomic reconfigurable unit
(PR unit). For example, in Xilinx Virtex-4 FPGAs, PR units span
the height of a clock region and have a size of 16x1 CLBs, 4x1
BRAMs or 8x1 DSPs. Each array element contains a tuple u that
represents the available resources in this PR unit. For instance, a CLB
unit in Virtex-4 FPGAs would have u = (16, 0, 0). When describing
column-based architectures such as Virtex-2, PR units span the height
of the entire device and the array therefore contains only one row
of elements. The resources of the device are represented by udevice

which is the sum of all resources in the device. A PR region Ri is
a rectangular sub-array of the device and its available resources are
represented by the tuple ua(Ri).

We can model the application as a set of permanent functions
or tasks corresponding to the static system part S and a set of n
reconfigurable tasks T1 to Tn. Each task Ti is characterised by its
resource requirements u(Ti). The resource requirements of the static
part is ur(S). The reconfigurable system provides m reconfigurable
regions R1 to Rm that hardware implementations of the tasks can be
allocated to. The number of regions depends on how many tasks need
to run concurrently. The resource requirement ur(Ri) of a region is
defined by the combination of resource requirements of all tasks that
can be allocated to this region. More specifically, it is the elementwise
maximum of all u(Ti) for all tasks T .

ur(Ri) =

0@ max(uclb(T1), · · ·uclb(Tn))
max(ubram(T1), · · ·ubram(Tn))

max(udsp(T1), · · ·udsp(Tn))

1A (1)

A feasible PR region must satisfy this resource requirement, that
is ua(Ri) ≥ ur(Ri). In our case all ur(Ri) are equal since the same
set of tasks can be used in all regions. The resource requirement for
the entire system is the sum of the static part and all PR regions:
ur,system = ur(S) + m · ur(R).

The first step in implementing a system is to choose a target device
with udevice ≥ ur,system. However, this is only an initial estimate.
The final system size can be larger because regions can cover more
resources than initially required.

IV. PLACEMENT ALGORITHM

We now want to find a feasible placement for all PR regions.
For a placement to be feasible, regions have to be non-overlapping
and large enough according to equation 1. PR regions should also
allow for relocatable modules, making use of the technique presented
in [13] if fully identical regions cannot be found. Relocatable modules
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Fig. 1. Examples of relocatable and non-relocatable scenarios for PR regions
with a resource requirement of 432 CLBs and 8 BRAMs.

can allow PR regions to have non-matching resources if the identical
subset of resources is sufficient to implement the tasks. This is
illustrated in figure 1. Non-matching resources can be masked out
and are used for routing only. Additionally, we want to allow for
communication constraints in order to insure system connectivity.

The key part of the algorithm is illustrated in figure 2. It involves
finding one initial region by expanding the right boundary of the
region until the resource requirements are met, that is all values in
ua(R) have to be larger or equal to the ones specified in ur(R).
Next, the region is shrunk by moving the left boundary up to the point
where further shrinking would violate the resource requirements. This
shrinking is done because a region might have to expand far to the
right to gain enough of one type of resource. But it might also
gain excessive amounts of other resources. These can be reduced
by shrinking the left side as indicated in figure 2 a. The region has
now minimal size and is locked down as a seed for all other possible
regions. A mask that contains the type and relative location of all
resources is created. In the following we try to find all possible
additional regions that provide a sufficiently large identical subset
of resources with the initial region. A sliding window with the same
size of the initial region is moved along the device as illustrated in
figure 2 b. Using the mask, we check if the underlying fabric provides
the required resources in the correct location. If a match is found the
region is locked down and added to a region list. If there are non-
matching resources in the matching area then the mask is updated
with prohibit values as illustrated in figure 1. We then proceed in the
same manner to find all possible further regions. The search continues
through all rows until the device is full and no more regions can
be found. Throughout the search the algorithm keeps track of the
resources used by a region list.
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Fig. 2. The key steps of our algorithm involves finding an initial region and
searching for further regions with a sufficient number of matching resources.

The algorithm considers a region list as valid if at least m regions
can be found. Surplus region will later be eliminated based on
additional design constraints such as the location of the static system.
If, as an alternative, the number of regions m is not fixed, then
the algorithm can be used to maximise the number of PR regions
and hence, the number of tasks that can be executed in parallel.
Valid region lists are added to a placement list, which represents list
competing valid design choices.

The inner part of our algorithm as illustrated by figure 2 is repeated
with various parameters in order to populate the placement list with
various placement choices. It is possible to perform a full exhaustive
search of the design space based on variations in the initial region
placement and its aspect ratio. The search space has typically a
size of several thundered PR units, with the largest Virtex-4 device
containing 1248 PR units. Practically, the search space can be reduced
by exploiting symmetries in the device. Furthermore, extreme region
aspect ratios can be omitted as well.

The next step is to choose a suitable region list from the placement
list generated by the algorithm. We can use three metrics that help
selecting a region list: number of PR regions, fragmentation and
masked-out resources. If the algorithm is used to find the maximum
number of possible PR regions m, then the first criteria is to a select
region list with maximum m.

While our method does not introduce any problems with run-time
fragmentation, the PR regions can fragment the residual free space
of the device. This can cause problems with implementing the static
part of the system. We therefore use a method presented by Walder
et. al. that calculates the fragmentation of the free space by using
maximum free rectangles [14].

Our method will mask out non-matching resources in PR regions
in order to allow module relocation. Masked-out resources cannot be
used when implementing tasks in a region and hence, increase the
size of the PR region. An increased area leads to larger configuration
bitstreams and slower reconfiguration time. As a third criteria we
therefore choose regions with the smallest percentage of masked-out
resources.

We can add support for two different types of communication
structures to our algorithm. For communication structures that are
embedded into the reconfigurable modules as in [12], PR regions
should be lined up and located directly next to each other. In order to
support external communication structures as in [2], [15], we extend
the region’s resource requirement with dedicated routing channels.
After finding an initial region and generating the region mask, a
previously specified amount of extra rows or columns is added to the
mask. These additional PR units are marked as prohibit since they
cannot be used by the module. Routing channels are not considered
to contribute to device fragmentation, because they are intentionally
created. Routing channels can be added to either side of a region,
and can constitute of a single row or column or an L-shape.

V. CASE STUDY

We perform a case study based on signal processing cores used
in software-defined radio. Software-defined radio is an area that can
benefit from using reconfiguration [16]. Table I shows a range of
signal processing cores and their resource requirements with some
parameter variations. All cores are generated with Xilinx CORE
Generator and implemented on Xilinx Virtex-4 FPGAs. We cluster
these cores into various groups to obtain a range of realistic region
resource requirements ur(R). Based on these requirements, we then
use our algorithm to find the maximum number of PR regions on
various Virtex-4 devices, with and without module relocation. This
is illustrated in table II. In this analysis we use a reconfiguration man-
ager based on a MicroBlaze processor and the internal configuration
access port (ICAP). The resource requirement of this static system
is ur(S) = (515, 33, 3). As a communication constraint we require
a free routing channel with a height of 16 CLBs below each region.

core u(T )

FIR (961,0,0), (235,0,16), (474,0,32), (870,0,48)

Direct Down (488,16,0), (437,0,0)
Conversion

Direct Digital (88,1,0), (105,1,2), (133,8,3)
Synthesis

Cordic (154,0,0), (170,0,0)

FFT (869,16,0), (200,0,3), (281,0,0), (604,7,16), (1004,17,24)

Forward Error (301,13,0)
Correction

Viterbi (495,2,0) ,(272,2,0)
Decoder

Turbo (611,17,0), (315,7,0)
Decoder

TABLE I
SIGNAL PROCESSING CORES AND THEIR RESOURCE REQUIREMENTS.

Table II shows the number of PR regions can be found for various
ur(R) with and without relocation. Column two shows the resource
requirement for the PR regions which is based on various clusterings
of cores from table I. As a comparison, column three lists the number
of possible regions with relocation when requiring fully identical
regions. This scenario represents prior art in relocation. Column
four shows the number of possible relocatable regions found by our
algorithm that is enabled by the method of masking our non-matching
resources. When searching for the maximum number of PR regions,
the algorithm only finds a limited number of solutions that often
bear resemblance to each other e.g. showing symmetry or minor
variations. The optimisation potential for reducing fragmentation of
the residual free space or the percentage of masked-out resources is
therefore limited. The presented solution are, if possible, optimised



target device masked
udevice ur(R) m(1) m(2) PR units m(3)

per region

FX100 (961,16,0) 2 4 10% 6
(10544,376,160) (611,17,0) 5 6 7.7% 6

(301,13,0) 6 9 7.7% 9
(315,7,0) 6 12 8.3% 12

SX55 (1004,17,48) 3 3 0% 3
(6144,320,512) (604,7,48) 5 5 0% 5

(235,8,16) 10 10 0% 10

LX40 (495,2,0) 2 2 0% 3
(1608,96,64) (315,7,0) 3 5 8.3% 5

LX80 (961,16,0) 2 3 5.3% 3
(8960,200,80) (611,17,0) 2 3 7.7% 3

(437,0,0) 4 7 23.1% 7
(301,13,0) 3 5 7.7% 5
(315,7,0) 5 5 0% 8
(281,0,0) 5 10 16.7% 10

(1) identical, relocatable regions
(2) non-identical, relocatable regions using masking out of non-matching resources
as shown in figure 1
(3) non-relocatable regions

TABLE II
NUMBER OF POSSIBLE PR REGIONS m ON VARIOUS TARGET DEVICES FOR

RELOCATABLE AND NON-RELOCATABLE SCENARIOS.

for fragmentation first and secondly for masked-out resources. All
designs provide sufficient unfragmented space to implement the static
reconfiguration manager. The percentage of resources that have to be
masked out is shown in column five. In 10 out of 15 cases, our
algorithm finds more regions than it would be possible with identical
regions. In the other five cases, fully identical regions can be found
which is illustrated by a value of 0 % masked-out PR regions.

The last column lists the number of PR regions that can be found
if modules do not have to be relocatable. Comparing columns four
and six we see that in 12 out of 15 cases, our algorithm finds as
many relocatable regions as without relocation, therefore reducing the
configuration storage requirement in these cases without impacting
the number of regions that can be found.

The SX55 device is particularly relocation-friendly because all its
heterogeneous resources are placed in an identical pattern with equal
distances. Hence, no resources have to be masked out for relocation.
In both LX devices, relocatability can be hampered because of the
uneven distribution of heterogeneous resources. BRAMs and DSPs
are placed towards the left and the right side of the device with
large CLB islands in the middle. This can lead to high percentages
of masked out resources or it can reduce the number of PR regions
allowing relocation. We observe that heterogeneity by itself is not an
obstacle to relocation, but designing devices with a more regular dis-
tribution of heterogeneous resources simplifies the use of relocatable
modules.

We implement and compare designs for the 12 cases where an
equal amount of relocatable and non-relocatable regions can be
found. Designs are built with Xilinx ISE 9.2 tools on a PC with
a 3.2 GHz Pentium 4 processor. Comparing the configuration storage
sizes when using relocatable and non-relocatable modules, we find
that on average the configuration storage requirement per module is
reduced from 1110.8 kB to 220.1 kB. This represents a factor of 5.2.
The maximum reduction is from 1276.8 kB to 106.4 kb which is a
factor of 12. The average compile time is reduced from 2 hours and
39 minutes to 43 minutes when building relocatable modules instead
of non-relocatable ones. This represents a 3.7 times speed-up.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present a model and algorithm to find PR regions
for relocatable modules. These regions do not have to be fully

identical and non-matching resources can be masked out. We also
consider communication constraints and fragmentation of the residual
free space for the static system.

Our algorithm often finds more regions than a search for fully
identical regions would. In most cases, it finds as many relocatable
regions as without relocation. In a case study with signal processing
cores we show that PR regions allowing relocation reduce the storage
size by a factor of 5.2 on average. We also find that equidistant
placement of heterogeneous resources simplifies the search for re-
gions allowing relocation. Devices without regular placement of
heterogeneous resources hamper relocation or increase the number
of masked out resources.

Current and future work includes adapting and evaluating the
benefit of our algorithm for other applications and for other devices,
such as Virtex-5 or coarse-grain architectures.
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