
Programming Framework for Clusters with
Heterogeneous Accelerators

Kuen Hung Tsoi, Anson H. T. Tse, Peter Pietzuch and Wayne Luk
Department of Computing, Imperial College London

{khtsoi, htt08, prp, wl}@doc.ic.ac.uk

ABSTRACT
We describe a programming framework for high per-
formance clusters with various hardware accelerators.
In this framework, users can utilize the available het-
erogeneous resources productively and efficiently. The
distributed application is highly modularized to support
dynamic system configuration with changing types and
number of the accelerators. Multiple layers of commu-
nication interface are introduced to reduce the overhead
in both control messages and data transfers. Paral-
lelism can be achieved by controlling the accelerators
in various schemes through scheduling extension. The
framework has been used to support physics simulation
and financial application development. We achieve sig-
nificant performance improvement on a 16-node cluster
with FPGA and GPU accelerators.

1. INTRODUCTION
Dedicated hardware accelerators can achieve orders

of magnitude speedup when compared with CPU based
implementations. The processing element (PE) of these
accelerators usually contains tens to hundreds of ALUs
such as graphics processing units (GPUs) or deeply pipelined
data paths on the field programming gate array (FPGA)
devices. At the expense of program control flexibility,
these PEs can outperform the modern CPUs by mas-
sive parallelization and off load the most computational
intensive task from the CPUs. The large amount of on-
chip fast caches and tightly coupled off-chip memory
also contribute to performance improvements. High
performance clusters (HPCs) with dedicated accelera-
tors offer practical solutions in real world applications [3,
6].

Despite these obvious advantages of accelerator clus-
ters, the number of systems and applications is not com-
parable to the number of CPU-centric HPCs. These
accelerators are usually more expensive than CPU in
terms of unit price. To maximize the cost effective-
ness of a system, the potential of the PEs must be fully
exploited. This can be a challenge to application devel-
opers since, unlike CPU programming, it requires in-
formation of the PE’s internal hardware architecture,
different vendor-specific tool chains and even different
programming languages.

For example, VHDL programming skills and knowl-
edge of the internal resources of the FPGA are crit-
ical for optimizing the kernel performance on FPGA
accelerators. The local memories of these accelerators

form a complex memory hierarchy. Without a unified
flat memory space, the programmers need to explicitly
manage the memory systems and move data between
them. This overhead reduces productivity, constrains
the achievable speedups, and increases the difficulty in
kernel optimization. Integrating different types of ac-
celerators in the system worsen the situation. To avoid
this complexity, most applications utilize a single type
of accelerator even when other types of accelerators sit
idle in the system. These difficulties and complexities
appear repeatedly in many applications and systems.
A general programming framework is desirable to unify
the application development practice and improve de-
veloper productivity for heterogeneous clusters.

The proposed research targets a cluster with FPGA
and GPU accelerators [14]. Based on this hardware ar-
chitecture, we study the software stack of heterogeneous
clusters. Our main aim of this work is to create an easy
to use, flexible and efficient framework for developing
distributed applications. The framework should be sup-
ported by a set of application programming interfaces
(APIs) such that developers can utilize the accelerators
in a familiar software environment. Abstraction and
modularization of the framework will help to minimize
the effort of including or excluding different types of ac-
celerators in the applications. More importantly, these
different accelerators can work collaboratively on a sin-
gle application to maximize the efficiency of the system.
The major contributions of this work include:

• A general programming framework for heteroge-
neous accelerators in cluster systems. This frame-
work includes an execution model for applications
to distribute the computation to collaborative ac-
celerators. It also includes a modular program-
ming model such that new types of accelerators
can be utilized by applications without recompil-
ing the original program code.

• A set of APIs for developing distributed appli-
cations on heterogeneous clusters. These APIs
enable various schemes of control flow and data
transfer between the accelerators. It also provides
extension interfaces for static and dynamic load
balancing. These interfaces enhance both produc-
tivity and efficiency.

• Several applications targeting the Axel cluster us-
ing the proposed programming framework. To demon-
strate its feasibility and capability, we develop ap-

ACM SIGARCH Computer Architecture News 53 Vol. 38, No. 4, September 2010



plications for physics simulation, financial simula-
tion and event-driven message filtering using the
framework. The performance of these applications
is evaluated on a 16-node cluster with GPU and
FPGA accelerators.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the development framework in previous
accelerator clusters. Section 3 presents the architec-
ture of the cluster platform in this work. Section 4
explains the structure and execution model of the dis-
tributed applications in the programming framework.
Section 5 presents the application programming inter-
faces for building applications. Section 6 evaluates the
results and performance. Finally, section 7 summaries
the findings and achievements.

2. RELATED WORK
In 2005, SGI announced the RC100 Blade which can

support CPU blades and FPGA blades in the same host
system. The SGI proprietary NUMAlink technology
provided a flat memory view to the programmers and
function calls to the RASC Abstraction Layer to enable
data transfer between PEs. The computation kernels
running on the Xilinx Virtex-4 LX200 FPGAs were de-
veloped separately using high level language synthesiz-
ers.

In 2007, a cluster with 64 Virtex-4 FPGA devices was
built in the Maxwell project [11]. Linux systems are
running independently on each node and communicate
through MPI [8]. A custom framework called Parallel
Toolkit (PTK) [2] was used as middle-ware between user
applications and vendor specific drivers. This toolkit is
based on the request-grant model of abstract hardware
types to manage FPGA resources and to transfer data.
It relied on the assumption that the program is already
parallelized in CPU level and requires explicit CPU-
FPGA communication.

In 2009, the Quadro Plex (QP) Cluster [6] was built
by NCSA in UIUC. For each of the 16 nodes in the
QP prototype, there are two AMD Opteron CPUs, four
nVidia G80GL GPUs and one Xilinx Virtex-4 LX100
FPGA. This system can theoretically achieve 23 TFlops
(single precision). A runtime framework called Phoenix [10]
was proposed to schedule the threads to vitalized CPUs.
This framework did not manage the FPGA and GPU
accelerators.

In 2010, the Axel cluster [14] demonstrates collabora-
tion between heterogeneous accelerators. The develop-
ment environment, however, requires programmers to
manually and statically assign the work load to Xilinx
Virtex-5 FPGAs and nVidia C1060 GPUs.

All these development frameworks and programming
models require an efficient way of utilizing the acceler-
ators and re-compiling the code when the accelerator
types change. Also, the workload distribution are of-
ten managed by the runtime systems which have little
knowledge of the computation and communication pat-
tern of the application.

3. HARDWARE ARCHITECTURE
The proposed framework can be adapted to different

clusters with arbitrary heterogeneous accelerators. To

Gigabit

Ethernet

HCN1

HCNx

System

I/O

Multi−Bank Memory

1G Bytes

Xilinx V5 LX330T

customisable logic

System Memory

4G Bytes DDR2

Video Memory

4G Bytes GDDR3

AMD Phenom X4

9650 Quad−Core

nVidia Tesla C1060

240 streaming cores

Heterogeneous Computing Node (HCN)

Infiniband

Gigabit Ethernet

Fast Serial Link

HCN0

P
C

Ie
 B

u
s:

 8
~

1
6

 l
an

es
; 

4
~

8
G

B
p

s

Infiniband

Figure 1: Axel Hardware Architecture.

realize and evaluate the framework, we perform our ex-
periments on the Axel cluster. The Axel cluster adopts
the nonuniform nodes uniform system (NNUS) approach
in which heterogeneous PEs are hosted in a single node.
All nodes are uniform with the same abilities. The sin-
gle program multiple data (SPMD) programming paradigm
is suitable for this NNUS architecture. Since all the
nodes are identical at system level, multiple instances of
user application can easily be distributed to the multi-
node cluster.

Figure 1 is an overview of the Axel cluster which cur-
rently includes 16 nodes. There are three different types
of PEs in a single node: an AMD Phenom Quad-Core
CPU, an nVidia Tesla C1060 card [9], and a Xilinx
Virtex-5 LX330 FPGA hosted on an ADM-XRC-5T2
card [1]. Each node independently runs a copy of the
Linux operating system. Although only GPUs and FP-
GAs are currently included in the cluster, it is possible
to support other type of accelerators in a similar system
architecture.

The intra-node communication between PEs is based
on PCIe system bus where the GPU and FPGA use
separate channels and thus can transfer data simulta-
neously without blocking. The cluster wide communica-
tion is based on Gigabit Ethernet through the NIC port
on each node. The versatility and flexibility of Gigabit
Ethernet is at the expense of high latency and inde-
terministic communication. To address this problem, a
second inter-node network is added using the four GTP
interfaces in the FPGA platform.

There are large amounts of local memory associated
with each PE. This creates a physically non-uniform
memory hierarchy within a node. The bandwidth be-
tween the PEs and their associated local memory is
much higher than the communication bandwidth be-
tween PEs. Thus data partition and distribution are
critical for performance in the cluster.

ACM SIGARCH Computer Architecture News 54 Vol. 38, No. 4, September 2010



node 2gcc
MPI

gcc
OpenMP CUDA Xilinx ISE

module_0.c module_1.c module_2.c

*.cu

module_3.c

*.vhd

M ctrl 0 M comp 1 M comp 2 M comp 3

data

W1 W2 W3

W0

CPU GPU FPGA

W0

application *.bit

group 1

node 1

group 2

Figure 2: Distributed Application Structure.

Network

comp

FPGA RAM

accelerator

M ctrl

idle

initialize

data

kick start

done

data
data ready

data ready (size)

idle

read data

idle

time time

write data

File System
or

M

Figure 3: Module interactions.

4. APPLICATION STRUCTURE

4.1 Distributed Modules
The most distinct character of this proposed frame-

work from most other systems is the multiple executa-
bles structure in a single application. One module in
the framework is a full featured executable for a spe-
cific task targeting a specific PE. The active instance
of a module is called a worker. A group of workers col-
laborate on a single node. A running application is a
collection of groups of workers. Parallelism is achieved
by distributing the workload to the active workers of
the application. Figure 2 illustrates this distributed ap-
plication structure.

A module can be either for computation or for control.
The computation modules, Mcomp1..Mcomp3, carry the
application kernels which are accelerated by the tar-
geted PEs. The control module, Mctrl, commands and
synchronizes the Mcomp to complete the application.
An application consists of at least one Mctrl and one
Mcomp.

Similar to a stand alone application targeting a sin-
gle accelerator, Mcomp interfaces to the vendor specific
device driver to initialize and configure the PE; down-
load the data to the accelerator local memory; monitor
and synchronize the hardware; and collect the results
from the accelerator. The major difference of Mcomp

from a stand alone application is its interaction with
Mctrl. Figure 3 shows an example of the interaction
during an application execution using the FPGA ac-
celerator. Instead of reading data and storing results
actively, Mcomp starts being idle. Mctrl prepares the
data and signals Mcomp to start working. After finish-
ing accelerator computation, Mcomp reports the status
to Mctrl and becomes idle again. Besides controlling
the Mcomp in the group, Mctrl also communicates with
Mctrl in other groups and performs data read/write. A
single Mctrl can master multiple Mcomp although only
one Mcomp is shown in Figure 3. Another important
task of Mctrl is to launch the associated Mcomp as de-

scribed in section 4.2.
Since each module targets a single type of accelera-

tor, the management of adding and removing accelera-
tors to and from the application is similar to managing
files in a directory. This modular structure ensures that
a module will continue to function correctly regardless
of other modules. This feature provides flexibility in
application development. For example, the application
can start functioning as soon as any of the accelera-
tor modules is ready, and it can be gradually improved
as new modules become ready. Unlike other systems
which hardwire the application in a single executable,
re-compilation of the whole application is not necessary
in this framework when updating the accelerators.

Another benefit of this distributed module structure
is that the original tool chains of the accelerators are
preserved as shown in Figure 2, improving productiv-
ity. Integrating the accelerators in a unified program
description usually requires an abstraction layer involv-
ing source-level translation or syntax extension. In this
framework, the absence of this abstraction layer im-
proves ease of use and efficiency. Application developers
for different accelerators can use the most familiar tool
chains to develop and optimize modules, based on the
unified communication API.

4.2 Auxiliary Information
Isolating the accelerator kernels in independent mod-

ules introduces an integrity problem of the application,
since none of the modules have knowledge about the
capability or even existence of other modules. This in-
formation, excluded from program code, is captured in
a auxiliary meta file call the Application Configuration
File (ACF). The ACF plays an essential part in this
framework.

The ACF is in XML format and is placed in a net-
worked file system such that all Mctrl can access it. It is
created by application programmers to chain up all the
required modules in the applications. The ACF pro-
vides the controlling modules three types of important
information: (i) the available modules, (ii) the groups
and workers with them, and (iii) the communication be-
tween groups. An example of ACF is shown below. Its
content forms a recipe showing how the application will
be executed in the cluster.
<application name="myapp">

<module id="0" name="./myapp_m0"
type="io" pe="cpu"> </module>

<module id="1" name="./myapp_m1"
type="compute" pe="gpu"> </module>

<module id="2" name="./myapp_m2"
type="compute" pe="fpga"> </module>

<group id="0" ofst="0" size="5">
<worker module="0" ofst="0" size="0"></worker>
<worker module="1" ofst="0" size="3"></worker>
<worker module="2" ofst="3" size="2"></worker>

</group>

<group id="1" ofst="5" size="5">
<worker module="0" ofst="0" size="0"></worker>
<worker module="1" ofst="5" size="2"></worker>
<worker module="2" ofst="7" size="3"></worker>
<output id="0"></output>

</group>

ACM SIGARCH Computer Architecture News 55 Vol. 38, No. 4, September 2010



</application>

The first section of the example ACF indicates three
available modules in the application. Key attributes,
such as the path to executable in the file system and
the target PE types, are also included. Each module is
assigned a unique identity. The second and third section
in the ACF create two groups of workers for the appli-
cation. There are three workers mapped to the three
modules in each group. Like the module, each group is
given a unique identity. The ofst and size attributes
indicate the starting offset and the size of the data as-
signed to each group. The data assignment includes key
information for an array data structure, while the ac-
tual interpretation of these two attributes depends on
the implementation of user modules. The data are fur-
ther divided and assigned to the workers in the group
using similar work attributes. For example, the second
worker in group 1 is an instance of module 1 which will
process two data entries starting from the fifth entry. If
the assigned data size is 0, the workers, which are usu-
ally taking the control role, will not process any data.
The last element in group 1 requests the Mctrl in the
group to send the finished data to the Mctrl in group 0.

Users can create application specific attributes in the
ACF and retrieve the values later in the Mctrl using
the provided APIs. Also, the interpretation of the pre-
defined attributes is controlled by user program. Some
structures, such as the output element, can even be
bypassed in applications if a specific scheme has been
captured in the program code. The ACF gives develop-
ers significant freedom to configure the execution of an
application in the cluster.

4.3 Execution Models
The life cycle of a distributed application is presented

here. After all necessary modules are created by their
specific building tools and the ACF is created to con-
figure the execution scheme, the application is ready to
be launched.

A user will launch the Mctrl module through the MPI
system. The remote process manager of the MPI system
is used to create multiple instances of the Mctrl module
in the cluster nodes. There is no indication of which
nodes are used in the application, since this information
cannot be determined at compile time. The available
resources are dynamic in a multi-user multi-application
environment. Thus the programming framework can
integrate well with third party resource management
tools, such as the Torque/Maui system installed in the
Axel cluster. There is also no limitation to a one-to-
one mapping between groups in software and nodes in
hardware, as long as there are no conflict of accelerator
requirements.

Once the worker for an Mctrl instance is created, it
reads and parses the ACF file. By default, it maps its
RANK in the MPI system to the group ID. This can be
altered by sending the WHOAMI request to the RANK0
node. Then it creates other worker instances by loading
the corresponding modules into memory. After that,
it creates the message queue for all the workers as a
control channel. This Mctrl worker may read the data
from network shared data storage or receive data from

Image
Executable

FPGA

CPU Executable
Image

GPU

Task Wrapper Data
SHM IPC

SW driver

Runtime Resource Manager

HW

Task

Software SHM IPC
Data Task Wrapper

driver

Node X Node Y

MPIMSG IPC Control Application Master

Figure 4: Communications in the heterogeneous
programming framework.

a remote Mctrl worker.
To minimize the data transfer overhead, the Mctrl

worker will store the data in shared memory which all
workers are allowed to access. Application specific data
protection and synchronization are implemented in the
user code section. The controlling worker then sends a
DATRDY message to each Mcomp worker, and tells them
the remapped data offset and size in the shared memory.

After receiving the DATRDY message, the Mcomp worker
start loading the computation to the targeted hardware
accelerator. The processed results from the accelerator
are also stored in shared memory. An Mcomp worker in-
dicates the completion of its work by sending a DATRDY
message back.

Once the Mctrl worker receives this message, it marks
the data segment processed. If all data are marked
processed, the Mctrl worker enters the data collection
stage. Depending on the application, it may send the
data in the shared memory to remote Mctrl workers as
instructed by the ACF, or writes them to a file, or iter-
ates to send DATRDY to the Mcomp workers again.

The Mctrl worker can be terminated according to user
program code or by sending an APPEND message to it.
The Mctrl worker will broadcast the APPEND message to
the group and wait until all other workers have termi-
nated before terminating itself.

The application programmers can instruct the Mctrl

workers to periodically send information requests to a
predefined node. The returned information is a com-
plete data structure in the ACF format. By doing so,
users can dynamically adjust the execution scheme to
obtain the most desirable trade-offs fro this application.

5. PROGRAMMING INTERFACE

5.1 Communication Interface
There are four different types of communication APIs

in the heterogeneous accelerator cluster as shown in
Figure 4. The first type is at the lowest level, involv-
ing communications between the Mcomp workers and
the targeting accelerators. The API for this type is
provided by the accelerator vendors or the application
programmers. The functions include configuring FPGA
devices with bitstreams and copying memory contents
from host memory to GPU memory.

The second type covers the control messages between
workers within a group. Since all workers of the same
group reside in the same node, this API is built on top of
the message queue POSIX inter process communication
(IPC). The 1K byte message packet has the format of
a destination worker ID followed by the message type
and user defined contents. Besides system predefined

ACM SIGARCH Computer Architecture News 56 Vol. 38, No. 4, September 2010



message types such as DATRDY and APPEND, user are free
to create custom types. The user defined content area
is useful for small and frequently changing data such as
system parameters.

The third type covers large amounts of data commu-
nication between local workers. Based on the shared
memory POSIX IPC, special APIs are needed to map
array variable in user applications to the created shared
memory blocks. The number of memory copies and
data movement overhead is significantly reduced while
all the synchronization and protection of the data are
not explicit to application programmers.

The last type covers communication between remote
workers from different groups. This set of APIs is a
warper around the MPI functions calls. The main idea
is to encapsulate the MPI related details and provide
a group-worker view for global communications. Cur-
rently, only point-to-point and all-to-all schemes are
supported.

5.2 Design Automation
The rich set of APIs makes the framework very flex-

ible but also requires attention to implementation de-
tails. A method that would reduce the need for such de-
tails is desirable to further improve developer productiv-
ity. Observing that there are similar pattern in the ap-
plications structures, we decide to provide a template-
based code generation tool. There are code patterns
which are required in all applications, such as the pars-
ing and analyzing of the ACF and the termination of
workers. These processes are relatively static from ap-
plication to application. Thus we put them into the
static section which will be emitted directly from the
template codes.

There are also code patterns which depend on pa-
rameters of the application. These parameters are usu-
ally defined before the implementation of the modules.
For example, the structure and size of the main data
variables in an application are usually known in early
stages. Thus we can allow users to enter the reference,
type, size and read/write patterns of these variables.
Code segments such as creating the shared memory and
filling in the contents can easily be generated according
to user information. Another parameterizable code pat-
tern involves global communications. There are com-
mon communication schemes as suggested by the MPI
function calls. We allow users to select from these com-
mon schemes and related them to data variables. Code
segments of sending and receiving these data can then
be generated automatically.

The control logic and the computations are the core
elements of an application. These control patterns are
often different between applications. However the devel-
opment framework imposes limitations on how the con-
trol mechanism is implemented. Since the framework
forces an event-driven flow based on message passing,
the main loop in a module usually consists of the pro-
cess of idle listening and message parsing. The code
generation tool creates this basic main loop structure
as a skeleton or place holder, allowing users to provide
application specific control later.

Despite its simple mechanism, this template-based
code generator can produce a complete application based

on a few user inputs. This will reduce development time
and help users focus on the accelerator kernel and con-
trol logic optimizations.

5.3 Scheduler Extension
A straight forward implementation using the frame-

work will turn the application to static load distribu-
tion, since the subsets of data assigned to each worker
and its associated accelerators are explicitly specified in
the ACF.

Assuming that parallelism is achieved by distributing
and processing small subsets of data concurrently, the
performance gain depends on the sequence of workers
that take the longest time. A static schedule may not be
efficient since workers finished earlier cannot help. This
problem of unbalanced load cannot easily be addressed
at design time when the ACF is created. The estimated
performance of the accelerated kernels is usually not
sufficiently accurate and the runtime performance may
also be affected by input data or parameters. Also, in a
cluster system, new computing resources may be avail-
able due to the termination of other applications. A
static schedule cannot take advantage of new resources.

To enable a dynamic scheduler to adapt to the actual
kernel performance and run-time conditions, special ar-
rangement in the distributed application must be made.
First, the work load distribution must not depend on
the ACF, and should be acquired by the Mctrl at run
time. This can be supported by assigning 0 to all size
attributes in the ACF. Second, there must be a central
facility to coordinate the load distribution process. Ev-
ery time a group finishes the assigned work, the Mctrl in
the group will send the DATRDY message to the sched-
uler. Depending on the recorded performance of this
group, the scheduler assigns a new batch of data for the
group to process. Various scheduling schemes can be ap-
plied to achieve different optimization goals. A second
level of scheduling process is performed by every Mctrl

worker to balance the load of the local Mcomp workers.
As discussed before, the data structure in ACF can be
used to alter the data size assigned to each group.

The challenge here is that the ACF data are sent inde-
pendently from the actual assigned data. To eliminate
the synchronization requirement between scheduler con-
trol and data transfer, the Mctrl workers are forced to
accept data through global communication APIs only
when the control and data are from the same sources.
Using these methods, a dynamically scheduled Monte
Carlo simulation is implemented and various schedul-
ing schemes are evaluated.

6. IMPLEMENTATION RESULTS
Three example applications are implemented on the

Axel cluster using the proposed programming frame-
work. These three applications have different compu-
tation requirements and communication patterns which
exercise various aspects of the cluster. All FPGA ac-
celeration kernels are developed using VHDL and im-
plemented using the Xilinx ISE 11.5 tools. The GPU
kernels are compiled using CUDA 2.2 tools. The ac-
celerator results are compared with an AMD Phenom
Quad-Core CPU. All floating point computations are
performed in IEEE-754 single precision format.

ACM SIGARCH Computer Architecture News 57 Vol. 38, No. 4, September 2010



6.1 N-Body Simulation
N-body simulation is a process to model the interac-

tion between N particles under gravitational forces in
space [7]. In this example, we implemented a second
order 3D N-body simulation application on the Axel
cluster. To compute the acceleration vectors of moving
particles, the distances between them and every rest
particles are computed.

There is no data dependency within a simulation iter-
ation. So the FPGA design can be deeply pipelined and
high throughput is achieved. The particles are arranged
into small groups and assigned to different Mcomp work-
ers including the GPU and FPGA kernels. Each worker
computes the acceleration vectors of the assigned par-
ticles and broadcasts the results. The final updates of
positions and velocities are performed by a CPU-centric
worker. Since all workers need to access the most up-
date positions of all the particles for the current sim-
ulation, the all-to-all broadcast global communication
increases the overhead.

The workload is distributed to GPU and FPGA in
an asymmetric way, since the measured performance of
FPGA is higher than that of the GPU. This schedule is
static and produced after each kernel is fully tested.

6.2 Pub/Sub Matching
The publication/subscribe model is for applications

including web services and financial monitoring [4]. The
model enables subscribers to set matching rules to filter
interested events. A two step algorithm [5] is imple-
mented with FPGA acceleration kernels and tested on
the Axel cluster. There are currently no GPU version
of this application.

The input events are independent and distributed to
different Mcomp workers for parallelization. The out-
puts contain lists of triggered subscribers which are also
independent. There are only fixed-point number com-
parison operations in the algorithm. The performance
is limited by the FPGA off-chip memory bandwidth and
the synchronization process between the two steps.

The workload is evenly distributed to FPGA accelera-
tors. Since there is no correlation between the matching
processes of different events and no final results need re-
duction, the design scales linearly with the increase in
nodes.

6.3 Monte Carlo Simulation
Monte Carlo simulation is a useful tool to solve com-

plex problems [12, 13]. We have developed an option
pricing application using Monte Carlo simulation. The
major computation is to simulate the paths of option
price movement in a mathematical model. This appli-
cation includes both FPGA and GPU acceleration ker-
nels and supports dynamic scheduling using the method
described in section 5.3.

The inputs to the system are a set of random vari-
ables. Each of these variables contributes to a step in
the pricing path. The put and call payoffs of all the sim-
ulated paths are collected to compute the final expected
value. There is no data dependency between simulated
paths.

Since the application produces random variables to
initialize the design, there is no external input for both

Figure 5: Performance results.

the FPGA and GPU kernels. The random sequences are
generated within the acceleration kernels. The work-
load is distributed by assigning different sets of paths
to the Mcomp workers. The workers partially reduce the
results of the assigned paths and send them to a single
data sink where the final expected values are computed.

6.4 Results
Figure 5 shows the achieved speedup of the hardware

accelerators based on the proposed programming frame-
work. The results of a single GPU and a single FPGA
are compared with that of a four-thread software ver-
sion running on the Quad-core CPU. The hybrid cluster
result is a comparison of a 16-node heterogeneous ac-
celerator cluster to a 16-node CPU only cluster. Since
there is no GPU implementation of the Pub/Sub ap-
plication, the cluster version of Pub/Sub utilizes the
FPGA accelerators only.

7. CONCLUSION
This paper presents a framework for improving pro-

ductivity and efficiency of application development in a
cluster environment targeting heterogeneous hardware
accelerators. The modular structure for modules and
configuration files enables rapid development and easy
extension. Current and future work includes improving
run-time optimization such as dynamic load balancing,
and supporting a wide range of applications and hard-
ware platforms.

Acknowledgments
The support of Imperial College London Research Ex-
cellence Award, UK Engineering and Physical Sciences
Research Council, Alpha Data, nVidia and Xilinx is
gratefully acknowledged.

8. REFERENCES
[1] Alpha-Data Parallel System Ltd. ADM-XRC-5T2

User Manual, 2008.
[2] R. Baxter and et al. The FPGA high-performance

computing alliance parallel toolkit. In Proceedings
of the Second NASA/ESA Conference on Adaptive
Hardware and Systems, pages 301–310, 2007.

[3] T. Endo and S. Matsuoka. Massive
supercomputing coping with heterogeneity of
modern accelerators. In Proceedings of IEEE
International Symposium on Parallel and
Distributed Processing, pages 1–10, 2008.

ACM SIGARCH Computer Architecture News 58 Vol. 38, No. 4, September 2010



[4] P. T. Eugster and et al. The many faces of
publish/subscribe. ACM Computer Survey,
35(2):114–131, 2003.

[5] F. Fabret et al. Filtering algorithms and
implementation for very fast publish/subscribe
systems. In Proceedings of the 2001 ACM
SIGMOD international conference on
Management of data, pages 115–126, 2001.

[6] M. Showerman et al. QP: A heterogeneous
multi-acceleator cluster. In 10th LCI International
Conference on High-Performance Clustered
Computing, Boulder, Colorado, March 2009.

[7] J. Makino. The GRAPE project. Computing in
Science & Engineering, 8(1):30–40, Jan.-Feb.
2006.

[8] Message Passing Interface Forum. MPI: A
Message Passing Interface Standard Version 2.1,
2008.

[9] nVidia Co. Tesla C1060 Computing Processor
Board, Sep. 2008.

[10] A. Pant, H. Jafri, and V. Kindratenko. Phoenix:
A runtime environment for high performance
computing on chip multiprocessors. In 17th
Euromicro International Conference on Parallel,
Distributed and Network-based Processing, pages
119 –126, 2009.

[11] R. Baxter et al. Maxwell - a 64 FPGA
supercomputer. In Proceedings of NASA/ESA
Conference on Adaptive Hardware and Systems,
pages 287–294, 2007.

[12] X. Tian and K. Benkrid. High performance
quasi-monte carlofinancial simulation: FPGA vs.
GPP vs. GPU. ACM Transaction on
Reconfigurable Technology and Systems, to
appear, 2010.

[13] A. H. T. Tse, D. B. Thomas, and W. Luk.
Accelerating quadrature methods for option
valuation. In Proc. IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM), 2009.

[14] K. H. Tsoi and W. Luk. Axel: A heterogeneous
cluster with FPGAs and GPUs. In Proc.
ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), pages
115–124, 2010.

ACM SIGARCH Computer Architecture News 59 Vol. 38, No. 4, September 2010




