
FPGA Designs with Optimized
Logarithmic Arithmetic

Haohuan Fu, Member, IEEE,
Oskar Mencer, Member, IEEE, and

Wayne Luk, Fellow, IEEE

Abstract—Using a general polynomial approximation approach, we present an

arithmetic library generator for the logarithmic number system (LNS). The

generator produces optimized LNS arithmetic libraries that improve significantly

over previous LNS designs on area and latency. We also provide area cost

estimation and bit-accurate simulation tools that facilitate comparison between

LNS and floating-point designs.

Index Terms—Reconfigurable hardware, special-purpose and application-based

systems, computer systems organization, computer arithmetic, general, numerical

analysis, mathematics of computing.

Ç

1 INTRODUCTION

LOGARITHMIC Number Systems (LNSs) were first introduced into
computer systems for processing of low-precision FFT in the
1970s [1]. Unlike the floating-point (FLP) numbers defined by
IEEE 754 standard, there is no commonly accepted standard for
LNS numbers. In this paper, we use the signed logarithmic format
similar to [2], which consists of a sign bit and a fixed-point
number to record the logarithmic value, shown as follows:

Its value is given by ð�1ÞS � 2M:F , which provides a similar

representation range to FLP numbers with m-bit exponent, f-bit

mantissa, and one sign bit. Similar to the infinity and “Not a

Number” (NaN) cases in FLP, we use special encoding of the

integer bits to indicate zero and exceptional cases.
Suppose a and b are logarithmic representations of positive

numbers A and B (without loss of generality, we assume A > B),

thus A ¼ 2a and B ¼ 2b. The basic LNS arithmetic operations of

these two numbers include:

MUL: A�B ¼ 2a � 2b ¼ 2aþb;

DIV: A�B ¼ 2a � 2b ¼ 2a�b;

SQRT:
ffiffiffiffi
A
p
¼

ffiffiffiffiffi
2a
p

¼ 2a=2;

ADD: AþB ¼ 2a þ 2b ¼ 2bþlog2ð2a�bþ1Þ;

SUB: A�B ¼ 2a � 2b ¼ 2bþlog2ð2a�b�1Þ.

As shown above, LNS MUL, DIV, and SQRT become simple

operations, while LNS ADD and SUB become complicated as

they require evaluation of two transcendental functions, f1ðxÞ ¼
log2ð2x þ 1Þ and f2ðxÞ ¼ log2ð2x � 1Þ.

For applications that compute over a wide dynamic range, LNS
provides an alternative solution to FLP, and the possibility to
implement the design with a smaller area or higher throughput.
Based on our previous work on optimizing LNS arithmetic on
FPGAs [3], we develop tools to enable convenient design and
implementation of LNS application, and facilitate comparison
between LNS and FLP implementations on area, precision, and
throughput. Our contributions are:

1. A systematic optimization of LNS arithmetic on FPGAs,
using a general polynomial approximation approach.

2. A library generator that produces LNS arithmetic libraries
containing þ;�; �; = operators as well as convertors
between FLP and LNS numbers.

3. Area cost estimation and bit-accurate simulation tools to
facilitate comparison between LNS and FLP designs.

The basic arithmetic units are tested on an FPGA board as well
as software simulation. When compared with existing LNS designs
[4], our LNS units typically achieve 6-37 percent reduction in area
(number of slices) and 20-50 percent reduction in latency, with a
reduced or comparable usage of block RAM (BRAM) and
18� 18 hardware multipliers (HMUL). We demonstrate our tools
(area estimation tool and bit-accurate value simulator) on realistic
applications, such as digital sine/cosine waveform generator,
matrix multiplication, QR decomposition, radiative Monte Carlo
simulation, and vector normalization. LNS shows better efficiency
than FLP in QR decomposition and vector normalization with
73.5 percent fewer slices and 34.1-43.7 percent higher throughput.
On the accuracy side, LNS achieves better results than FLP with
two fewer bits in the radiative Monte Carlo simulation.

The tool infrastructure enables us to fast prototype LNS FPGA
applications, and compare between LNS and FLP implementations
on area, performance, and accuracy. Thus, users can efficiently
study the potential benefits of using LNS number representation
on various applications.

2 RELATED WORK

2.1 LNS Arithmetic Design

In general, existing LNS arithmetic designs fall into three major
categories: direct lookup table [1], piecewise polynomial approx-
imation [5], [6], [7], and digit-serial methods [2], [8], [9].

Evaluation through direct lookup table [1] is straightforward
and efficient for low-precision computations. With the precision
requirement increasing above 20 bits, the size of direct lookup
tables increases exponentially and becomes impractical. Other
approaches, such as piecewise polynomial approximations, need
to be used instead. Lewis [5] uses the Lagrange interpolation to
compute functions f1 and f2 for 32-bit LNS numbers. This design
calculates the coefficients on the fly based on an interleaved
memory, thus reducing the storage cost. The European Logarith-
mic Microprocessor project [6] uses linear Taylor interpolation to
implement 20-bit and 32-bit LNS arithmetic units, to achieve a
short latency. Meanwhile, to achieve the same accuracy as FLP
counterparts, the design uses a table-based error correction scheme
for both f1 and f2. On the platform of FPGAs, Lee and Burgess [7]
implement the 32-bit LNS arithmetic functions using Chebyshev
polynomial approximation, and provide a Better-Than-Floating-
Point (BTFP) accuracy.

Other than polynomial approximation methods, there are also
digit-serial methods (also known as online or iterative methods),
which calculate the result digit by digit. Arnold proposes a Dual
Redundant Logarithmic Number System [2], which calculates the
addition/subtraction with an online algorithm. Chen et al. [8]
propose a pipelined addition/subtraction unit for LNS numbers of
very large word length. The algorithm, which is similar to the

1000 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010

. H. Fu is with the Department of Geophysics, Stanford University,
Stanford, CA 94305. E-mail: haohuan@stanford.edu.

. O. Mencer and W. Luk are with the Department of Computing, Imperial
College London, UK. E-mail: {oskar, wl}@doc.ic.ac.uk.

Manuscript received 19 Aug. 2008; revised 20 Feb. 2009; accepted 20 July
2009; published online 12 Feb. 2010.
Recommended for acceptance by P. Montuschi.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-08-0424.
Digital Object Identifier no. 10.1109/TC.2010.51.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: Imperial College London. Downloaded on June 30,2010 at 11:45:52 UTC from IEEE Xplore. Restrictions apply.

COordinate Rotation DIgital Computer (CORDIC) method [10],
approximates the functions with digit-serial sequences of compu-
tations

QN
j¼1ð1þ sj2�jÞ and �

PN
i¼1ð1þ qi2�iÞ ðsj; qi ¼ 1; 0; or� 1Þ.

The work is improved in [9] with the base-e exponential function
implementation, and half of the pipeline stages can be replaced by
one stage of multiplication-and-accumulate (MAC) operation. In
general, the digit-serial methods require much less hardware
resource than polynomial approximation methods. However, the
digit-by-digit computation pattern brings a high latency.

Due to the singularity near zero, the LNS SUB function f2 is
more difficult to evaluate than the LNS ADD function f1. There are
approaches specially proposed for function f2. In [11], LNS SUB
function is transformed into f2ðxÞ ¼ log2ðxÞ þ log2ð2

x�1
x Þ. Both

log2ðxÞ and log2ð2
x�1
x Þ are easier to evaluate than f2 itself. In [12],

subtraction is performed through additions by either looking up
the addition table reversely (as log2ð1þ 2xÞ and log2ð1� 2xÞ are
inverse functions to each other), or using an iterative method based
on the following equation: log2ð1� 2xÞ ¼ �

P1
m¼0 log2ð1þ 2x�2

m Þ.
Cotransformation methods are also proposed in [13] to avoid the
singularity at zero.

2.2 Comparisons between LNS and FLP Representations

Based on the work of the LNS microprocessor [6], Matousek [14]
presents a comparison between LNS and FLP numbers on the
QR-decomposition-based recursive least-squares (QRD-RLS) algo-
rithm implementation on FPGA. Based on a VHDL library of
parameterized LNS arithmetic operations for bit widths less than
32, Detrey and Dinechin provide a comparison tool between LNS
and FLP arithmetic [15], and apply the tool to examples such as a
3D transformation pipeline. Another work is the comparison
between FLP and LNS for FPGAs in [4], which compares all the
basic operators in both 32-bit and 64-bit bit widths.

In general, most of the existing comparison work either only
study bit width values below 32, or focus on the counterparts of
IEEE 754 single and double-precision FLP formats; they lack a
systematic analysis and reconfigurable support for a wide range of
LNS bit widths.

3 EVALUATION OF LNS ARITHMETIC FUNCTIONS

Since FLP numbers dominate most existing hardware and software
applications, a complete LNS arithmetic library also needs conver-
sion functions between LNS and FLP numbers. Thus, we include
the logarithmic function f3ðxÞ ¼ log2ðxÞ and the exponential
function f4ðxÞ ¼ 2x in our target LNS library. For these four
functions (f1-f4), our library generator produces LNS arithmetic
units for integer bit widthm from 4 to 11, fractional bit width f from
13 to 52, and all the possible combinations between them, i.e.,
over 300 different bit width settings. The largest bit width setting
(m ¼ 11; f ¼ 52) corresponds to the double-precision FLP numbers.

We adopt the piecewise polynomial approximation method
as a general approach to evaluate all the four functions, i.e., we
divide the entire evaluation range into a number of segments,
and evaluate each segment with a different minimax polyno-
mial, which provides the minimum-maximum-approximation
error over the range [16].

3.1 Accuracy Requirement

For MUL/DIV operations, the accuracy of LNS is better than FLP,
as it introduces no rounding errors, compared to a 2�f�1 relative
rounding error for FLP MUL/DIV. However, LNS has a worse
error behavior than floating point for ADD/SUB. The transcen-
dental functions (f1 and f2) can only be approximated, which
already bring a half unit-in-the-last-place (ulp) error for the
rounding in the last step.

Existing work [5], [7], [6] reports that two or three extra bits
need to be calculated in order to achieve a Better-Than-Floating-
Point (BTFP) error behavior for LNS ADD/SUB. On the other

hand, Arnold and coworkers [17], [18] propose that faithful
rounding (one ulp error requirement) is good enough for some
LNS applications, and can greatly save hardware resource.

In our previous error model [3], we show that two extra bits are
needed to achieve a BTFP precision for LNS ADD/SUB units.
However, our precision experiments (detailed in Section 4.3) show
that one extra bit is already enough to achieve BTFP accuracy for
the 32-bit case.

3.2 Segmentation Method

An investigation into the properties of the LNS ADD/SUB
functions show a huge difference for the approximation difficulty
in different ranges [3]. To deal with the fast variation of
approximation difficulty, we use a nonuniform adaptive divide-
in-halves segmentation approach for f1 and f2. A detailed
description of the algorithm can be found in [3]. The basic idea is
to divide the range into two halves. For the right half, we try to find
a proper K value (the right half is divided into 2K uniform
segments) that meets the error requirement. We then try to handle
the left half with the same K. If it also meets the error requirement
for the left half, the segmentation is finished; otherwise, we divide
the left part into halves and continue the process recursively. By
using this segmentation method, the encoding of the coefficient
table address can be performed using a leading-one detector.

Table 1 shows the number of segments needed to evaluate a
32-bit (m ¼ 8, f ¼ 23) LNS ADD function (f1) in our design,
compared to other existing LNS adder implementations. Using
degree-two minimax polynomial approximation, our design with
one extra bit achieves BTFP accuracy with only 416 segments,
compared to 768 segments in [5] and 1,536 segments in [6]. Our
faithful design uses 264 segments, slightly more than the 234 or
256 segments in [18] (234 for a multiple-of-three segmentation and
256 for a multiple-of-four segmentation).

Compared with f1 and f2, conversion functions f3 and f4 have a
small evaluation range, and the approximation difficulty does not
change much over the range. Thus, we use uniform power-of-two
segmentation for them.

3.3 Selection of Polynomial Degree

In our previous work [3], we select the polynomial degree based
on the storage architecture on FPGAs. The BRAM on Xilinx
FPGAs stores 18K bits, which can be mapped into different
organizations from 512 36-bit values to 16,384 1-bit values [19]. To
improve the utilization rate of the BRAM storage, one strategy is
to keep the number of segments close to the power-of-two values
from 512 to 16,384.

The other issue is to keep a balance point between the BRAMs
and HMULs consumed for one arithmetic unit. A higher
polynomial degree costs more HMULs and logic slices while a
lower degree consumes more BRAMs to store the coefficients.
Minimizing one type of resource may lead to too much consump-
tion of the other type, and increase the total cost consumed for one
LNS arithmetic unit.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010 1001

TABLE 1
Number of Segments Required for a 32-bit LNS ADD Function

Authorized licensed use limited to: Imperial College London. Downloaded on June 30,2010 at 11:45:52 UTC from IEEE Xplore. Restrictions apply.

To determine the proper balance point for a given bit width
value, we run the segmentation method with different polynomial
degrees, and find out the number of segments for each different
degree. Using the number of segments and bit width values, we
apply (1) and (2) to estimate the BRAM and HMUL costs. In (1)
and (2), FBW denotes the fractional bit width of the LNS number.
P denotes the polynomial degree. NHMUL, NBRAM , and n represent
the numbers of HMULs, BRAMs, and segments

NHMUL ¼
FBW

18

� �2

� P; ð1Þ

NBRAM ¼

FBW

36

� �
� ðP þ 1Þ; : n 2 ð0; 512�;

FBW

18

� �
� ðP þ 1Þ; : n 2 ð512; 1;024�;
� � � : � � �

FBW

1

� �
� ðP þ 1Þ; : n 2 ð8;192; 16;384�:

8>>>>>>><
>>>>>>>:

ð2Þ

To estimate the number of HMULs, we assume the bit widths
of all the multiplication operands are FBW (in practical designs,
the bit widths of the variables are optimized to different values
in a range close to FBW). Thus, a multiplication consumes
dFBW18 e

218� 18 HMULs on Xilinx FPGAs [19]), and we need
P multiplications for a degree-P polynomial. For estimation of
BRAMs’ cost, based on the number of segments, we determine
whether we can put a 36, 18, 9, 4, 2, or 1-bit value in one BRAM,
and compute the number of BRAMs accordingly.

When we investigate LNS arithmetic at a unit level, we can
simply define the balance point as the polynomial degree with the
least total number of BRAMs and HMULs. Table 2 shows an
example of LNS addition function f1 with a number of typical
bit width settings. The estimation numbers given by the equations
match the experimental results quite well. We select the poly-
nomial degree with the least sum of estimated HMUL and BRAM
numbers, shown in bold in the table. In all the cases shown in
Table 2, the estimations and the experimental results pick the same
polynomial degree as the best choice.

3.4 Error Ratio Adjustment

The error of a hardware function evaluation unit consists of two
parts [16]: 1) approximation error: the error due to the mathema-
tical approximation method, provided that we compute with
infinite precision; 2) quantization error: the rounding and trunca-
tion errors due to finite precision of hardware number representa-
tion. We define G as the ratio between the approximation error
requirement and the total error requirement. Our LNS arithmetic
library generator requires the maximum error of the units to be
less than one ulp. As the rounding in the last step can already
bring a maximum rounding error of 0.5 ulp, the approximation
error requirement should be less than 0.5 ulp, i.e., G should be less
than 0.5.

Based on experimental results, setting G to 0.3 minimizes the

total cost in general cases. However, for cases with an “edge”

segment number (the segment number is slightly larger than the

supported power-of-two dimension sizes from 512 to 16,384), we

perform an extra adjustment of the error ratio G to identify the

most appropriate setting.
Table 3 shows an example of 64-bit LNS ADD units with

different G values. With G ¼ 0:3, 544 segments are needed to

calculate 64-bit f1 with a degree-five polynomial. Since 544 is

slightly larger than the bound of 512, the BRAM has to organize the

data in an address space of 1,024 elements, which wastes almost

50 percent of the storage. To reduce this big waste, we explore

different G values from 0.05 to 0.45.
When the value of G decreases from 0.3 to 0.05, the number of

segments increases from 544 to 832. However, the number of
BRAMs does not change as they are both using the 1;024� 16-bit
configuration of the BRAM, and the number of slices only
decreases by 24. On the other hand, when the value of G increases
from 0.3 to 0.45, the number of segments drops below 512, and the
number of BRAMs falls from 17 to 10. Meanwhile, the number of
slices only increases by 31.

3.5 Evaluation of f1 and f2

For large x values, y ¼ x gives an accurate approximation for f1

and f2. Thus, we can find a point x ¼ 2r, which assures that for

all the x values on the right side of this point, the difference

between y ¼ x and f1 is within the error requirement. For the left

side of the point, we perform the divide-in-halves segmentation

approach, and evaluate each segment using the minimax

polynomial approximation.
To circumvent the zero singularity of f2’s evaluation, for x values

smaller than 4, we use the function decomposition approach [7], [11]

to transform f2 ¼ log2ð2x � 1Þ into f2 ¼ gþ f3 ¼ log2ð2
x�1
x Þ þ log2ðxÞ.

4 LNS ARITHMETIC LIBRARY GENERATOR

4.1 General Structure

Our LNS arithmetic library generator uses three major software

tools: Maple, Matlab, and A Stream Compiler (ASC) [20]. The

Maple program performs the segmentation algorithm and gen-

erates the minimax polynomial coefficients. The Matlab program

optimizes the bit widths of intermediate variables using the affine

arithmetic technique and the adaptive simulated annealing (ASA)

method [21], and generates the arithmetic designs described in the

C++ syntax format of ASC.
Using the operator overloading mechanism of C++, we hide

the implementation details under the symbols of þ;�; �; =.
Therefore, with the LNS library file included, users can design
their target applications using LNS in a similar way as a normal
software data type. Meanwhile, as ASC already supports the
hardware floating-point (HWfloat) data type, the users can simply
change the declarations of variables between HWfloat and HWlns
to perform a comparison between FLP and LNS implementations
of the same design.

1002 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010

TABLE 2
Examples of Determining the Polynomial Degree with
Smallest Resource Cost for LNS ADD Function f1ðxÞ

“esti.” and “exp.” refer to estimated and experimental results. “Total” is the sum of
HMUL and BRAM numbers.

TABLE 3
Area and Latency of 64-bit (m ¼ 11, f ¼ 52)

LNS ADD Units with Different G Values

G indicates the ratio between the approximation error requirement and the total
error requirement.

Authorized licensed use limited to: Imperial College London. Downloaded on June 30,2010 at 11:45:52 UTC from IEEE Xplore. Restrictions apply.

4.2 BRAM Cost Minimization

As a BRAM supports two concurrent reading ports, a pair of
identical arithmetic units can read the coefficients from the same
BRAMs. On the other hand, if the number of segments or the bit
width of the coefficient is small, we can organize the coefficients of
two different degrees into the same BRAM and set up their reading
addresses with a predefined offset.

Generally, we share BRAMs between identical LNS ADD and
SUB units, as applications normally consume a large number of
ADD and SUB. For conversion units (f3 and f4), we compact
coefficients of different degrees into the same BRAM, as conver-
sion functions have a smaller number of segments and smaller bit
widths than LNS ADD/SUB.

4.3 Precision Test

Our library generator produces LNS units with errors less than one
ulp. To perform a verification of the precision, we include a
precision test in the Matlab functions that generate the arithmetic
units. The precision test generates 100,000 uniform random values
within the input range, and performs a bit-accurate circuit
simulation to check whether the errors are within one ulp. For
all our experiments of different bit widths, the test has never failed.

For the most typical 32-bit LNS units, we run exhaustive
precision tests. For x larger than 32, we approximate functions
f1ðxÞ ¼ log2ð2x þ 1Þ and f2ðxÞ ¼ log2ð2x � 1Þ using y ¼ x, and
hence the relative errors of f1ðxÞ and f2ðxÞ are assured to be less
than j2log2ð232�1Þ � 232j=2log2ð232�1Þ 	 2:33e� 10. The maximum rela-
tive error of 32-bit (single precision) FLP ADD/SUB operations is
2�24 	 5:96e� 8. Thus, for x larger than 32, our units are assured to
provide BTFP accuracy.

For values below 32, we test for every possible input. For
23 fractional bits, the total number of values to test is 228 ¼
268;435;456. As shown in Table 4, the precision of our 32-bit
“faithful” LNS units is already very close to BTFP accuracy. For
LNS ADD and SUB units, only 19,490 and 4,783 cases out of
268,435,456 produce relative errors larger than the maximum
FLP relative error. With one extra bit, both LNS ADD and SUB
designs achieve BTFP accuracy in all possible cases.

4.4 Experimental Results for LNS Arithmetic Units

Using ASC, we map all the arithmetic units onto Xilinx Virtex-II
XC2V6000 FPGA to test their performance and hardware cost.
Compared with the LNS arithmetic designs in [4], our designs
consume 5.9 to 37.2 percent fewer slices, 41.7 to 75 percent fewer
HMULs, but consume more BRAMs for 64-bit ADD. For LNS SUB
units, we use 25 percent fewer BRAMs and 62.5 percent fewer
HMULs in 32-bit case. In 64-bit case, our SUB units consume more
resources than [4]. For converters, our designs consume much less
resources, and support larger number of units on one FPGA board.
Meanwhile, for most units, our designs also provide 20-50 percent
reduction in latency.

In practical arithmetic computation, we normally do not know
the signs of the two operands in advance. Depending on whether
they have the same sign or not, the operation of þ=� can be
mapped into either LNS ADD or SUB function. Thus, we also

generate mixed units that can perform both addition and
subtraction (not concurrently). Compared with other existing
mixed LNS units [5], [14], [7], our automatically generated units
cost more HMULs and a similar number of BRAMs. However, our
unit consumes the least amount of slices, and provides the shortest
latency.

Note that a full set of comparison results can be found in our
previous paper [3].

5 COMPARING LNS and FLP DESIGNS ON FPGAS

Although our library generator supports LNS numbers up to 64 bits
(with 52 fractional bits), we focus on the fractional bit widths from
13 to 45 for the comparison between LNS and FLP designs in this
section. This is mainly because of the high resource consumption
for LNS ADD and SUB units with a large fractional bit width
around 50, which prevents high-precision designs from fitting into
the FPGA.

5.1 Comparison of Arithmetic Units

Fig. 1 shows an area comparison between LNS and FLP arithmetic
units. We apply the model based on relative silicon area proposed
by Haselman et al. [4], to count a BRAM as 27.9 slices and an
HMUL as 17.9 slices. With the fractional bit width changes from 13
to 45, the area of FLP ADD increases from 151 to 548 slices, while
the area of LNS ADD/SUB unit increases from 729 to 3,766 slices,
and the area cost of LNS ADD-only units increases from 305 to
1,820 slices. With the same change of bit width values, LNS MUL/
DIV/SQRT only costs around 10-30 slices, while the area cost of
FLP MUL increases from 87 to 445 slices, FLP DIV costs 451-4,365
slices, and FLP SQRT consumes 312-1,603 slices.

5.2 Area Cost Estimation Tool

A straightforward way to determine the area of an LNS design is to
perform the mapping, placing, and routing using commercial CAD
tools, and collect the results afterward. Depending on the circuit
size, the process takes several to over 10 hours. To avoid the time
spent on running the CAD tools, we develop an area cost
estimation tool that acquires area cost results within a second,
with an average error around 5 percent.

The area estimation tool serves as an extension of the ASC
compiler. The tool derives a data flow graph of the design from the
ASC description, and calculates the area cost of the arithmetic units
based on the prerecorded exploration result of 231 different bit
width settings (m from 4 to 10, f from 13 to 45). The calculation is
performed through either a direct table lookup or an interpolation
of the nearest values.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010 1003

TABLE 4
Exhaustive Precision Test Results for 32-bit LNS Arithmetic Units

“# BTFP” and “# NBTFP” refer to the number of BTFP and non-BTFP cases,
respectively. “emax” is the recorded maximum relative error.

Fig. 1. Area comparison between LNS and FLP arithmetic units.

Authorized licensed use limited to: Imperial College London. Downloaded on June 30,2010 at 11:45:52 UTC from IEEE Xplore. Restrictions apply.

To illustrate the accuracy of our area estimation tool, we
investigate a typical design, a degree-four polynomial (poly4).
Horner’s rule is used to evaluate the polynomial as follows:
y ¼ ððcdxþ cd�1Þxþ � � �Þxþ c0. We compare the estimated area
costs against actual experiment results for 231 different bit width
settings (m from 4 to 10, f from 13 to 45), and analyze the errors.
For FLP designs, our area cost estimation gives a maximum
relative error within 15.7 percent and an average error within
4.7 percent. However, the maximum and average errors for LNS
cases increase to around 25 percent.

In order to improve the accuracy of LNS area estimation results,
we apply a scaling procedure to the estimated area costs. Using a
typical bit width setting (e.g., m ¼ 8, f ¼ 23), we map, place, and
route a practical circuit, collect the area result, and calculate a scale
factor between the experiment result and the estimation result. We
can then use this factor to scale the estimation results for all the
other bit width combinations. The scaled area modeling results for
LNS designs fit the experimental results much better, providing a
maximum error less than 14.2 percent and an average error less
than 6.1 percent.

5.3 Bit-Accurate Simulator

We also develop a value simulator to investigate the precision
behavior of different number representations. The simulator
performs a bit-accurate value simulation of the basic hardware
arithmetics, such as addition, subtraction, and rounding. Similar to
the area modeling tool, the value simulator is also an extension of
the original ASC compiler. In order to achieve a fast speed of the
simulation, we use C++ 80-bit long double to perform the value
calculations, and truncate or round the intermediate results at each
step, according to the bit width settings of the variables.

The simulator currently supports all the basic arithmetic
operations of fixed-point (HWfix) and floating-point (HWfloat)
hardware variables with configurable bit widths up to 64-bit. Since
the LNS arithmetic functions are evaluated using fixed-point
variables, the simulator can also handle all the basic arithmetic
operations of LNS hardware data types.

6 CASE STUDIES

6.1 Brief Description

6.1.1 Digital Sine/Cosine Waveform Generator (DSCG)

A common tool in digital signal processing and communication
applications, which generates a sequence of discrete sine or cosine
values as follows:

xnþ1

ynþ1

� �
¼ cos � cos �þ 1

cos �� 1 cos �

� �
xn
yn

� �
:

6.1.2 Matrix Multiplication (MM)

A fully pipelined 2� 2 matrix multiplication unit, which consists
of eight multiplications and four additions.

6.1.3 QR Decomposition (QRD)

A part of the QR-decomposition-based recursive least-squares
(QRD-RLS) adaptive filtering algorithm. Similar to the work by
Matousek et al. [14], we implement the diagonal arithmetic
element of QRD algorithm, which includes one addition, three
multiplications, two squares, two divisions, and one square root.

6.1.4 Radiative Monte Carlo Simulation (RMCS)

Gokhale et al. [22] present an acceleration of radiative Monte Carlo
simulation on FPGA, using FLP numbers. The most inner loop,
which is also the most computationally intensive part, is imple-
mented on FPGA. RMCS performs 12 multiplications, one division,
three additions, and seven subtractions.

6.1.5 Vector Normalization (VN)

A fully pipelined normalization for a vector of three elements,
shown as follows:

w ¼
ffi
a2 þ b2 þ c2

p
;

ða0; b0; c0Þ ¼ ða=w; b=w; c=wÞ;

where ða; b; cÞ is normalized into ða0; b0; c0Þ.
Note that in this section, we only discuss the fully pipelined

designs, which are mapped into Xilinx Virtex-4 FX100 FPGA.

6.2 Area Cost

Fig. 2 shows the comparison on area cost between LNS and FLP
designs of the five case studies. Costs of different resources (logic
slices, HMULs, and BRAMs) are converted into an equivalent total
number of slices, using the same conversion rates as in Section 5.1.
The scaled area estimation results, which are shown as the lines in
the figure, provide a good match for the experimental results,
which are shown as the markers. The maximum estimation error is
around 15 percent and the average error is around 5 percent.

For DSCG, MM, and RMCS, which mainly consist of ADD/
SUB, the LNS designs consume two to three times more resources
than the FLP designs. For QRD and VN, which consume more
multiplications, divisions, and square roots, the FLP designs
consume two to four times more resources.

6.3 Accuracy

In our accuracy investigation, we use results from long-double
software versions as the true values for error analysis. We then use
our bit-accurate simulator to acquire the results for the designs with
different number representations and different bit width settings.

Note that in our accuracy investigation, RMCS includes the
conversion units that convert from/to FLP formats. DSCG, MM,
QRD, and VN do not include the conversion units, and we use
the arbitrary-precision computation utility in Maple to convert
between the LNS and FLP values.

Fig. 3 shows the comparison on accuracy between LNS and FLP
designs of the five case studies. For DSCG, MM, QRD, and VN, LNS
provides a similar maximum and average error to the FLP designs
with the same bit width. This shows that LNS arithmetic units with
faithful roundings are able to provide similar accuracy as FLP units
with rounding to nearest, which backs the arguments of [17].

RMCS is more complicated than the other three. Since it is
performing a Monte Carlo simulation of photons’ movements, the
errors in each iteration get propagated to the next round and affect
the accuracy of the final result. As shown in Fig. 3, for small bit
width values, both FLP and LNS designs produce very large errors
as the simulated photons take totally different movements from
the accurate case. With the bit width increasing gradually, there
emerges a turning point, where the simulation of photon move-
ments turns from chaos to the accurate pattern and the error drops
down dramatically. The LNS design gets to the dropping point
with 16 fractional bits, while FLP design needs 17 mantissa bits.
For the photon numbers calculated in the end of the simulation, the
LNS design with 29 bits (1 sign bit, 8 integer bits, and 20 fractional
bits) produces the same results as the long-double software
version, while the FLP design needs 31 bits (1 sign bit, 8 exponent
bits, and 22 significand bits) to produce the same results. Thus,
even with two fewer bits, the LNS design manages to achieve the
same or better accuracy than FLP.

6.4 Performance

Table 5 shows the performance results (given by Xilinx timing
analysis tools) of the five designs for a typical 32-bit setting.
Resource utilization details are also included in this table. For
DSCG and MM, LNS designs consume over two times more
resources than FLP designs, while providing 14.2-21.1 percent
higher throughput. For QRD and VN, the FLP design consumes
three times more resources than the LNS design, while the LNS
design also improves the throughput by 34.1-43.7 percent.

1004 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010

Authorized licensed use limited to: Imperial College London. Downloaded on June 30,2010 at 11:45:52 UTC from IEEE Xplore. Restrictions apply.

For RMCS, compared to FLP designs, LNS consumes 44.7 percent

more slices, around 2.5 times HMULs with extra BRAMs. The

throughput of the LNS design is 16.9 percent higher. Compared to

the original FLP implementation of the RMCS computation core

[22], the FLP circuits generated by our tool infrastructure consume

48 percent more slices, but use much fewer HMULs. Meanwhile,

both our LNS and FLP circuits provide three to four times higher

throughput than the original design.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010 1005

Fig. 3. Comparison of accuracy between LNS and FLP designs. We investigate both maximum and average relative errors. (a) Errors of DSCG, LNS versus FLP.
(b) Errors of MM, LNS versus FLP. (c) Error of QRD, LNS versus FLP. (d) Error of RMCS, LNS versus FLP. (e) Error of VN, LNS versus FLP.

Fig. 2. Comparison of area cost between LNS and FLP designs. The line illustrates the scaled area modeling results (denoted as “model”) while the markers show the
experimental results (denoted as “exp”) on a Virtex-4 FX100 FPGA. (a) Area costs of DSCG, LNS versus FLP. (b) Area costs of MM, LNS versus FLP. (c) Area costs of
QRD, LNS versus FLP. (d) Area costs of RMCS, LNS versus FLP. (e) Area costs of VN, LNS versus FLP.

Authorized licensed use limited to: Imperial College London. Downloaded on June 30,2010 at 11:45:52 UTC from IEEE Xplore. Restrictions apply.

7 CONCLUSION

This paper provides optimized LNS arithmetic targeting reconfi-
gurable hardware designs. In particular, we introduce a general
polynomial approximation approach for LNS arithmetic function
evaluations, and develop a library generator that produces LNS
arithmetic libraries containing þ;�; �; = operators as well as
converters between FLP and LNS numbers. The generated
arithmetic units are tested on FPGAs and in software simulation.
Our evaluation shows that the generated LNS arithmetic units
have significant improvements over existing LNS designs.

To facilitate comparison between LNS and FLP designs, we
develop an area cost estimation tool that acquires results in less
than a second, with a maximum error of 15.7 percent and an
average error around 5 percent. We also provide a bit-accurate
simulator to investigate the accuracy of LNS and FLP designs.

We demonstrate our tools on practical case studies, such as
digital sine/cosine waveform generator, matrix multiplication, QR
decomposition, radiative Monte Carlo simulation, and vector
normalization. LNS shows better efficiency than FLP in QR
decomposition and vector normalization with 73.5 percent less
slices and 34.1-43.7 percent higher throughput. On the accuracy
side, LNS achieves better results than FLP with two fewer bits in
the radiative Monte Carlo simulation. The tool infrastructure
enables us to fast prototype LNS FPGA applications and effectively
study the logarithmic number representation and its tradeoffs in
speed and size when compared with FLP designs.

Future work includes the following:
First, add the multipartite method [15] into our library

generator. One problem with the current polynomial approach is
that the number of segments is usually much smaller than 512, and
the coefficients do not map to the BRAM structure quite efficiently.
Using the multipartite method, which is proved to be suitable for
low precision, we can make a more efficient utilization of the
BRAMs and reduce the cost of HMULs, thus providing more
efficient LNS units.

Second, extend the library generator to produce VHDL
descriptions of the design as well as the ASC descriptions. One
problem with ASC is that the scheduling and synthesis of the
circuit are performed automatically by the compiler. By generating
the VHDL descriptions, we can have more control over the
scheduling and circuit architecture when needed.

Third, extend the library generator to produce multicycle LNS
arithmetic units. By reusing the HMULs, the area cost of high-
precision LNS units can be greatly reduced. The support for
multicycle units also enables the users to study the tradeoff
between performance and area cost.

ACKNOWLEDGMENTS

The support of UK Engineering and Physical Sciences Research
Council (grant number EP/C509625/1 and EP/C549481/1) and
Xilinx, Inc., is gratefully acknowledged. Haohuan Fu was with the
Department of Computing, Imperial College London, UK.

REFERENCES

[1] E. Swartzlander, D. Chandra, H. Nagle, and S. Starks, “Sign/Logarithm
Arithmetic for FFT Implementation,” IEEE Trans. Computers, vol. 32, no. 6,
pp. 526-534, June 1983.

[2] M. Arnold, T. Bailey, J. Cowles, and J. Cupal, “Redundant Logarithmic
Arithmetic,” IEEE Trans. Computers, vol. 39, no. 8, pp. 1077-1086, Aug. 1990.

[3] H. Fu, O. Mencer, and W. Luk, “Optimizing Logarithmic Arithmetic on
FPGAs,” Proc. IEEE Int’l Symp. Field-Programmable Custom Computing
Machines (FCCM), pp. 163-172, 2007.

[4] M. Haselman, M. Beauchamp, K. Underwood, and K. Hemmert, “A
Comparison of Floating Point and Logarithmic Number Systems for
FPGAs,” Proc. IEEE Int’l Symp. Field-Programmable Custom Computing
Machines (FCCM), pp. 181-190, 2005.

[5] D. Lewis, “An Accurate LNS Arithmetic Unit Using Interleaved Memory
Function Interpolator,” Proc. Symp. Computer Arithmetic (ARITH), pp. 2-9,
1993.

[6] J. Coleman, E. Chester, C. Softley, and J. Kadlec, “Arithmetic on the
European Logarithmic Microprocessor,” IEEE Trans. Computers, vol. 49,
no. 7, pp. 702-715, July 2000.

[7] B. Lee and N. Burgess, “A Parallel Look-Up Logarithmic Number System
Addition/Subtraction Scheme for FPGA,” Proc. Int’l Conf. Field-Program-
mable Technology (FPT), pp. 76-83, 2003.

[8] C. Chen, R. Chen, and C. Yang, “Pipelined Computation of Very Large
Word-Length LNS Addition/Subtraction with Polynomial Hardware
Cost,” IEEE Trans. Computers, vol. 49, no. 7, pp. 716-726, July 2000.

[9] C. Chen and R. Chen, “Performance Improved Computation of Very Large
Word-Length LNS Addition/Subtraction Using Signed-Digit Arithmetic,”
Proc. IEEE Int’l Conf. Application-Specific Systems, Architectures and Processors
(ASAP), pp. 337-347, 2003.

[10] J. Volder, “The CORDIC Trigonometric Computing Technique,” IRE Trans.
Electronic Computing, vol. EC-8, pp. 330-334, 1959.

[11] V. Paliouras and T. Stouraitis, “A Novel Algorithm for Accurate
Logarithmic Number System Subtraction,” Proc. IEEE Int’l Symp. Circuits
and Systems (ISCAS), vol. 4, pp. 268-271, 1996.

[12] M. Arnold, “Iterative Methods for Logarithmic Subtraction,” Proc. IEEE
Int’l Conf. Application-Specific Systems, Architectures and Processors (ASAP),
pp. 315-325, 2003.

[13] M. Arnold, “Improved Cotransformation for LNS Subtraction,” Proc. IEEE
Int’l Symp. Circuits and Systems (ISCAS), vol. 2, pp. 752-755, 2002.

[14] R. Matousek, M. Tichy, Z. Pohl, J. Kadlec, C. Softley, and N. Coleman,
“Logarithmic Number System and Floating-Point Arithmetic on FPGA,”
Proc. Int’l Conf. Field Programmable Logic and Applications (FPL), pp. 627-636,
2002.

[15] J. Detrey and F. Dinechin, “A Tool for Unbiased Comparison between
Logarithmic and Floating-Point Arithmetic,” J. VLSI Signal Processing,
vol. 49, no. 1, pp. 161-175, Oct. 2007.

[16] J. Muller, Elementary Functions: Algorithms and Implementation. Springer,
2006.

[17] M. Arnold and C. Walter, “Unrestricted Faithful Rounding is Good Enough
for Some LNS Application,” Proc. Symp. Computer Arithmetic (ARITH),
pp. 237-246, 2001.

[18] M. Arnold, “Design of a Faithful LNS Interpolator,” Proc. Euromicro Symp.
Digital Systems Design, pp. 336-345, 2001.

[19] Virtex-4 Family Overview, Xilinx, Inc., http://www.xilinx.com, 2007.
[20] O. Mencer, “ASC, a Stream Compiler for Computing with FPGAs,” IEEE

Trans. Computer-Aided Design, vol. 25, no. 9, pp. 1603-1617, Sept. 2006.
[21] L. Ingber, Adaptive Simulated Annealing (ASA) 25.15, http://www.ingber.

com, 2004.
[22] M. Gokhale, J. Frigo, C. Ahrens, J. Tripp, and R. Minnich, “Monte Carlo

Radiative Heat Transfer Simulation on a Reconfigurable Computer,” Proc.
Int’l Conf. Field Programmable Logic and Applications (FPL), pp. 95-104, 2004.

1006 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 7, JULY 2010

TABLE 5
Comparison of Performance between LNS and FLP Designs

The number format is described in the form of “sign:integer:fraction” for LNS, and “sign:exponent:significand” for FLP. “clk” and “thr” denote the clock cycle and
throughput of the design.

Authorized licensed use limited to: Imperial College London. Downloaded on June 30,2010 at 11:45:52 UTC from IEEE Xplore. Restrictions apply.

