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Abstract—This paper presents Fast Instruction SyntHesis
(FISH), a system that supports automatic generation of custom
instruction processors from high-level application descriptions
to enable fast design space exploration. FISH is based on novel
methods for automatically adapting the instruction set to match
an application in a high-level language such as C or C++-. FISH
identifies custom instruction candidates using two approaches:
1) by enumerating maximal convex subgraphs of application
data flow graphs and 2) by integer linear programming (ILP).
The experiments, involving ten multimedia and cryptography
benchmarks, show that our contributed algorithms are the fastest
among the state-of-the-art techniques. In most cases, enumera-
tion takes only milliseconds to execute. The longest enumeration
run-time observed is less than six seconds. ILP is usually slower
than enumeration, but provides us with a complementary solution
technique. Both enumeration and ILP allow the use of multiple
different merit functions in the evaluation of data-flow subgraphs.
The experiments demonstrate that, using only modest additional
hardware resources, up to 30-fold performance improvement can
be obtained with respect to a single-issue base processor.

Index Terms—Custom processors, design automation, design op-
timization, graph theory, mathematical programming, subgraph
enumeration, system-on-chip (SoC).

1. INTRODUCTION

HE complexity of system-on-chip (SoC) devices is
T increasing continuously. The competitive end-market
requires the design of more versatile systems with more hard-
ware and software resources in shorter time. Today, a major
problem in SoC design is the limited designer productivity
in comparison with the growth in hardware complexity [1].
This phenomenon necessitates new approaches in the design
of complex SoCs. First, the new generation of SoCs should
be sufficiently programmable in order to amortize chip design
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costs. Second, there is a need for optimizations of the perfor-
mance, area, and power efficiency of SoC designs for specific
applications.

Combining programmability and efficiency, custom instruc-
tion processors are emerging as key building blocks in the
design of complex SoCs. The typical approach extends a base
processor with custom functional units that implement appli-
cation-specific instructions [2]-[4]. A dedicated link between
the custom functional units and the base processor provides
an efficient communication interface. Reusing a preverified,
preoptimized base processor reduces design complexity and
time to market. Commercial examples include Tensilica Xtensa,
ARC 700, Altera Nios II, MIPS Pro Series, Xilinx MicroBlaze,
Stretch S6000, and IBM’s PowerPC 405.

Modern custom instruction processors comprise parallel,
deeply pipelined custom functional units including state regis-
ters, local memories, and wide data buses to local and global
memories and provide support for flexible instruction encoding
[5]. These features enable custom processors to reach a compu-
tational performance comparable to the performance of custom
register transfer-level blocks. On the other hand, such advances
necessitate improved design automation methodologies that
can take advantage of the new capabilities.

Techniques for the automated synthesis of custom instruc-
tions from high-level application descriptions have received
much attention in recent years. Typically, compiler infrastruc-
tures are used to extract the source-level data flow graphs
(DFGs), and data flow subgraphs are evaluated as custom
instruction candidates. This is followed by the synthesis of the
customized hardware and software components (see Fig. 1).
The traditional subgraph exploration approach restricts the
maximum number of input and output operands that custom
instructions can have to the available register file ports [6]-[13].
Although these constraints can be prohibitive on some cus-
tomizable processors, most existing architectures—such as
Tensilica Xtensa—allow custom instructions to have more
input and output operands than the available register file
ports, typically through custom state registers that can tem-
porarily hold some of the operands. Recent work has shown
that input/output constraints deteriorate solution quality for
architectures in which there is no explicit limit on the number
of custom instruction operands [14]-[18]. Thus, there is a
need for new algorithms that can efficiently explore custom
instruction candidates without imposing a limit on the number
of input/output operands.

This paper presents effective techniques for automating the
identification of custom instructions starting with application
descriptions in C/C++. In this work, only convex subgraphs of
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Fig. 1. Compiler infrastructures transform high-level application descriptions
into source-level control and DFGs. Data flow subgraphs are evaluated as
custom instruction candidates. A high-level merit function ranks the subgraphs
based on estimations of hardware and software costs.

application DFGs that are maximal are considered, and, while
generating custom instruction candidates, no constraints are
imposed on the number of input and output operands. Unlike
prior work, the techniques presented in this work do not rely on
enumeration of maximal independent sets or maximal cliques.
This work extends the work in [19], which describes a maximal
convex subgraph enumeration algorithm with a proven upper
bound on the size of the search space. The enumeration algo-
rithm of [19] is explained in more depth, and additional search
space reduction techniques are demonstrated. The enumeration
approach makes it possible to integrate any merit function for
ranking the subgraphs. In addition, a new ILP formulation pro-
vides a second way of finding the maximal convex subgraphs
that optimize a linearly expressed merit function. The main
contributions of this work are:

1) an upper bound on the number of maximal convex sub-
graphs within a given DFG (Section IV);

2) an integer linear programming formulation for evaluating
maximal convex subgraphs (Section V);

3) a maximal convex subgraph enumeration algorithm for
custom instruction synthesis that includes novel clustering
and search space reduction techniques (Section VI);

4) evaluation of multiple different merit functions in a design
space exploration framework (Sections VII, VIII);

5) illustration of the scalability of our algorithms on a set of
benchmarks (Section IX), where we also demonstrate an
order of magnitude performance improvement with respect
to a single-issue base processor (Sections X and XI).

II. RELATED WORK

Heuristic clustering algorithms have long been used in au-
tomated custom instruction synthesis [20]-[24]. However, the
attention gradually shifts towards techniques for producing op-
timal solutions, such as subgraph enumeration [6]-[12] and ILP
[13], [15], [18], [25], [26]. Given a DFG with N nodes, the
complexity of enumerating subgraphs with NV;,, input and N,
output operands is shown to be O(NNin+New+1) [27] which
grows exponentially with the number of inputs and outputs.
A common property of the aforementioned enumeration tech-
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niques [6]-[12] is that explicit constraints are imposed on the
number of input and output operands of the subgraphs, which
are used to prune the search space and reduce the exponen-
tial computational complexity. A downside is that, as the con-
straints on the number of input and output operands are relaxed,
enumeration becomes computationally expensive. On the other
hand, the ILP model of [13] efficiently handles DFGs with more
than a thousand nodes under any input and output constraint,
including the option of removing these constraints completely
[15], [18]. The reason is that the number of integer variables and
the number of linear constraints used in ILP grow linearly with
the number of nodes and the number of edges in the DFG.

In [14], a pipelining algorithm that serializes the register file
accesses when the number of inputs and the number of out-
puts of the custom instructions exceed the available register file
ports, is described. This technique relies on [6], [9] for gener-
ating custom instructions, which have limited scalability. In ad-
dition, pipelining is applied on the source-level DFGs, where
it is nearly impossible to estimate the critical path accurately
and, therefore, to find an optimal pipeline. However, this work
empirically shows that achievable speed-up grows monotoni-
cally with the relaxation of the constraints on the number of
input and output operands. Similar conclusions are made also
by [15]-[18], which employ more scalable algorithms for gen-
erating custom instructions.

Pothineni et al. [16] were the first ones to target the maximal
convex subgraph enumeration problem. Given a DFG, Pothineni
et al. first define an incompatibility graph, where the edges rep-
resent pair-wise incompatibilities between the nodes. A node
clustering step identifies group-wise incompatibilities and re-
duces the size of the incompatibility graph. The incompatibility
graph representation transforms the maximal convex subgraph
enumeration problem into a maximal independent set enumer-
ation problem. Pothineni et al. indicate that the complexity of
enumeration is O(2V¢), where N¢ represents the number of
nodes in the incompatibility graph. Although Pothineni et al.
apply enumeration independently on the connected components
of a DFG, the disconnected subgraphs within each connected
component are enumerated too.

In [17], the maximal independent set enumeration problem of
[16] is reformulated as a maximal clique enumeration problem,
and enumeration is applied at once to the whole graph. Addi-
tionally, [17] describes a heuristic algorithm for pipelining the
enumerated subgraphs and serializing register file accesses at
the source level. [17] includes a formal proof, which shows
that under certain assumptions speed-up potential of a subgraph
grows monotonically with its size.

In [26], the ILP model of [13] is extended to include a re-
source-constrained scheduling model for serializing the register
file accesses. However, the resulting model scales quadratically
with the size of the DFGs versus the linear scaling of [13], [15],
and [18]. As a result, the work of [26] fails to identify optimal
solutions on large DFGs, although the ILP models of [13], [15],
and [18] complete optimally in all practical cases.

In [28], Li et al. describe an algorithm that constructs a search
tree similar to the one described in [19]. The enhancements pro-
posed in [28] include: 1) an adaptive branch ordering mecha-
nism; 2) migration of some of the computation from the leaves
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Fig. 2. Subgraph that is not convex. v is a forbidden node.

of the search tree to the branches, where simpler bitwise oper-
ations can be used; 3) an efficient mechanism to discard sub-
graphs that are not maximal or that are repeated.

Other related and complementary work includes: 1) use
of local memories for improving the performance of custom
instructions [25], [29]; 2) datapath merging [30] and com-
binational equivalence checking [31] techniques to improve
resource sharing; 3) synthesis of custom instructions targeting
field-programmable systems [32], [33], including support for
run-time reconfiguration [34], [35]; and 4) transparent integra-
tion of custom instructions with a general-purpose processsor
[36].

III. PROBLEM FORMULATION

We assume that the source program is converted into an in-
termediate representation (IR), where every statement in the IR
is a branch, or an assignment operation. An application basic
block is represented as a DFG G(V, F), where the nodes V'
are statements within the basic block, and the edges E repre-
sent flow dependencies between nodes. The subset V; C V
represents forbidden statements in GG that cannot be included
in custom instructions, either because of the limitations of the
custom processor architecture, or because of the limitations of
the custom datapath, or due to the choice of the processor de-
signer. Examples may include memory access, branch, division,
and floating-point instructions.

Definition 1: A custom instruction candidate is a subgraph
of G, where the nodes V; of the subgraph are in V' — V%, and
the edges of the subgraph are induced by the nodes V.

Definition 2: A subgraph S is convex if there exists no path in
G from a node u € V; to another node w € V, which involves
anode v ¢ V.

Corollary 1: A subgraph S is convex if and only if there exists
no node in V' — V; having both an ancestor and a descendant in
Vs.

The convexity constraint is imposed on the subgraphs to en-
sure that no cyclic dependency is introduced in G and that a fea-
sible schedule can be achieved for the instruction stream. Fig. 2
depicts an example subgraph that is not convex.

Definition 3: A convex subgraph S is maximal if it cannot be
grown further by including additional nodes from V' — V.

Every graph node v; € V is associated with a binary variable
x;, which indicates whether the node is included in the subgraph

(t; =1 & v; € Viy)ormnot (x; = 0 & v; ¢ Vi) The
complement of z; is denoted by z} (2} = 1 — z;). For v; € V,
; is simply set to be zero. In this way, up to 2IV'~V#! subgraphs
not containing forbidden nodes can be encoded. The following
indexes are used in the rest of the text:

I : indices for nodes v; € V — V§

J . indices for nodes v; € V5.

The following sections use the introduced notation.
Section IV shows that the number of maximal convex sub-
graphs is bounded by 2!V for a given DFG. Section V provides
an ILP model, which evaluates all maximal convex subgraphs.
Section VI describes an efficient algorithm for enumerating
maximal convex subgraphs. A user defined merit function
M (S) ranks the subgraphs as part of enumeration or ILP.
Enumeration can integrate any software function to compute
M(S). ILP accepts linearly expressed merit functions only.

IV. UPPER BOUND ON THE SEARCH SPACE SIZE

Here, we prove that the number of maximal convex subgraphs
in a given DFG G(V, E) is at most 2!V,

For each node v € V we introduce two binary variables: a
indicates whether v has an ancestorin S (¢ = 1) ornot (a = 0),
and d indicates whether v has a descendant in S (d = 1) or not
(d = 0). Based on Corollary 1, the convexity property can be
formulated as follows:

.TIT,IL-/\(J,,L'/\d,L':07
G,j/\d]':O,

iel
jed.

ey
@

Theorem 1: A maximal subgraph that satisfies (2), satisfies
also (1).

Proof: Assume that (2) holds for subgraph S, i.e., no node
in V; has both an ancestor and a descendant in V. Assume also
that S is maximal, i.e., no additional node can be included in V
without violating (2). We are going to show that S also satisfies
(D).

Suppose that a node v; € V' — (V, U V) violates (1), i.e., v;
has both an ancestor and a descendant in V. First we prove that
including v; in V; does not violate (2). We note that, in a convex
solution, there exist three possible choices for each v; € Vi,
which are given here.

1) vj has ancestors, but no descendants in V5. In this case, v;

cannot be a descendant of v;. If v; were a descendant of v;,

v; would have descendants in V, since v; has descendants

in V. Because v; is not a descendant of v, including v; in

V, does not violate (2).

2) wvj has descendants, but no ancestors in V5. In this case, v;
cannot be an ancestor of v;. If v; were an ancestor of v, v;
would have ancestors in V, since v; has ancestors in V.
Because v; is not an ancestor of v;, including v; in V; does
not violate (2).

3) v; has neither ancestors nor descendants in V. In this
case, v; is neither an ancestor nor a descendant of v;. Oth-
erwise v; would have ancestors or descendants in V. Thus,
including v; in V; does not violate (2).
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Fig. 3.

v4 and vs are forbidden nodes.

We have shown that if there exists a v; € V — (V, U V})
that violates (1), we can safely include it in V; without violating
(2). However, this contradicts the maximality of S. Thus, av; €
V' —V that violates (1) cannot exist for the maximal S satisfying
2). [ |
Based on Theorem 1, there exist only three valid a;,d;
choices forav; € Vy: 1) a; = 1,d; = 0;2)a; = 0,d; = 1;
and 3) a; = 0,d; = 0. Every maximal convex subgraph is
associated with at least one valid a;, d; combination for j € J.
Given a valid a;, d; combination for j € .J, an associated
convex subgraph S that cannot be grown further by including
additional nodes from V' — V can be found as follows.
* Anodev; € V — Vy cannot be included in S if it has an
ancestor v; € Vy for which d; = 0.

* Anode v; € V — Vj cannot be included in S if it has a
descendant v; € V¢ for which a; = 0.

* All of the remaining nodes in V' —V can be safely included
in S without violating (2).

To enumerate all maximal convex subgraphs, it is sufficient to
evaluate two possible choices foreach j € J (i.e.,a; = 1,d; =
0 ora; = 0,d; = 1). The third choice, where a; = 0,d; =
0, can be disregarded because it does not contribute to finding
a convex subgraph of maximal size. Each a;, d; combination
for j € J is associated with a single subgraph S that can be
computed using the procedure described above.

Theorem 2: There exists an upper bound of 2/V7| on the
number of maximal convex subgraphs.

Proof: Mathematical induction based on the number of for-
bidden nodes in G. [ |

Fig. 3 depicts an example DFG where nodes v4 and v are the
forbidden nodes. Because there are two forbidden nodes in the
graph, there exist only 22 = 4 possible combinations we need to
evaluate: 1) ancestors of v4 and ancestors of v; take part in the
solution (ay = 1,dy = 0 and a5 = 1,d5 = 0); 2) ancestors of
v4 and descendants of v5 take part in the solution (a4 = 1,d4 =
0 and a5 = 0,ds = 1); 3) descendants of v, and ancestors of v5
take part in the solution (a4 = 0,d4s = 1 and a5 = 1,d5 = 0);
and 4) descendants of v, and descendants of v; take part in the
solution (a4 = 0,dy = 1andas = 0,d5 = 1). Table I shows the
solutions associated with each of these four choices. Note that
nodes vg and v1g are included in the solutions associated with
all possible combinations because they have neither ancestors
nor descendants among the forbidden nodes.
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TABLE 1
SOLUTIONS FOR THE DFG OF FIG. 3

[ (a4,ds) | (as,ds) |
(1,0) (1,0)
(1,0) 0,1)
0,1) (1,0)
0,1) 0,1)

Solution |
{v1,v2,v3,v9,v10}
{v1,v8,v9,v10}
{v3,v6,v9,v10}
{ve, v7,v8,v9,v10}

Fig. 4. Pothineni’s incompatibility graph. The ancestors and the descendants
of a forbidden node are defined as incompatible.

Fig. 4 shows the incompatibility graph generated by Poth-
ineni’s algorithm [16] for the DFG of Fig. 3. The incompatibility
graph contains seven nodes. According to Pothineni’s work, the
worst case complexity of maximal convex subgraph enumera-
tion for this graph is 27. On the other hand, we have shown that
it is possible to enumerate all maximal convex subgraphs in the
DFG in only 22 steps.

V. AN INTEGER LINEAR PROGRAMMING MODEL

This section describes an ILP model that addresses the opti-
mization problem described in Section III. The objective of ILP
is to maximize a linearly expressed merit function M(.S).

The following notation introduces the set of ancestors, and
the set of descendants of the nodes in V' — V that are in V:

Anc(i € 1)

= {j € J|There exists a path from v; to v;}
Desc(i € I)

= {j € J | There exists a path from v; to v;}

Once a; and d; values are fixed for j € .J, the following
formula computes whether a node v; € V — V; is part of the
associated convex subgraph S of maximal size

1, 1fAnc( ) = 0 A Desc(i) = 0
( Njeanciiy 4 if Anc(i) # 0 A Desc(i) = ()

]GDosc(z ) y if AIIC(L> = @/\ Desc(i) 7é @
(/\jeA“C(i) dj) A (/\jGDesc(i) a]-) ) otherwise.
(3)

According to (3), anode v; € V' — V¢ can be included in the
solution if it has no ancestors in V; for which d; = 0 and no
descendants in V for which a; = 0. Four different conditions
are explicitly formulated: 1) v; has no ancestors and no descen-
dants in V; 2) v; has ancestors but no descendants in V; 3) v;
has descendants but no ancestors in V; and 4) v; has both an-
cestors and descendants in V.
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Equation (3) generates convex subgraphs only. For each a;,
d; combination, ILP computes the z; values for all 2 € I, which
explicitly define a convex subgraph. Out of all such subgraphs,
ILP picks the one that maximizes M (.S). An alternative model
for the same problem can be found in [37, ch. 5].

VI. NOVEL ENUMERATION ALGORITHM

We have shown in Section IV that, given a graph with | V|
forbidden nodes, there exists an upper bound of 2!Vs on the
number of maximal convex subgraphs. Therefore, the time
complexity of the maximal convex subgraph enumeration
algorithms should not have an exponential factor higher than
21Vsl Here, we describe a novel enumeration algorithm that
significantly improves the run-time efficiency using additional
search space reduction techniques. Our improvements over
an exhaustive search can be categorized into two groups: 1)
obtaining a more compact graph representation through pre-
processing and clustering and 2) building a search tree and
applying constraint propagation to prune the search space.

A. Graph Compaction

1) Basic Preprocessing: The forbidden nodes v; € V; not
having any ancestors in V' — V and the forbidden nodes v; € Vy
not having any descendants in V' — V; can be dropped from
consideration because such nodes have no effect on the compu-
tation of the maximal convex subgraphs, as shown in (3). This
basic optimization often eliminates a considerable number of
forbidden nodes and significantly reduces the size of the search
space.

2) Simple Clustering: Following the basic preprocessing
step, similar to the approaches of Pothineni et al. [16] and
Verma et al. [17], we apply a node-clustering step that reduces
the size of the DFGs. In particular, if v;,v; € V — Vy and
Anc(7) = Anc(j) and Desc(i) = Desc(j), the nodes v; and
v; can be clustered without affecting the result of enumeration
because (3) guarantees that x; and x; will always be equal.
Similarly, if two forbidden nodes v;,v; € V; have the same set
of ancestors and descendants that are in V' — V, (3) guarantees
that the two forbidden nodes can be clustered into a single node
without affecting the result of enumeration.

3) Enhanced Clustering: The simple clustering approach
usually does not find any forbidden nodes that can be clustered.
However, reducing the number of forbidden nodes is of utmost
value as the complexity of enumeration is exponential in the
number of forbidden nodes, as stated by Theorem 2. Assume
that two forbidden nodes v;,v; € Vj have the same set of
descendants that are in V' — V. Setting d; = 0 disables inclu-
sion of those nodes that are descendants of v; in the solution.
However, these nodes are the descendants of v, too. We can set
d; = 0 whenever d; = 0, and vice versa even if the ancestors of
v; and v; in V — V; differ. As a result, we need to evaluate only
two choices in such a case: d; = 0,d; = 0andd; = 1,d; = 1.
Thus, we can simply cluster the forbidden nodes having the
same set of descendants that are in V' — V. Similarly, it is also
possible to cluster two forbidden nodes if they have the same
set of ancestors that are in V' — V.

In this work, we first apply the basic preprocessing step.
Second, we cluster forbidden nodes having the same set of

Fig. 5. Connectivity of forbidden nodes helps us reduce the search space.

descendants that are in V' — V. Third, we cluster the forbidden
nodes having the same set of ancestors that are in V' — V¢, if
they have not already been clustered by the second step. Finally,
using the graph computed by the third step, we cluster the nodes
that are not forbidden, i.e., v; € V — V;. The enhancement
in the clustering of the forbidden nodes also enhances the
clustering of the nodes that are not forbidden.

The result is the clustered graph G'(V', E'), where V; € V’
denotes the set of forbidden nodes. Reducing the number of for-
bidden nodes in the clustered graph (i.e., [V|) immediately con-
tributes to a reduction in the exponential complexity and reduces
the time to compute (3) as well. On the other hand, reducing the
number of nodes that are not forbidden in the clustered graph
(ie., |V — V}ﬁ |) does not affect the exponential complexity, but
again reduces the time to compute (3), which is in the inner loop
of our enumeration algorithms.

Finally, we derive a tighter upper bound on the number of
maximal convex subgraphs using the clustered graph G’.

Theorem 3: There exists an upper bound of 2IV71 on the
number of maximal convex subgraphs.

Proof: Mathematical induction based on the number of for-
bidden nodes in G’. ]

B. Building a Search Tree

To demonstrate further ways of reducing the complexity, we
construct a new graph G”(V”, E") from the clustered graph
G'(V',E"). G" is a simplified form of G’, and contains only the
forbidden nodes of G’. The edges of G’ store the connectivity
information between the forbidden nodes of G’. More formally,
we have V"' = VJﬁ, and a directed edge is defined between two
nodes v;, v; of G” only if there is a path from v; to v; that does
not go through another vy € V¢ in G'. Such a simplification
is introduced to clarify our search algorithm, which reduces the
search space using only the connectivity information between
the forbidden nodes.

Fig. 5 illustrates a simple graph G”. Setting d; = 0 disables
inclusion of any node that is a descendant of v; in the solu-
tion. In such a case, we can simply set d; = 0 for all forbidden
nodes that are descendants of v1 (i.e., ds = d3 = d4 = 0). In
other words, we do not need to explore the combinations where
d1 = 0 and at least one of ds, d3, d4 is not zero. In practice,
the number of possible d; combinations for v; € V'’ (where
a; = 1—d;) is much smaller than 21V, We exploit this property
to design a simple and efficient algorithm for maximal convex
subgraph enumeration.

Fig. 6 shows the pseudo-code of our algorithm. We first apply
a node clustering step on G and obtain the clustered graph G’.
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1: ALGORITHM: search(index, choice, graph, disabled)

2: local_disabled = disabled;

3: current_combination[index] = choice;

4: if index == size(graph)-1 then

5. if M(current_combination) > M(best_combination) then
6: best_combination = current_combination;

7:  end if

8: return;

9: end if

10: if choice == 0 then

11: local_disabled = local_disabled U descendants(index);
12: end if

13: index=index+1;

14: search(index, 0, graph, local_disabled);

15: if index ¢ local_disabled then

16:  search(index, 1, graph, local_disabled);

17: end if

18: ALGORITHM: enumerate()

19: Apply preprocessmg and clustering on G to generate G';
20: Derive G from G’;

21: Topologically sort the nodes of G,

22: current_combination = 0;

23: best_ combmdtlon =0

24: search(0, 0, G’ 0);

25: search(0, 1, G, 0y;

26: return best_combination;

Fig. 6. Enumeration algorithm: the best solution is defined by M(S). “cur-
rent_combination[index]” stores the value of di,dex. The parameter “choice”
represents the direction of the branch. Setting “choice” equal to zero disables
the descendants of “index” in G”'. The disabled nodes call the recursive search
function only once by setting the “choice” argument equal to zero. The algo-
rithm backtracks when all the nodes in G'’ are evaluated.

Next, we derive G” from G’. After that, we order the nodes of
G" topologically such that if there exists a path from v; to v; in
G, v; is associated with a lower index value than v;. Our enu-
meration algorithm uses this ordering while building a search
tree, i.e., the nodes with lower indexes have their d; values as-
signed earlier. The search tree is built using a recursive search
function, where each node can make a zero or one branch. A
zero branch on node ¢ sets d; to zero, and effectively disables set-
ting the d values to one for the descendants of node 7 in G”, all of
which appear later in the topological ordering. When the search
algorithm backtracks and sets d; to one, the disabled descen-
dants must be enabled again. This feature can be implemented
using a local array or a stack. The search algorithm produces
combinations of d; values. Each such combination is associ-
ated with a convex subgraph that can be derived using (3). In
this work, we keep track of the best solution only, which max-
imizes a given metric function M (.S). However, our approach
can easily be adapted to store all of the enumerated subgraphs
too.

Fig. 7 shows the d; combinations identified during the execu-
tion trace of our enumeration algorithm on the graph of Fig. 5.
We observe that only six out of 16 possible combinations had
to be enumerated. In fact, the worst case scenario of 2Vl can
occur only if all forbidden nodes are disconnected from each
other. This is illustrated in Fig. 3, where the two forbidden
nodes result in 22 combinations. On the other hand, when the
forbidden nodes in the G” are simply cascaded, the number of
combinations enumerated by our algorithm grows only linearly
with the number of nodes. As a result, the enumeration com-
plexity depends primarily on the number of nodes in G” and
their connectivity.
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Fig. 7. Search tree is built by the enumeration algorithm for the G’” shown in
Fig. 5. A branch at level ¢ of the search tree assigns a zero or one value to d;.
The leaves of the search tree represent the enumerated d; combinations. Only
six out of 16 combinations are enumerated for this example. The dashed ellipses
show the pruned regions of the search tree.

Our enumeration algorithm uses the topological ordering
while building the search tree, i.e., the nodes that are higher in
the topological ordering are handled first. The constraints of
type d; = 0 are propagated to the lower levels to reduce the
search space. However, it is possible to use other orderings as
well. As an example, it is also possible to invert the topological
ordering and propagate the constraints of type a; = 0. A similar
approach is described in [28], where the nodes are ordered by
estimating the remaining search space size associated with the
selection of each node, and by allowing the constraints of both
types, a; = 0 and d; = 0, to be propagated. A disadvantage
of this approach is the additional processing time that is spent
for the selection of the branch node before each call to the
recursive search function.

While setting the d; value for a v; € V", our approach ef-
fectively divides G’(V’, E') into two parts: 1) nodes that are
ancestors of v; and nodes that are neither ancestors nor descen-
dants of v; and 2) nodes that are descendants of v; and nodes
that are neither ancestors nor descendants of v;. A similar graph
division operation is presented also in [28]. A main difference
between this work and [28] is that our algorithm computes (3)
at the leaves of the search tree, whereas [28] updates an inter-
mediate graph data structure at each branch of the search tree
using cheaper bitwise operations.

The algorithms described in [19] and, in this work, can enu-
merate convex subgraphs that are not maximal, and the same
subgraph can be generated multiple times. However, the clus-
tering techniques described in this work significantly reduce the
amount of redundancy. On the other hand, [28] does not incor-
porate any clustering techniques. It is reported in [28] that the
algorithm of [28] does not enumerate nonmaximal subgraphs.
Moreover, [28] describes an efficient way of detecting and dis-
carding repeated subgraphs. Note that such a step is not neces-
sary for our work since our technique does not need to store all
the enumerated subgraphs.

VII. MERIT FUNCTIONS FOR EVALUATING SUBGRAPHS

In this work, the merit function M (S) is a parameter for de-
sign space exploration, and can be specified by a designer. Basi-
cally, M (S) defines an ordering of the subgraphs. If the objec-
tive of optimization is to improve processor performance, M (.S)
should provide an estimation of the reduction in the schedule
length of the application by moving subgraph .S from software
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Fig. 8. We adapt the CHIPS [18] tool chain with a novel enumeration algorithm and a new ILP model for Subgraph Generation. Our tools are integrated into the
Trimaran compiler infrastructure. Starting with C/C++ code, our tool chain automatically produces behavioral hardware descriptions of the generated subgraphs in
VHDL and the scheduling statistics after replacing selected subgraphs with custom instructions. User defined merit functions M (.5) and M’(S) can be integrated
into subgraph generation and subgraph selection for ranking the subgraphs. We advocate the use of a simpler M (S) in subgraph generation.

to hardware. In a different setup, M (.S) can integrate area and
power consumption estimations as well.

The software execution latency SW(S) of a subgraph S can
be estimated by statically scheduling S using the base processor
instructions. The hardware execution latency HW (S) can be
obtained by the hardware synthesis of S and by pipelining the
final circuit to achieve a target clock frequency. The commu-
nication latency C(.S) represents the additional cycles needed
to transfer the input and output operands of .S between the base
processor and the custom logic. If the goal is to improve the per-
formance of the processor, the objective of optimization can be
formulated as maximizing the reduction in the schedule length
by moving the source level data flow subgraph S from software
to hardware as follows:

M(S) = SW(S) — HW(S) — C(S).

Estimating SW(S), HW (S), and C(.S) accurately for each
subgraph S within the inner loop of any optimization algorithm
can be a very time-consuming process. Accurate estimation
of SW(S) requires integration of instruction scheduling al-
gorithms under base processor resource constraints. Accurate
estimation of HW (S) requires taking into account the effects
of hardware optimizations, such as word-length optimization,
arithmetic transformations, logic minimization, technology
mapping, and register retiming. Similarly, accurate estimation
of C(S) requires evaluation of the effects of optimal data
partitioning, including the use of local memories and custom
state registers, and optimal pipelining after the synthesis of S.

In this work, to estimate SW (.S), a software latency s; € Z+
is associated with every graphnode v; € V —V, which gives the
time in clock cycles that it takes to execute v; on the pipeline of
the base processor. To estimate HW (S), every graph node v; €
V' — Vy is associated with a hardware latency h; € R, which is
estimated by synthesizing individual operators using Synopsys
Design Compiler and normalizing to the delay of a 32-bit adder.
Given the number of register file read and write ports, C(S)
is estimated by calculating the data transfer cycles needed to
retrieve the input operands of S before its computation starts and
the cycles needed to write back the results when the computation
of S ends. In this work, three different merit functions are used
for ranking subgraphs, given here.

1) M1(S) identifies S with the maximum accumulated

software latency, and assumes that HW(S) and C(S5)
can later be optimized by a postprocessing step, which

involves hardware optimizations to minimize the critical
path length, and the use of local memories and custom
state registers to minimize the communication overhead:

My(S) = (siwi). 4)

i€l

2) M(S) optimizes the difference between maximum ac-
cumulated software latency and the sum of HW(S) and
C(S), where HW (.S) is estimated by computing the crit-
ical path of the source level data flow graph S using h;
values and by applying an unconstrained scheduling. We
note that M»(S) is equivalent to the objective function def-
inition of [18]

My(S) =Y (sizi) — HW(S) — C(S). 5)

i€l

3) Similar to M3(S), M3(S) optimizes the difference be-
tween maximum accumulated software latency and the
sum of HWg(S) and C(S). However, HWg(S) is esti-
mated by the actual synthesis of S using Synopsys Design
Compiler. As a result, M3(S) provides a much more
accurate estimation than M (S) and M5(S):

Ms(S) = (sizi) — HWs(S) — C(S). (6)

i€l

VIII. OVERALL APPROACH

The algorithms described in this work are integrated into
the Trimaran compiler.! Fig. 8 illustrates the associated tool
chain. Starting with an application specification in C/C++, an
if-conversion pass selectively eliminates control dependencies
within an application and transforms multiple basic blocks into
a single basic block with predicated instructions. This extends
the scope of our algorithms, and enables us to identify coarser
grain custom instructions. Synopsys synthesis provides area
and delay estimations for generated custom instructions and
Trimaran scheduling statistics are used to estimate the number
of execution cycles with and without custom instructions.

Given the DFG of a basic block, the subgraph generation
algorithm picks the subgraph with the maximum M (.S) value
as the most promising custom instruction candidate. This sub-
graph can be found either by ILP (Section V) or by enumeration

ITrimaran. [Online]. Available: http://www.trimaran.org
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TABLE II
EFFECT OF CLUSTERING ON THE NUMBER OF FORBIDDEN NODES AND ON THE NUMBER OF REMAINING NODES IN THE LARGEST BASIC BLOCK

Benchmark Original Basic Preprocessing Partial Clustering Simple Clustering Enhanced Clustering
VT T IV=Vi [V IV =V [ VA [V =VA VA IV =Vi [IVA] IV =V]

AES enc. 43 274 36 274 36 86 36 86 33 84
AES dec. 43 458 40 458 40 90 40 90 33 85
DES 176 646 128 646 128 274 128 274 96 242
SHA (full) 90 1065 0 1065 0 1 0 1 0 1
IDEA 8 88 0 88 0 1 0 1 0 1
djpeg 19 73 8 73 0 1 0 1 1 3
g721encode 32 99 6 99 6 11 6 11 2 6
g721decode 32 99 7 99 7 15 7 15 3 9
rawcaudio 8 46 2 46 2 6 2 6 2 6
rawdaudio 8 37 3 37 3 10 3 10 3 10

(Section VI). Additionally, different M (.S) functions can be in-
tegrated into subgraph generation. After the computation of the
first custom instruction candidate, the associated subgraph is
collapsed into a single forbidden node in the DFG. Next, a new
subgraph with the maximum M (.S) value among the remaining
nodes is picked as the second custom instruction candidate. The
process continues until no more maximal convex subgraphs
composed of more than one node can be found. This process is
similar to the iterative subgraph generation algorithm described
in [18]. The approach of generating the most promising sub-
graph first helps in reducing the overall search space, without
sacrificing source-code coverage. However, such a strategy
precludes the possibility of including one DFG node in two
or more custom instructions, which could provide benefits in
multi-issue processors. The subgraph generation algorithm
applies enumeration or ILP multiple times in each basic block.
Note that the number of iterations carried out on a basic block
is usually only a few. The DFG shrinks significantly after each
iteration, which reduces the run-times of both enumeration and
ILP considerably.

In this work, we have integrated only M (.S) and M>(S) into
the subgraph generation algorithms as it is often impractical to
include the hardware synthesis in the inner loop of an enumer-
ation algorithm having an exponential worst-case complexity.
On the other hand, the subgraph selection algorithm makes use
of M3(S), which takes into account both the hardware synthesis
results and the data transfer costs, and provides more accurate
and realistic speed-up estimations.

The subgraph generation procedure is applied only to appli-
cation basic blocks with positive execution frequency, and a uni-
fied set of subgraphs is generated. Next, structurally equivalent
subgraphs that can be implemented using the same hardware
are grouped. Given the frequency of execution F'(S) of the sub-
graph S, the amount of reduction in the schedule length of the
application by moving S from software to hardware is estimated
as F'(S) x M5(S). Finally, a Knapsack model [22] is utilized
to select the most promising set of subgraphs under area con-
straints. An important point is that the area and the delay coef-
ficients used by the subgraph selection step are computed using
actual Synopsys synthesis.

IX. RUN-TIME RESULTS

The memory access, branch, and division instructions are
marked as forbidden instructions in our experiments. Our al-
gorithms are applied to ten benchmarks from multimedia and

cryptography domains [38], [39], including an optimized 32-bit
implementation of Advanced Encryption Standard (AES) en-
cryption and decryption [40], and a FIPS-compliant fully un-
rolled Data Encryption Standard (DES) implementation [41].

Our experiments are carried out on an Intel Pentium 4
3.2-GHz workstation with 1-GB main memory, running Linux.
Our algorithms are developed in C/C++, and compiled with
gce-3.4.3 using —O2 optimization option.

Table II shows the effect of preprocessing and clustering op-
tions on the number of forbidden nodes (i.e., [V¢|) and on the
number of nodes that are not forbidden (i.e., |V’ — V{|) in the
clustered graph (i.e., G). The results for the largest basic block
of each benchmark are shown. For an explanation of different
options, see Section VI-A. Note that the Basic Preprocessing
option does not implement any clustering and that all of the
clustering options include the Basic Preprocessing. Addition-
ally, the Partial Clustering option implements clustering of the
nodes that are not forbidden (i.e., |V’ — VJﬁ| only). We observe
that the Basic Preprocessing option usually results in a signifi-
cant reduction in the number of forbidden nodes, and the Partial
Clustering option usually results in a significant compaction in
the number of nodes that are not forbidden. Note that [19] uses
the Partial Clustering option, whereas [28] implements the Basic
Preprocessing option only. Another observation is that Simple
Clustering, in practice, results in no improvement with respect
to Partial Clustering in terms of the number of forbidden nodes
and of the number of nodes that are not forbidden. On the other
hand, Enhanced Clustering can further optimize the number of
forbidden nodes and the number of nodes that are not forbidden.
Another important point to note is that, immediately after Partial
Clustering, the largest basic blocks of SHA and IDEA bench-
marks are reduced to only a single node that is not forbidden.

Table III presents the run-time results for different clustering
and branch ordering options. “Enum-TO” uses the topological
ordering described in Section VI.B while choosing the next node
to branch, whereas “Enum-AQO” uses the adaptive ordering pro-
posed in [28], which tries to pick those nodes that are estimated
to reduce the search space more strongly than the others. The
setup time includes the time to do the basic preprocessing and
the clustering, which increases while moving from Basic Pre-
processing towards Enhanced Clustering. Note that “Enum-TO”
and “Enum-AQO” only include the search time, and exclude the
set-up time. The Simple Clustering option is not included in
the table because it does not result in any improvement in the
search time with respect to the Partial Clustering option and
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TABLE III
RUN-TIME TO COMPUTE THE SUBGRAPH THAT MAXIMIZES M (.S) IN THE LARGEST BASIC BLOCK (IN SECONDS)

Benchmark Basic Preprocessing Partial Clustering Enhanced Clustering
Set-up | Enum-TO | Enum-AO Set-up | Enum-TO | Enum-AO Set-up | Enum-TO | Enum-AO
AES enc. | 0.00087 79.498 70.479 | 0.00120 21.549 30.519 | 0.00164 2.8014 3.4747
AES dec. | 0.00161 537.96 564.71 | 0.00214 120.57 150.64 | 0.00265 1.5852 1.9655
DES | 0.00689 0.24333 0.22559 | 0.00890 0.13334 0.13348 | 0.01202 0.02253 0.02288
SHA (full) | 0.00735 0 0 | 0.00735 0 0 | 0.00735 0 0
IDEA | 0.00007 0 0 | 0.00007 0 0 | 0.00007 0 0
djpeg | 0.00009 0.00025 0.00031 | 0.00012 0.00008 0.00013 | 0.00019 0.00001 0.00001
g72lencode | 0.00021 0.00005 0.00006 | 0.00024 0.00002 0.00003 | 0.00036 0.00001 0.00001
g721decode | 0.00021 0.00009 0.00013 | 0.00027 0.00003 0.00004 | 0.00036 0.00001 0.00001
rawcaudio | 0.00004 0.00001 0.00001 | 0.00005 0.00001 0.00001 | 0.00012 0.00001 0.00001
rawdaudio | 0.00004 0.00001 0.00002 | 0.00005 0.00001 0.00001 | 0.00013 0.00001 0.00001

TABLE 1V

RUN-TIME TO COMPUTE THE SUBGRAPH THAT MAXIMIZES M (\S) IN THE LARGEST BASIC BLOCK (IN SECONDS). RUN-TIME RESULTS FOR A COMBINATION OF
OUR ENUMERATION ALGORITHM AND SELECTED OPTIMIZATIONS FROM [28] ARE GIVEN IN THE ENUM-CMB COLUMN

Related Work This work
Benchmark Atasu et al. [19] | Li et al. [28] | Bron-Kerbosch [43] | ILP (CPLEX) | ILP (Ipsolve) Enum Enum-CMB
AES enc 21.550 25.209 3.6332 0.05642 0.4600 2.8031 1.1987
AES dec 120.57 134.05 3.0706 0.23837 1.6080 1.5879 0.67775
DES 0.14224 0.03354 0.03785 5.4520 171.63 0.03456 0.01533
SHA 0.00735 0.00735 0.00735 0.13555 2.8680 0.00735 0.00735
IDEA 0.00007 0.00007 0.00008 0.00906 0.02800 0.00007 0.00007
djpeg 0.00021 0.00029 0.00035 0.00854 0.03200 0.00020 0.00020
g721encode 0.00026 0.00027 0.00035 0.02472 0.10800 0.00026 0.00026
g721decode 0.00029 0.00030 0.00044 0.02475 0.11600 0.00030 0.00030
rawcaudio 0.00006 0.00006 0.00010 0.00911 0.02000 0.00005 0.00005
rawdaudio 0.00006 0.00006 0.00016 0.00709 0.01600 0.00005 0.00005

has a setup time comparable to that of the Enhanced Clustering
option. We observe that the Partial Clustering option signifi-
cantly decreases the search time with respect to Basic Prepro-
cessing, and the Enhanced Clustering option further reduces the
search time for AES encryption, AES decryption, DES, and
djpeg benchmarks. In the case of the g721encode, g721decode,
rawcaudio and rawdaudio benchmarks, the setup time domi-
nates the search time, and the Basic Preprocessing option is
usually the fastest. “Enum-AQO” improves the run-time slightly
only in the case of the Basic Preprocessing option and only for
AES encryption and DES. In the remaining cases, it increases
the run-time with respect to “Enum-TO”, owing to the addi-
tional complexity introduced in picking the next node to branch.
Table III shows that the fastest options are “Enum-TO” com-
bined with the Basic Preprocessing or the Enhanced Clustering
options.

Table IV compares the run-time of our ILP approach
(Section V) and our enumeration algorithm (Section VI) with
the run-time of the enumeration algorithms described in [19],
[28], [42]. The enumeration results of this work, and of [19]
can be derived from Table III by summing up the associated
setup and search times. Note that [19] combines “Enum-TO”
and Partial Clustering options. Our work also uses “Enum-TO”
instead of the more costly “Enum-AQO” option. However, we
choose between Basic Preprocessing and Enhanced Clus-
tering options depending on the graph characteristics. If the
number of forbidden nodes is smaller than eight after Basic
Preprocessing, our algorithm skips Enhanced Clustering, and
effectively uses the Basic Preprocessing option. Otherwise,
Enhanced Clustering is used. Such an approach gives us the
best run-time results. We have also included the run-time of the

ILP using both a commercial solver (CPLEX [43]) and a public
domain solver.2 To provide a comparison with [16], [26], we
have implemented the Bron—Kerbosch algorithm [42], which is
known as one of the fastest and most scalable maximal clique
enumeration algorithms. To provide a fair comparison between
different techniques, we keep track of only one subgraph that
maximizes M (S) in each case.

Table IV shows that [28] significantly improves the run-time
of “Enum-AQO” combined with Basic Preprocessing option
although it generates the same search tree. The improvement
is due to the optimizations in the data structures that simplify
the computation of (3). We have also integrated the same
optimization into our algorithms and observed a considerable
improvement in our run-time results. The results for the com-
bined method are given in the column labeled as “Enum-CMB”
in Table IV. Note that the results of this work for AES encryp-
tion and AES decryption benchmarks are significantly better
than both [19] and [28] thanks to the Enhanced Clustering tech-
nique introduced in this work, which reduces the exponential
complexity of enumeration. However, a combination of our
algorithm with selected optimizations from [28] provides the
best enumeration run-time results.

Table IV results indicate that enumerating maximal cliques
using the Bron—Kerbosch algorithm produces run-time results
comparable to those produced by our algorithms. Although both
techniques benefit from node clustering (Section VI.A), the En-
hanced Clustering technique presented in this work is only ap-
plicable if the search tree is constructed in the way described in
Section VI-B. As a result, the Simple Clustering option is used
in combination with Bron—Kerbosch algorithm in our experi-

2]psolve. [Online]. Available: http://sourceforge.net/projects/Ipsolve
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Fig. 9. Connectivity of forbidden nodes for the largest basic block of AES.

ments as described in [16], [17]. Note that our search tree con-
struction technique makes use of a graph (namely G”’) that is
composed of clusters of forbidden nodes only, i.e., a graph with
|V{| nodes. Our work derives the upper bound on the number of

maximal convex subgraphs as 2IV7|. However, the independent
set and the clique enumeration algorithms described in [16], [17]
rely on a graph representation that is composed of clusters of
nodes that are not forbidden, i.e., a graph with [V’ — VJﬁ| nodes
(see, for example, Fig. 4). It is well known that the number of
maximal cliques of a graph with [V" — V| nodes is bounded

by 3(V'=V;1/3) [42]. Based on the numbers given in Table II,
the upper bound derived by our work is a tighter one. On the
other hand, the two techniques appear to be equally effective in
reducing the search space.

Table IV also demonstrates that, except for AES encryption
and AES decryption, enumeration is several orders of mag-
nitude faster than the ILP-based approach. The advantage of
using enumeration is more evident when lpsolve is used instead
of CPLEX. In fact, CPLEX [43] can automatically recognize
constraint matrices that correspond to clique and independent
set problems and includes efficient solvers for these problems.
We observe that in the case of AES encryption and AES
decryption, ILP is faster than enumeration even if Ipsolve is
used. In these two cases, enumerating all possible maximal
convex subgraphs does not appear to be the most efficient way
of finding the most promising subgraph. ILP solvers usually
apply an objective guided search strategy. Branch-and-bound
and branch-and-cut type algorithms used by the ILP solvers
reduce the search space not only based on the constraints, but
also based on the definition of the metric function, without
enumerating every feasible solution.

Fig. 9 illustrates why enumeration is relatively inefficient for
AES encryption. On the largest basic block of AES encryption,
G" is composed of 33 nodes after node clustering. This graph is
composed of five disconnected groups of nodes, one of which is
composed of only a single node. The remaining four groups are
identical, and each one independently requires evaluation of 31
possible d; combinations. In total, our enumeration algorithm
evaluates 2 x (31)* ~ 2M combinations, which takes around
2.8 sec to execute. On the other hand, CPLEX finds the optimal
solution in only 0.056 s, providing us with a second and more
efficient solution alternative.

Table V provides additional comparisons between our enu-
meration algorithms and those described in [19] and [28]. Note
that the four techniques evaluated in Table V build similar search
trees, and each one is adapted to compute a single subgraph
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TABLE V
SINGLE ENUMERATION RUN-TIME FOR RIJNDAEL [38] (IN SECONDS)

function | BB id [ [Vy] V] [19] [28] | Enum | Enum-CMB

_encrypt | 4808 48 172 | 0.96 1.22 0.027 0.013

_encrypt | 15035 58 196 | 1.29 | 1.22 | 0.037 0.015

_encrypt | 20435 54 189 | 0.92 | 0.70 | 0.028 0.010
TABLE VI

ToTAL RUN TIME (IN SECONDS). CPLEX Is USED AS THE ILP SOLVER

Benchmark | # Inst. | # BBs | ILP (M>3) | ILP (M) | Enum (My)
AES enc 735 27 0.58871 0.25240 5.6109
AES dec 1011 28 1.0251 0.50534 3.2561
DES 1235 45 210.03 30.892 0.38020
SHA 1339 30 0.45155 0.32819 0.11164
IDEA 595 65 0.07450 0.04175 0.00479
djpeg 5503 957 1.0170 0.77304 0.05980
g721encode 892 85 1.2475 0.62377 0.03509
g721decode 864 79 1.3006 0.74369 0.03379
rawcaudio 119 13 0.06766 0.03284 0.00284
rawdaudio 102 11 0.06569 0.02990 0.00267

that maximizes M (S). Note also that the run-time results pre-
sented in [28] for rijndael are around 10 s, an order of magni-
tude larger than those we present under the [28] column. Such a
slowdown is mainly due to the overhead of storing all of the enu-
merated subgraphs and removing the redundant ones, which our
algorithms avoid. Our algorithms store only the best subgraph
during enumeration, and apply enumeration multiple times until
all DFG nodes are covered. Such an approach usually results
in a very small run-time overhead. Often, a few iterations are
sufficient for each basic block, and the enumeration run-time
drops significantly after the first iteration. For each of the three
basic blocks evaluated, the total run-time observed is smaller
than 0.04 s for the Enum column, taking into account all of the
iterations needed.

Finally, Table VI shows the total run-time of our sub-
graph-generation algorithm for our initial ten benchmarks. For
each benchmark, the total number of instructions and the total
number of basic blocks are also provided. The table shows the
run-time of ILP, using both M;(.S) and M>(S) as metric func-
tions, and CPLEX as the solver. We also provide the run-time of
our enumeration algorithm using M (S) as the metric function.
We observe that the use of M (S) reduces the run-time of the
ILP usually by half. However, in the case of DES, the run-time
improvement is around seven fold. Enumeration is slower than
ILP in the case of AES encryption and AES decryption, but it
is three fold faster for SHA, and about an order of magnitude
faster for the remaining seven benchmarks.
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Fig. 10. DES: effect of increasing the number of register file ports on the per-
formance for a range of area constraints.

X. DESIGN SPACE EXPLORATION RESULTS

This work assumes a single-issue baseline machine with
predication support containing 32 32-bit general-purpose regis-
ters and 32 single-bit predicate registers, based on the HPL-PD
architecture [44]. Software latency of integer multiplication
instructions is defined to be two cycles, and software latency of
the rest of the integer operations is defined to be a single cycle.
Custom instructions are synthesized to UMC’s 130 nm standard
cell library using Synopsys Design Compiler. Note that custom
instructions can be pipelined in order not to increase the cycle
time of the base processor, which is estimated to be around the
critical path delay of a 32-bit carry propagate adder.

Figs. 10 and 11 demonstrate the area and performance
tradeoffs for the DES, and IDEA benchmarks using M;(.S)
as the metric function in subgraph generation and M;3(S) as
the metric function in subgraph selection. The execution cycle
count without using custom instructions is normalized to a
hundred and the percent reduction in the execution cycles using
custom instructions is shown for a range of area constraints.
Five register file read and write port combinations are evalu-
ated: (2,1), (2,2), (4,1), (4,2), and (4,4). The combination (2,1)
stands for a register file with two read ports and a single write
port. Increasing the number of read and write ports supported
by the register file decreases the communication cost of the
custom instructions (i.e., C(.S) in the computation of Mj3(.S))
and increases the speed-up. In the case of DES, we observe
that an area equivalent to 16 ripple carry adders (RCAs) is
sufficient to achieve the highest speed-up. In the case of IDEA,
a significant reduction in the execution cycles can be achieved
at a cost of 64 RCAs, and an additional area budget of 28 RCAs
results in further reduction. Such stepwise behavior is mainly
due to a few large and frequently executed custom instructions
(i.e., subgraphs).

Fig. 12 shows the percent reduction in the execution cycles of
our ten benchmarks using custom instructions. For each bench-
mark, two columns are provided. The column on the right shows
the results found using M;(S) in subgraph generation and the
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Fig. 11. IDEA: effect of increasing the number of register file ports on the
performance for a range of area constraints.

column on the left shows the results found using M>(S) in sub-
graph generation. Note that the ILP model of Section V and
the enumeration algorithm of Section VI compute equivalent re-
sults for the same merit function definition M (S). The stacked
columns show the results computed for four register file read
and write port combinations: (2,1), (2,2), (4,2), and (4,4). At
the top of each column, the cell area for the associated custom
datapath is given in equivalent RCA area costs. For AES En-
cryption, AES Decryption, DES, g721encode, and g721decode
benchmarks, the results of M;(S) and of M>(S) differ only
marginally. The maximum difference observed for these five
benchmarks is less than one percent. For the remaining five
benchmarks, the results of M>(S) are better when the register
file ports are limited to two read ports and one write port. How-
ever, as the register file port constraints are relaxed, the results
of M;(S) and M>(S) again become indistinguishable. For a
register file with two read ports and one write port, we ob-
serve between two to seven percent difference for the SHA,
IDEA, djpeg, rawcaudio, and rawdaudio benchmarks. On the
other hand, for a register file with two read ports and two write
ports, the difference is again smaller than one percent for eight
of the benchmarks. Only in the case of rawcaudio and raw-
caudio benchmarks is around two percent difference observed.
Given a register file port constraint of (4,2) or (4,4), the differ-
ence in all cases is even less than one percent and, occasionally,
zero. For some benchmarks, such as SHA and g721encode, in
some cases, M (.S) finds better results than M (.S). We observe
that because My (S) takes into account the communication cost
C(S), it is advantageous over M (S) when the register file port
constraints are tight. However, in general, the two metric func-
tions produce similar results. In particular, if a basic block is
sufficiently large, M>(.S) almost always computes the same sub-
graph computed by M(.S), i.e., the maximum convex subgraph
of the basic block.

XI. EXAMPLES OF CUSTOM INSTRUCTIONS

Fig. 13 shows the most promising custom instruction our al-
gorithms automatically identify from the DES C code. Note
that, in this case, M7 (S) and M (.S) compute equivalent results.
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Fig. 12. Reduction in the number of execution cycles. Additional register file ports improve the results. Two columns are provided for each benchmark: the column
on the right shows the results of 1/;(S) and the column on the left shows the results of M (.S). Area costs are shown in ripple carry adders.

The software implementation fully unrolls DES round transfor-
mations within a single basic block, which results in 822 base
processor instructions. The custom instruction of Fig. 13 im-
plements the combinational logic between the memory access
layers of two consecutive DES rounds. Our algorithms automat-
ically identify 15 equivalent instances of this instruction in the
same basic block. We note that X and Y represent the DES en-
cryption state. Eight of the inputs of the custom instruction are
static lookup table (LUT) entries (SBs), and two of the inputs
(SK1, SK2) contain the DES round key. Accordingly, eight of
the outputs contain the addresses of the LUT entries that should
be fetched for the next round. We observe that the size of the
LUTs is rather small (256 bytes only). We could avoid all of the
related main memory accesses and address calculations by em-
bedding the eight LUTs in local memories. Similarly, the DES
scheduled key is only 32 bytes wide and can be embedded in
local memories, again eliminating a number of main memory
accesses. Although the custom instruction has eleven input and
eight output operands, the use of local memories reduces its
communication cost C'(S) to zero. These optimizations reduce
the size of the core basic block of DES from 822 to 22 instruc-
tions, which incorporate only five base processor instructions
and three different types of custom instructions. Our synthesis
results show that each of these custom instructions has only a
single cycle latency HW (.S). The result is a 30-fold speed-up.

Our second example is SHA. The most time-consuming part
of SHA is the compression function, which is applied 80 times
within a loop body. This loop body is often unrolled to improve
the software performance of SHA. In this work, we evaluate five
different implementations: the first implementation does not un-
roll the main loop of SHA; the next three implementations have
their loops unrolled two, five, and ten times. The fifth implemen-
tation has the SHA main loop fully unrolled. In all five cases,
our algorithms identify only a single maximal convex subgraph
within the loop body. We observe that unrolling the loop body
results in the identification of larger DFG subgraphs. Such sub-
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Fig. 13. Most promising custom instruction for DES. Although the custom in-
struction has eleven input and nine output operands, the use of local memories
reduces the communication cost C'(.S) to zero.

graphs often translate into an increase in the latency and the area
cost of custom instructions.

Table VII presents the synthesis results obtained for various
source-level operations using Synopsys Design Compiler. The
latency and area results given are normalized to the latency and
area results of a 32-bit adder. Note that M>(S) estimates the
latency HW (S) of custom instructions as the latency of the
longest path length between the source and destination operands
of the source-level DFG subgraph S using the latency coef-
ficients (h;) of Table VIIL. Recently, algorithms for pipelining
source-level DFGs have also been described [14], [17], which
use similar estimation techniques. Table VIII shows that such
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TABLE VII
RELATIVE LATENCY AND AREA COEFFICIENTS FOR VARIOUS OPERATORS
BASED ON SYNTHESIS RESULTS USING UMC’s 130-NM PROCESS

[ Operator [ Latency [ Area |
32-bit + 32-bit adder 1.000 1.000
32-bit * 32-bit multiplier 1.524 | 18.463
32-bit and 0.010 0.236
32-bit xor 0.029 0.415
32-bit shifter 0.295 1.977
32-bit shifter (constant) 0.000 0.000
32-bit comparator (eq) 0.095 0.512
32-bit comparator (geq) 0.552 0.632

TABLE VIII

ESTIMATED VERSUS SYNTHESIZED LATENCY AND AREA RESULTS FOR THE
MOST PROMISING CUSTOM INSTRUCTIONS WHILE UNROLLING SHA

[ | Est. Latency [ Synt. Latency | Est. Area | Synt. Area |
SHA 3.035 1.095 7.658 5.554
SHA (2) 6.047 2.099 13.316 8.581
SHA (5) 15.085 5.119 30.290 21.266
SHA (10) 30.149 10.393 58.580 42.405
SHA (full) 242.037 82.495 433.981 345.440

approaches can be highly inaccurate because the target hard-
ware libraries and the optimizations applied by the synthesis
tools are not taken into account. Table VIII compares the syn-
thesized latency (HWs(S)) and area results of the custom in-
structions for five SHA implementations with the estimated la-
tency (HW (S)) and area results. Note that area estimations are
computed by assuming a cumulative cost model and using the
coefficients of Table VII. A large gap between the estimations
and the synthesis results can be observed. This gap becomes
even larger as the main loop of SHA gets unrolled, and larger
DFG subgraphs are identified. Assuming that the target cycle
time is around the delay of a 32-bit adder, the difference be-
tween the estimated latency and the synthesized latency goes
up to 160 cycles for fully unrolled SHA. We conclude that es-
timating HW (S) at the source level can be highly inaccurate,
which also explains the similarity between M (S) and M(.S)
results in Fig. 12.

Note that, although the custom instruction generated for DES
example is highly reusable and has a low area overhead, the
custom instructions generated for SHA have a high area over-
head and almost no reuse potential. As illustrated in [18], it is in
fact possible to find more area-efficient custom processor con-
figurations for SHA, which also offer a reasonably good perfor-
mance, by searching for smaller and more reusable subgraphs.
Ideally, a combination of these two approaches should be evalu-
ated to identify the most promising area and performance trade-
offs for custom instruction processors.

XII. CONCLUSION

This paper presented FISH, a novel approach for improving
the efficiency of automatically generated custom instruction
processors and the associated theoretical and practical results.
FISH introduces fast custom instruction synthesis methods
based on a novel subgraph enumeration algorithm and an in-
teger linear programming formulation. FISH evaluates maximal
convex subgraphs of source-level DFGs as custom instruction
candidates. The use of multiple different merit functions for
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ranking custom instruction candidates is enabled within a
design space exploration framework. The run-time results show
that the search space reduction techniques described in this
work result in the fastest enumeration algorithms among the
state-of-the-art maximal convex subgraph enumeration algo-
rithms, including those based on maximal clique enumeration.
In addition, FISH derives an upper bound on the number of
maximal convex subgraphs in a DFG and on the complexity of
enumeration that is tighter than the respective bound known for
maximal clique enumeration.

In most of the cases, enumeration is faster than ILP. How-
ever, in those cases where enumeration is relatively inefficient,
ILP provides a fast alternative. Our experiments show that in
most of the cases a simple merit function, which estimates only
the software costs of the subgraphs, can be as good as a more
complex merit function that also estimates the hardware exe-
cution latencies and the communication costs. In particular, in
large basic blocks, the two merit functions compute the same
subgraphs most of the time. We show that, for DES, combining
our subgraph generation and selection approach with a simple
postprocessing step results in a 30-fold speed-up with respect to
a single-issue base processor.

Current and future work includes: 1) developing better
estimators for critical path computation that take into account
arithmetic optimizations, word-length optimizations, target
hardware libraries, and wire delays; 2) exploring data-layout
and loop transformations and applying our techniques on
larger code segments beyond predicated basic blocks; and 3)
enhancing our tool chain to implement resource-constrained
scheduling algorithms for pipelining register file accesses [14],
[17]. Possible further extensions include supporting design de-
velopment with power and energy constraints [45], integrating
our design flow into synthesis tools for heterogeneous multi-
processor SoC devices [46], [47] and combining our algorithms
with fast synthesis techniques [48], [49] to enable dynamic
hardware/software partitioning and run-time reconfiguration.
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