
Constant Power Reconfigurable Computing
Adrien Le Masle 1, Gary C. T. Chow 2, Wayne Luk 3

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, UK
{1 al1108,2 cchow,3 wl}@doc.ic.ac.uk

Abstract—We present Constant Power Reconfigurable
Computing, a general and device-independent framework
based on a closed-loop control system used to keep the power
consumption constant for any reconfigurable computing design
targeting FPGA implementation. We develop an on-chip power
consumer, an on-chip power monitor and a proportional-
integral-derivative controller with circuit primitives available in
most commercial FPGAs. We demonstrate the effectiveness of the
proposed methodology on a square-and-multiply exponentiation
circuit implemented on a Spartan-6 LX45 FPGA board. By
reducing the peak autocorrelation values by a factor of 2.7
on average, the proposed Constant Power Reconfigurable
Computing approach decreases the information leaked by the
power consumption of this system with only 26% area overhead
and 28% power overhead.

I. INTRODUCTION

Encryption algorithms are designed to make brute-force
attacks or exhaustive key search computationally infeasible
and to resist cryptanalysis based on theoretical weaknesses
of the algorithm. However, the physical implementation of an
encryption algorithms can leak information and create security
flaws. Attacks exploiting these physical flaws are called side
channel attacks.

Since their initial publication [1], a relevant type of side
channel attacks called power attacks have been extensively
studied. Power attacks are successfully demonstrated on many
common encryption methods, including private key encryption
methods such as DES [2] and AES [3], finite field based
public key methods such as RSA [4] and Diffie-Hellman, and
elliptic curve based public key encryption [5]. Theoretically,
power attacks can be used to attack any cryptosystem with
a key-dependent power consumption. They are of two types.
Simple power analysis (SPA) gains direct information about
the encryption key by looking at a single power trace. Differen-
tial power analysis (DPA) extracts information from multiple
power traces using statistical methods. The keys are usually
broken when enough power traces have been collected.

Field Programmable Gate Arrays (FPGAs) are suitable plat-
forms for implementing cryptographic algorithms in particular,
and computationally demanding applications in general – this
field is known as reconfigurable computing. First, the structure
of FPGAs makes them particularly fit for pipelined applica-
tions, which is the case for most of the basic cryptographic
operations. Second, FPGAs can be used to embed security
into low power environments keeping very good performance.
Finally, a pure hardware implementation of a cryptographic

algorithm is inherently less vulnerable than its software coun-
terparts which are usually run in a multi-tasking operating
system. However, without adopting suitable countermeasures,
an FPGA implementation is as vulnerable to power attacks as
its software counterparts running on a processor. As a matter
of fact, the transistors switching inside the device can leak
information about the operations performed.

Two different solutions exist in order to make an FPGA
implementation resistant to power attacks. The first solution
involves modifying the hardware implementation of the algo-
rithm so that it becomes harder for an attacker to extract useful
information out of its power trace. This solution is application-
dependent and is often implemented at the expense of slowing
down the system. The second solution involves making the
FPGA itself resistant to attacks. This is often achieved through
adapting placement and routing methods which can result in
consuming larger area.

In this paper, we present a novel framework called Constant
Power Reconfigurable Computing. Our main contributions are:

• A general application-independent and device-
independent framework based on a closed-loop control
system used to keep the power consumption of any
FPGA implementation constant

• An on-chip power monitor based on a network of uni-
formly distributed ring oscillators

• An on-chip power consumer using a network of long
interconnects driven by a switching signal

• A control circuit based on a proportional-integral-
derivative controller with auto-tuning capabilities

• An evaluation of our framework on the power regulation
of a square-and-multiply exponentiation circuit imple-
mented on a modified Spartan-6 FPGA board

Our results on the exponentiation circuit show that using
our framework decreases the information leaked by the power
consumption of the system. The peak autocorrelation values
of the system’s power consumption are reduced by a factor
of 2.7 on average while only using 4500 extra lookup tables,
that is 26% of the area taken by the exponentiation circuit.
For this application, the average power overhead due to our
framework is 28%.

The rest of the paper is organised as follows. Section II
explains the background relevant to our work. In section III,
we present our framework and the realisation of each of its
components for FPGAs. Section IV evaluates our framework
using an exponentiation circuit as a case study. Finally, section
V concludes the paper.

II. BACKGROUND

This section presents the background relevant to our work.
We first discuss simple and differential power analyses and dif-
ferent countermeasures. Then we present the standard model
for measuring the power consumption of an FPGA.

A. Simple and differential power analyses

Power analysis is based on the fact that the energy consumed
by a hardware module depends on the switching activity of its
transistors. Hence, by measuring the power consumed by a
chip performing a given cryptographic operation, an attacker
can recover information about the data being processed and
the secret keys used.

Simple power analysis (SPA) proceeds by direct obser-
vation of a power trace. An implementation whose power
consumption is different depending on which bit of the secret
key is being processed is vulnerable to SPA. This is for
instance the case of some implementations of the square-and-
multiply modular exponentiation algorithm used in RSA or in
the Diffie-Hellman key exchange protocol. The power trace
of an unsecured implementation of this algorithm, in which
squaring and multiplication operations have significantly dif-
ferent power traces, is presented in [6]. In this example,
the private key can be recovered easily with only a single
power measurement. Scalar multiplication in elliptic curve
cryptography (ECC) is also vulnerable to SPA. As a matter of
fact, point doubling or point addition operations are performed,
depending on the value of the key.

Differential power analysis (DPA) uses statistical properties
of multiple power traces. This method is introduced in [1]
where a DPA on a smartcard implementation of the DES
algorithm is successfully performed. DPA relies on the cor-
relation between the power consumption of a module and the
intermediate data it is computing at a given time. A few bits of
the key are determined by considering intermediates that only
depend on these bits. For every value of the bits examined, all
the possible computational intermediates are enumerated. The
sub-key bits are then recovered by examining the correlation
between the computational intermediates and the power trace.
Then the same method is used with different intermediates to
recover the other key bits.

B. Countermeasures

In designing a secured hardware-based cryptosystem one
needs to incorporate protections against SPA and DPA. These
countermeasures are often application-dependent. For exam-
ple, power attacks against the modular exponentiation algo-
rithm can be made harder by using the Montgomery powering
ladder [7] instead of the square-multiply algorithm. Masking is
another application-dependent countermeasure which consists
in obscuring intermediate values of the algorithm with random
numbers. This technique has been successfully applied to
several algorithms [8], [9] but usually leads to area and
performance overheads.

Several general countermeasures also exist. When the at-
tacker does not have physical access to the device, filtering

the power supply or introducing noise into the measurements
are two possible solutions. Another solution is to introduce
randomness into the system by using random pre-charges [3].
However, this solution comes at the expense of a reduction in
throughput. The mapping, placement and routing algorithms
can also be made security-aware. In [10], [11], wave dynamic
differential logic (WDDL) and symmetrical routing are used to
reduce the power consumption fluctuations. These techniques
require specific placement and routing algorithms and can lead
to up to 3 times area overhead. Finally, random dynamic volt-
age and frequency switching have also been proposed as power
attack contermeasures [12], [13]. However, these techniques
introduce a performance overhead and for current commercial
FPGAs, voltage switching would need to be implemented off-
chip, compromising the security of the system. No actual
hardware implementation of these two last solutions have been
presented.

C. FPGA power measurement model

Figure 1 shows a simplified model of the common setting
used to measure the power consumption of an FPGA chip as
presented in [5] and [14]. A shunt resistor REXT is placed on
the core logic power supply rail VCCINT in series with the
FPGA. RNET represents the internal resistance of the power
distribution network inside the FPGA. I is the current drain
due to circuit switching. The power consumed by the FPGA
is given by the following equations:

P = VINT I = (VCCINT − VTOT)I (1)
VTOT = VEXT + VNET (2)
RTOT = REXT +RNET (3)

Since the voltage drop due to the shunt resistors VTOT is
usually small compared with VCCINT , the power consumption
can be approximated by the following equations:

P ≈ VCCINT I (4)
I = VEXT /REXT (5)
I = VTOT /RTOT

= (VCCINT − VINT)/RTOT (6)

As shown in the equations, the power consumption of the
FPGA is proportional to the voltage drop across the resistors.
Using equation 5, an attacker with physical access to the
voltage supply pin can obtain a power trace by measuring
the voltage drop VEXT . In our constant power framework,
we monitor the FPGA’s power consumption by measuring the
internal voltage VINT as shown in equation 6. The detailed
working principles of the power monitor are explained in
section III-A.

III. RECONFIGURABLE COMPUTING WITH CONSTANT
POWER

Our key idea for constant power reconfigurable computing is
summarised in Fig. 2. Our goal is to keep the power constant at
a certain value (the setpoint) higher than the maximum power
consumed by the user logic. This is illustrated in Fig. 3. Our

Controller

Power

Monitor

+

Power

Consumer

User

Logic
-

setpoint

measure power

control

errorΣ

Fig. 2. Constant-power framework

REXT

RNET

VCCINT

I

VNET

VEXT

VINT

current drain

due to circuit

switching

FPGA

Fig. 1. FPGA power measurement simplified model

framework needs to be device-independent and application-
independent. It is based on the principles for a closed-loop
control system.
The three main components of the control system together
with their requirements are presented below:

Power monitor. The power monitor measures the on-chip
power of the FPGA. Its input is a value correlated to
the on-chip power consumption, such as the average
voltage across the power network of the FPGA. Its
output is a value proportional to the input that can be
easily interpreted by the controller. The power monitor
should provide precise and uniform power measurement
across the chip. Its resolution should be high enough to
detect any small variation of power that can be measured
externally.

Power consumer. The power consumer is used to
compensate the on-chip power consumption. The power
amplitude of the consumer should be higher than the
power dynamic range of the user logic (as defined
in Fig. 3) so that the power of the system can be
kept constant. Its resolution should be high enough

time

constant power trace (setpoint)

data-dependant power

trace

power overhead

power

amplitude

dynamic range

Fig. 3. Power control principle

to compensate for the smallest variation of power
measurable by the power monitor.

Controller. The controller manages the power consumer.
Its goal is to make the measurement given by the power
monitor match the setpoint. In order to quickly com-
pensate for any power variation of the user logic, the
controller needs to be chosen and tuned so that it has
good regulation properties. In particular, the controller’s
response to a sudden power change should be fast enough
to hide the power trace of the operations performed by
the user logic.

The following sections describe our implementations of the
power monitor, the power consumer, and the controller. These
three modules are self-contained into the FPGA fabric. This
makes our framework resistant to attacks which would consist
in removing or replacing some of the on-board power modules
in order to bypass the power regulation process.

A. Power Monitor

We use ring oscillators (ROs) to monitor the power con-
sumption of the FPGA. Since the circuit switching speed of
an FPGA is correlated with its supply voltage VINT , the
oscillation frequency of a ring oscillator is affected by the
supply voltage [15]. According to equation 6, we can therefore
measure the FPGA’s power consumption by tracking the

oscillation frequencies of ring oscillators implemented inside
the FPGA. If the voltage variation in the power supply rail
VINT is small, a linear approximation can be used to model
the relationship between power and oscillation frequency fR:

fR ≈ k1VINT + f0 ≈ −k2P + f0 (7)

where k1, k2 and f0 are positive constants, and P is the power
consumption of the FPGA. One of the major challenges of
using ring oscillator to measure FPGA’s power consumption
is the trade-off between resolution and response time. In order
to obtain a sufficient resolution, we need to accumulate enough
oscillations from the ring oscillators. This implies running the
ring oscillator for a long period of time, which increases the
measurement period. However, increasing the measurement
period decreases the number of power measurements that can
be taken per second and therefore reduces the response time
of the controller. To solve this problem, we evenly distribute a
network of ring oscillators among the FPGA. This is shown in
Fig. 4. When a new measurement starts all the ring oscillators
and the counters are reset. Then the signal from each ring
oscillator is accumulated locally by a counter during a fixed
amount of time. The outputs of all the counters are summed
together and used as the power measurement. The uniformly
distributed ring oscillators architecture allows much better
resolution with a shorter measurement period at the expense
of some area overhead. It also provides a more consistent
measurement because the effect of voltage variations within
the FPGA is averaged. In our Spartan 6 example, each ring
oscillator is implemented in a single configurable logic block
(CLB). By using hard macros, we make sure that all the ring
oscillators have identical placements and routings within the
CLB. This ensures that all the ring oscillators have similar
oscillation frequencies and responses to voltage variations.

Using ring oscillators to monitor the power has three main
advantages:

• Ring oscillators can be built using primitives that are
available to all commercial FPGAs. Hence no FPGA
architectural change is required.

• They are relatively small and can thus be easily uniformly
distributed among the chip for measuring average power
consumption.

• The ring oscillators’ frequency scales with the advances
of fabrication technology. When the clock frequency of
the user logic is increased, a shorter controller’s response
time is required. Given that the oscillators’ frequency is
improved proportionally to the clock frequency, the same
resolution can be obtained with the same number of ring
oscillators.

B. Power Consumer

Figure 5 shows the architecture of our power consumer.
It consists of two major components: the power consuming
wires and the control circuit. A power consuming wire is
a routing interconnect that spans edge to edge vertically or

Counter
clk

.

.

.

.

.

.

.

.

Adder

tree

.

.

.

en

measure

RO

Counter
clk

RO

rst

Fig. 4. Power monitor

high-frequency

clock signal

power consuming

long wires with

buffers

control signals

 from decoder

Fig. 5. Power consumer

horizontally across the FPGA. In modern commercial FPGAs
all these long routing interconnects are buffered many times to
reduce the logic delay. When a periodic switching signal such
as a clock signal is fed into one of these long wires, current is
drawn at each buffer in order to drive the parasitic capacitance
along the wire. Thus significant power is drawn evenly along
the wire being activated. We distribute the power consuming
wires evenly across the FPGA. We control the number of
activated wires using a decoder and an array of AND gates.
The hardware descriptions and constraints to guide the uniform
placement of the wires are generated automatically by a script.
A multiplexer is used at the clock input of the power consumer
array to choose between several clock signals with different
frequencies. The power consumed by the power consumer can
be calculated as follows:

Pconsumer = NCV 2
INT f (8)

where N is the number of activated wires, C is the parasitic
capacitance of each wire, VINT is the supply voltage of the
FPGA’s core logic and f is the clock frequency of the power
consumer.

C. Controller

We use a proportional-integral-derivative (PID) controller
to regulate our system. The PID controller is a commonly
used feedback controller and, if well-tuned, has very good

regulation and response properties. The controller module has
two different modes:

Configuration mode. The following parameters of the
system are determined and set up: the power setpoint,
the optimal clock frequency of the power consumer, the
optimal proportional, integral and derivative constants of
the PID.

Regulation mode. The PID controller is regulating the
power consumption of the FPGA.

When the FPGA is powered on, the controller begins
with the configuration mode. The controller configurations
sequence is shown in Fig. 6. First, the user logic is operated
during a certain amount of time during which the minimum
and maximum power values are obtained. This determines
the user logic’s power amplitude as shown in Fig. 3. The
configuration run is not protected against power attacks. Hence
for cryptographic applications, a key different from the secret
key should be used. Then the setpoint is set to the maximum
power value plus a given margin. This margin takes into
account a possible increase in maximum power when using
the actual secret key. The user logic’s power dynamic range
is calculated as the difference between the setpoint and the
minimum power value. It is shown in Fig. 3 and corresponds
to the maximum power that needs to be generated by the
power consumer. Then the power consumer clock frequency
is sequentially tuned so that the power consumer’s amplitude
is greater than but as close as possible to the user logic’s
power dynamic range. If the power consumer’s amplitude is
smaller than the user logic’s power dynamic range, the control
system might not be able compensate the power consumption.
However, if the power consumer’s amplitude is much greater
than the user logic’s power dynamic range, the control system
is likely to experience quantization effects which would reduce
its effectiveness. Finally, the PID controller parameters are
determined using the relay feedback auto-tuning method.

The relay feedback auto-tuning method is commonly used
to find the optimal parameters of a PID controller. We make
the output of the system oscillate by alternating the control
command between its maximum value and its minimum value.
This corresponds to replacing the PID controller with a relay.
The amplitude and the period of the oscillations are determined
and the PID coefficients are calculated using the empirical
constants given by the Ziegler-Nichols Frequency Domain
(ZNFD) method [16], [17].

The principles of the PID auto-tuning method applied to
our system are shown in Fig. 7. First the power consumer
is set to half its maximum control value Cmax/2 in order to
determine the nominal bias value for the power monitor around
which the system would oscillate. Then the control command
is set to 0. In order to maintain the oscillations, the power
consumer control value is set to Cmax when the power monitor
measurement value becomes greater than the nominal bias
value. It is set back to 0 when the power monitor measurement
value becomes less than the nominal bias value. We wait for
the oscillations to stabilise and obtain the amplitude A and

Find min/max

user logic power

Compute power

setpoint

Compute user

logic power

dynamic range

Find optimal

power consumer

frequency

Auto-tune PID

Fig. 6. Controller configuration sequence

the period T of the oscillations. We stop the PID auto-tuning
procedure after a few hundred clock cycles.
The ultimate gain can be computed as follows:

Ku =
4h

πA
(9)

where h is the control action (amplitude of the command) and
A is the amplitude of the response. The ultimate period Tu is
equal to the oscillation period T . Using the notations of Fig. 7,
we deduce:

Ku =
2Cmax

πA
(10)

Tu = T (11)

The proportional, integral and derivative constants of the PID
controller are:

Kp = K Ki =
K

Ti
Kd = KTd (12)

where according to the ZNFD method for PID controllers [16]:

K = 0.6Ku Ti = 0.5Tu Td = 0.125Tu (13)

Finally, the three PID constants used in the discrete control
algorithm are defined by the following equations:

K0 = Kp +Ki +Kd (14)
K1 = −Kp − 2Kd (15)
K2 = Kd (16)

These equations are obtained by discretization of the PID
controller’s equation [17].

After the configuration of the system is finished, the con-
troller switches to regulation mode. At that time the user
logic operations can be performed securely. The PID control

consumer

control

time

time

power

monitor

value

Cmax

Cmax/2

0

0

nominal

bias value

A

T

h

Fig. 7. PID auto-tuning method

algorithm is shown in Alg. 1. Each time a new value from
the power monitor is received, the PID control command is
computed and the power consumer control value is updated
accordingly.

Algorithm 1: PID control algorithm
Input: Cmax: maximum power consumer control

command
setpoint: setpoint
K0, K1, K2: PID controller constants

e = 0, e1 = 0, e2 = 0, C = 01

while PIDControllerRunning() do2

val = GetPowerMonitorV alue()3

e2 = e1, e1 = e4

e = setpoint− val5

delta = K0.e+K1.e1 +K2.e26

C = C + delta7

if C > Cmax then C = Cmax8

if C < 0 then C = 09

SetPowerConsumerControl(C)10

end11

IV. RESULTS

A. Experimental Setting

Our experimental setting is based on a modified Pico E-
101 FPGA board. The Pico E-101 is a small 5x7 cm board
embedding a Spartan-6 LX45 FPGA. The modified Pico E-101
board is shown in Fig. 8. It has two main power rails: a 1.2V
rail for the FPGA chip and a 3.3V rail for IOs. It is powered in

5V through a USB port. Originally, two switching regulators
are used to convert the 5V supply voltage to 1.2V and 3.3V
respectively. However, the switching of these regulators creates
noise in the power trace.

To address this issue, we remove the 3.3V switching
regulator and replace it with a low-noise 3.3V circuit. Our
low-noise circuit consists of a low dropout (LDO) regulator
together with two resistors used to adjust the output of the
regulator. The modification of the 1.2V power supply rail is
more complicated as we want to add some power measurement
features. The 1.2V switching regulator and the output filtering
capacitors are removed and replaced by the same type of
low-noise regulation circuit used on the 3.3V rail. For power
measurement, a 1-ohm shunt resistor is inserted between the
output of the LDO regulator and the 1.2V power rail. The
voltage drop in the shunt resistor is measured through an SMA
socket connected in parallel with the shunt resistor. The use
of such a socket greatly reduces the measurement noise. To
ensure that the voltage across the resistor can be measured
without differential probes, the FPGA board is powered by
a floating 5V power supply. In order to compensate for the
average voltage drop in the shunt resistor which depends on
the application, the 1.2V regulator output can be adjusted with
a variable resistor.

Three main characteristics of our modification ensure low
measurement noise by reducing the parasitic capacitance and
resistance of the setting: the small size of the board used, the
SMA socket used to measure the voltage drop across the shunt
resistor, and careful and direct on-board soldering of all the
components without using long wires.

The peak-to-peak noise obtained at the shunt resistor of our
modified board for a modular exponentiation circuit in idle
state is 4.2 mV. This is as low as the measurement noise of
the side-channel attack SASEBO-GII board [14].

For each experiment, the design is loaded into the FPGA
through JTAG. Then the JTAG cable is disconnected from the
board so that the ground is left floating, and the measurements
are started. We use a Tektronix MSO 2024 oscilloscope for
all our measurements. This oscilloscope has a 200 MHz
bandwidth and a 1 GHz sampling rate.

B. Study Case: Modular Exponentiation

As a proof of concept, we consider a hardware implemen-
tation of 512-bit modular exponentiation using the square-
and-multiply algorithm. The modular exponentiation module
is based on the Montgomery multiplier presented in [18].
The square and multiply operations are both performed by
the Montgomery multiplier, which makes them hardly distin-
guishable. To get a better reading of the power consumption,
we implement two 512-bit modular exponentiation cores on
our Spartan-6 LX45 FPGA and set the clock frequency to 5
MHz. This low frequency also enables a reasonable routing
time of our very congested design due to the small size of the
FPGA. Both cores are given the same set of inputs in parallel.
The three components of our framework are implemented
alongside the two exponentiation cores. For this experiment,

SMA connector

Shunt resistor

1.2V regulation3.3V regulation

5V power connector

Spartan-6 LX45

JTAG port

Fig. 8. Modified Pico E-101 FPGA board

the power monitor uses a grid of 144 ring oscillators. The ring
oscillators are oscillating at around 350 MHz and the power
monitor reading is updated every 2 clock cycles. The power
consumer consists of 231 vertical and horizontal interconnects.
Our implementation of the framework only takes 4500 extra
lookup tables, that is 26% of the area taken by the exponenti-
ation circuit. To reduce the effects of noise, we perform each
measurement 10 times and report the average power trace.

Fig. 9 shows the average modular exponentiation power
trace with and without power control. The bottom trace is
offset by -60 mV. For both traces the exponentiation is
triggered at time t=0. Without power control (top trace), as
soon as the exponentiation starts the power raises quickly.
We can clearly see a repeating pattern every 100 µs. This
approximately corresponds to 512 clock cycles, which is the
time to perform one Montgomery multiplication. As planned,
we cannot easily differentiate a multiplication from a squaring
operation. However, an attacker can easily see that the ex-
ponentiation has been started and differentiate between each
modular multiplication operation. This makes an attack such
as a chosen-message power attack [19] possible. With power
control (bottom trace), the average power consumption before
and after starting the exponentiation are almost the same.
The power is higher than the maximum power consumed by
the exponentiator without power control. The average power
overhead due to power control is 28%. Even if still possible, it
is harder to see that an exponentiation has been started and to
distinguish between the different multiplications in the power
trace. Note that the large power spike seen at t=0 is created
by the IO switching of the FPGA pin used to trigger our
oscilloscope. This phenomenon would not happen in a real
system.

To quantify the security improvement due to the use of our
constant-power framework, we compute the autocorrelation of

 180

 185

 190

 195

 200

 205

-0.2 0 0.2 0.4 0.6 0.8

V
o

lt
a

g
e

 (
m

V
)

Time (ms)

Fig. 9. Modular exponentiation power traces (top trace: without power
control, bottom trace: with power control)

a longer power trace with and without power control. The
results are shown in Fig. 10. In both cases, we can distinguish
correlation spikes corresponding to the repeating pattern of
modular multiplications. However, by switching on the power
control the correlation spikes are reduced by a factor of 2.7
on average. Hence less information about the exponentiation
operation is leaked, and therefore it would be more difficult
to extract the secret key.

The autocorrelation could be reduced further by adding a
source of random noise to our system. This could also prevent
the power fluctuation information to be identified in shorter
time frame. One solution would be to randomly choose the
setpoint in a given for each measurement period instead of
keeping it constant. The PID controller could also be improved
by integrating filtering, setpoint weighting and anti-windup
algorithms in its hardware implementation [16].

Our framework would still work at a frequency higher
than 5 MHz. For the power monitor to keep a high enough
resolution, we just need to increase the number of ring oscil-
lators. This would not pose a problem on FPGAs with much
more area available than the small Spartan-6 used. In order to
run at 50 MHz with the same autocorrelation properties, we
estimate that our framework would need 1440 ring oscillators
and would take around 35 000 LUTs. The area overhead is
less than linear in that case because each counter counts less
oscillations and their bit-widths can therefore be reduced. On
the Spartan 6 XC6SLX150 FPGA this would represent a 60%
area overhead, assuming that the remaining area is taken by
exponentiation cores.

V. CONCLUSION AND FUTURE WORK

This paper presents Constant Power Reconfigurable Com-
puting, a general and device-independent framework based
on a closed-loop control system that can be used to keep
the power consumption constant for reconfigurable comput-
ing implementations. We demonstrate a realisation of each
component of this framework in current commercial FPGA
technology. We describe a modification of the Pico E-101

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

N
o

rm
a

lis
e

d
 a

u
to

c
o

rr
e

la
ti
o

n

Lag

(a) Without power control

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

N
o

rm
a

lis
e

d
 a

u
to

c
o

rr
e

la
ti
o

n

Lag

(b) With power control

Fig. 10. Autocorrelation of the modular exponentiation power traces

FPGA board that makes it suitable for side-channel attacks
with measurement noise as low as what specially designed
boards can reach. Our framework is evaluated on an imple-
mentation of the square-and-multiply exponentiation algorithm
on our board. Our constant power framework decreases the
information leaked by the power consumption of the system.
The peak autocorrelation values of the system’s power con-
sumption are reduced by a factor of 2.7 on average with only
26% area overhead and 28% power overhead.

These results are our first experimental results on Con-
stant Power Reconfigurable Computing. Many aspects of this
framework still need to be explored. Current and future
work includes adding a random component to the setpoint
of the control system to improve the security properties of
the framework, integrating filtering, setpoint weighting and
anti-windup algorithms to the PID controller, investigating
other possible feedback techniques, evaluating our framework
(security/area/power/speed trade-offs) based on a wide range
of applications and at higher frequencies, assessing more
precisely its effectiveness of protecting a system against single
and differential power attacks, and evaluating if the proposed
countermeasure is tolerant to electromagnetic analysis.

ACKNOWLEDGMENTS

The support of BlueRISC, Inc, the FP7 EPiCS (Engineering
Proprioception in Computing Systems) Project, the UK EP-
SRC (Engineering and Physical Sciences Research Council),
HiPEAC, and Xilinx is gratefully acknowledged.

REFERENCES

[1] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology CRYPTO 99, 1999, pp. 789–789.

[2] F.-X. Standaert, S. B. Ors, J.-J. Quisquater, and B. Preneel, “Power
analysis attacks against FPGA implementations of the DES,” in FPL
’04, 2004, pp. 84–94.

[3] F. Standaert, F. Mace, E. Peeters, and J. Quisquater, “Updates on the
security of FPGAs against power analysis attacks,” in Reconfigurable
Computing: Architectures and Applications, 2006, pp. 335–346.

[4] T. Messerges, E. Dabbish, and R. Sloan, “Power analysis attacks of
modular exponentiation in smartcards,” in CHES 1999, 1999, pp. 724–
724.

[5] S. Ors, E. Oswald, and B. Preneel, “Power-analysis attacks on an FPGA:
First experimental results,” in CHES 2003, 2003, pp. 35–50.

[6] P. Rohatgi, “Protecting FPGAs from power analy-
sis,” 2010, http://www.eetimes.com/design/programmable-
logic/4199399/Protecting-FPGAs-from-power-analysis.

[7] M. Joye and S.-M. Yen, “The Montgomery powering ladder,” in CHES
2002, 2003, pp. 1–11.

[8] F. Regazzoni, Y. Wang, and F.-X. Standaert, “FPGA implementations
of the AES masked against power analysis attacks,” in Proceedings of
COSADE 2011, 2011, pp. 56–66.

[9] C. Rebeiro and D. Mukhpodhyay, “Power attack resistant efficient FPGA
architecture for Karatsuba multiplier,” in Proceedings of the 21st Int.
Conf. on VLSI Design, ser. VLSID ’08, 2008, pp. 706–711.

[10] K. Tiri and I. Verbauwhede, “A logic level design methodology for a
secure DPA resistant ASIC or FPGA implementation,” in DATE ’04,
2004.

[11] P. Yu and P. Schaumont, “Secure FPGA circuits using controlled
placement and routing,” in CODES+ISSS ’07, 2007, pp. 45–50.

[12] S. Yang, W. Wolf, N. Vijaykrishnan, D. Serpanos, and Y. Xie, “Power
attack resistant cryptosystem design: a dynamic voltage and frequency
switching approach,” in DATE ’04, 2005, pp. 64–69.

[13] K. Baddam and M. Zwolinski, “Evaluation of dynamic voltage and
frequency scaling as a differential power analysis countermeasure,” in
20th Int. Conf. on VLSI Design, 2007, pp. 854 –862.

[14] T. Katashita, A. Satoh, T. Sugawara, N. Homma, and T. Aoki, “Develop-
ment of side-channel attack standard evaluation environment,” in Euro.
Conf. on Circuit Theory and Design, 2009, pp. 403 –408.

[15] J. Franco, E. Boemo, E. Castillo, and L. Parrilla, “Ring oscillators
as thermal sensors in FPGAs: Experiments in low voltage,” in Pro-
grammable Logic Conference (SPL), VI Southern, 2010, pp. 133 –137.

[16] K. J. Astrom and R. M. Murray, Feedback Systems: An Introduction
for Scientists and Engineers, Princeton University Press, pp. 293-313
(2008).

[17] V. Toochinda, “Digital PID controllers,” 2009,
http://www.dewinz.com/docs/ecs/pid.pdf.

[18] A. Le Masle, W. Luk, J. Eldredge, and K. Carver, “Parametric encryption
hardware design,” in 6th Inter. Symp. on Reconf. Computing, 2010, pp.
68–79.

[19] N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and A. Samir, “Compara-
tive power analysis of modular exponentiation algorithms,” IEEE Trans.
on Computers, vol. 59, no. 6, pp. 795–807, june 2010.

