
Automating Formal Verification of

Customized Soft–Processors

Kong Woei Susanto

Department of Computing

Imperial College London

Email: susanto@computer.org

Wayne Luk

Department of Computing

Imperial College London

Email: wl@imperial.ac.uk

Abstract—Soft–processors, instruction processors implemented
in FPGA technology, are often customizable to support domain-
specific optimization. However the correctness of customized soft–
processors, executing the associated machine code, is often not
obvious. This paper proposes a novel approach for verifying the
implementation of an application program for a customized soft–
processor, based on the ACL2 theorem prover. The correctness
proof involves verifying a machine code program executing on
the target hardware device against a high-level specification of
the application program. We illustrate the proposed approach
with several case studies, showing how processors with different
custom instructions and with different number of pipelined stages
can be automatically produced and verified; such processors have
a range of trade-offs in performance, size, power and energy
consumption to meet different requirements.

I. INTRODUCTION

As chip fabrication costs continue to rise, FPGA technology

becomes increasingly popular. Advanced FPGAs can now sup-

port complex electronic designs; implementing FPGA-based

soft–processors is a promising option, since: (a) they can sup-

port execution of existing machine code programs with a large

code base, (b) existing software development tools can be used

for generating and debugging soft–processor machine code,

(c) there is no need for place-and-route, which takes longer

time as FPGAs become more complex, (d) soft–processor

architecture can be customized to one or more machine code

programs, to exploit information about the application or the

implementation platform; for instance, a soft–processor can

be simplified if it does not need to execute all the instructions

in a given instruction set, and frequently-occurred instruction

fragments can be made into a single custom instruction to

avoid multiple instruction fetch and decode.

Because of the above benefits, FPGA vendors have devel-

oped soft–processors such as the PicoBlaze and MicroBlaze

from Xilinx and the Nios from Altera. Soft–processors are

widely used, particularly in embedded systems [18]; they have

also been an active topic of research [6],[8],[12],[19],[20].

However, while there has been previous work on verifying

instruction processors [9] and reconfigurable cores [17], we

are not aware of prior work on verification of soft–processors.

The verification of systems involving both hardware and

software has been recognised to be a difficult problem. In-

deed one of the grand challenges from the formal methods

community is to develop techniques and methodologies for

mechanically verify an embedded system application [13]. One

possible solution is to verify the correctness of an application

program along with the hardware on which the program is

executed [4]. The verification is targeted towards a system with

both hardware and software, rather than performing separate

verifications for software and hardware.

This paper proposes an approach to verifying the correct

execution of a machine code program for a customized soft–

processor. The proposed approach involves modelling the exe-

cution of a soft–processor based on operational semantics [16],

which provides a formalism for reasoning about the state-

transition behaviour of the processor when executing a given

machine code program. Given that the processor is initialized

properly, the verification would show that, upon completion

of the machine code program, the final state of the processor

would meet the functional specification of the application

program. Our research includes developing design templates

for soft–processors in Verilog, and supporting various ways of

customizing soft–processors for a Processor Generator.

This paper presents two forms of soft–processors cus-

tomization: adoption of custom instructions, and customizable

number of processor pipeline stages. We have developed a

prototype of our design and verification system based on the

ACL2 theorem prover [10]. Our approach is complementary

to previous work [7] on processor verification—we do not

focus on providing a complete hardware model, but rather

on verifying that the execution of a specific machine code

program on a specific processor meets the specification of that

program.

The rest of the paper is organized as follows. Section II

discusses related work. Section III covers our design and

verification approach. Section IV presents our soft–processor

description. Section V describes the formalism for capturing

soft–processors in the ACL2 theorem prover. Section VI

contains a selection of case studies illustrating our approach.

Finally, Section VII provides a summary and future work.

II. RELATED WORK

For almost a decade, Moore has proposed a grand challenge

in embedded system verification [13]. However, few has

responded to his proposal. Many researchers choose to focus

978-1-4577-1740-6/11/$26.00 c© 2011 IEEE

on verifying either complex hardware [9] or complex software

systems [11].

Our work is inspired by the work of Chadpadhyay [5], Ray

[16], and Fox [7]. Chadpadhyay et al. developed a design

environment to model a wide range of processor architectures

and to generate hardware for custom instructions. We extend

this idea by developing an approach for formal verification that

supports customization of soft–processors. Ray et al. described

three strategies for program verification. We adapt one of the

strategies for verifying programs targeting customized soft–

processors. Fox et al. proposed a de-compilation procedure

to verifying programs for an ARM processor. This procedure

involves developing theorems about specific instructions in

the program. In contrast, we adopt a generic approach by

developing, where possible, techniques that can verify a variety

of processors.

III. DESIGN AND VERIFICATION APPROACH

This section describes our proposed design and verification

approach. The design and verification flow is shown in Fig. 1.

Processor

Generator

Program

Compiler

Machine Code

Formal Model

Soft−Processor
+

Machine Code

Specification

(M)

HDL

Soft−Processor
+

Machine Code

(S + M)

Verification

(fP)

(fS + fM)

(P)

Fig. 1.

Design and Verification Approach.

Given one or more high-level programs, P , we aim to

provide a soft–processor with appropriate customization for

those programs, and a script for verifying that the execution

of a machine code program, M , meets the corresponding spec-

ification of a high-level program. The machine code programs

can be produced by hand or by a compiler; since compiler

verification is difficult, most compilers in wide-spread use

are not verified. There is no guarantee that the compilation

produced a correct machine code.

The Processor Generator uses the machine code program

M to customize a soft–processor template and generate a

customized soft–processor design. The machine code charac-

terizes the minimum number of soft–processor components

that need to be implemented. Unused components are omitted

during the soft–processor generation, resulting in an optimized

system, S +M .

In our approach, a soft–processor includes various cus-

tomizations to meet requirements of application developers.

This paper covers simple means of customization, such as:

• the support for custom instructions, each of which has the

effect of multiple instructions implementing frequently-

occurring code fragments,

• processors with different amounts of pipeline stages;

since pipelining improves throughput but could have

lengthen latency, an optimal design could depend on

specific application requirements.

Advanced customizations include different ways of multi-

threading [6] and vector processing [19],[20]. These are be-

yond the scope of this paper, but we hope to discuss them in

a future publication.

Eventually, we hope to automate soft–processor customiza-

tion, generation, and verification. Ideally, the generation of an

optimally customized processor is accompanied by a compiler

for that processor, together with a verification script. The

verification script covers a formal model of the customized

processor, fS; it takes the functional specification of a high-

level program, fP , the corresponding machine code model

fM and the assertions about the machine code program, and

verifies that the execution of the machine code on fS meets

the functional specification fP . In our case the specification

fS is a functional description defined recursively [15]. As-

sertions are properties about the program that provide the

correctness criteria. We adopt a systematic translation between

the HDL implementation and the formal model as the base

for correct translation. There is a direct mapping between the

two representations. Every module in the hardware descrip-

tion has its formal representation. The module structure is

also maintained. More details on the mapping between these

descriptions will be presented in Section V.

The proposed verification approach is based on a program

verification formalism called operational semantics [16]. The

evaluation target is a triple: a machine state s, the machine

code program fM , and soft–processor fS. The machine-

state s captures the values stored in the machine’s registers

and memory. The program fM is the application program

represented in machine code. The processor fS is the formal

model of the customized processor. The behavior of applica-

tion program is interpreted through evaluating these triple data

using two functions, next and eval. The next function

models a one-step execution of the machine, analogous to

executing the soft-processor for a single clock cycle. The

eval function is a sequence of n step execution, analogous to

executing the soft–processor for n clock cycles. The definition

of eval function is shown in Eq. 1.

eval([s, fM, fS], n) ,

{

eval(next [s, fM, fS], n − 1) n > 0

[s, fM, fS] otherwise
(1)

Program correctness is based on conditions defined by three

predicates: pre, post, and exit. A predicate defines the

conditions about the properties of the state s at a certain

time. The predicate pre defines the initial/pre-condition of the

program. It is a condition which is true before we evaluate the

program fM . The predicate post defines the post-condition

after completing program evaluation. It contains the condi-

tion after the program is completed. It also defines program

termination condition. The predicate exit defines the final

correctness evaluation criteria against the specification. The

total correctness of the program is based on partial correctness

of the program and its termination condition. The termination

condition of the program is as follows:

∀s : pre[s, fM, fS] ⇒ (∃n : exit([s, fM, fS], n)) (2)

The termination condition in Eq. 2 says that:

for any initial state, s, that satisfies the predicate pre,

there exists n, a number of steps. When we execute

the system for n steps from the initial condition,

the resulting state satisfies the condition defined by

predicate exit.

The correctness theorem for a program subroutine is as fol-
lows:

∀s : pre[s, fM, fS] ∧ exit(eval([s, fM, fS], n))

⇒ post(eval([s, fM, fS], n))
(3)

The correctness criterion is based on a state s that satisfies the

pre-condition, pre[s, fM, fS], and eventually reaches the exit

state, exit(eval([s, fM, fS], n)), and satisfies post-condition,

post(eval([s, fM, fS], n)).
Reasoning about the program involves defining the as-

sertion properties, assert, of the system that are always

true at a given point, called cutpoint. The assert and

cutpoint statements guarantee that if there is a condition

of a cutpoint that satisfies assert, the following cutpoints

will also satisfy assert properties. The next reachable

cutpoint from a state s is defined by the function nextc. The

verification condition generator (VCG) for assertion reasoning

is defined in the following theorems:

∀s : pre[s, fM, fS] ⇒ cut[s, fM, fS] ∧ assert[s, fM, fS] (4)

∀s : exit[s, fM, fS] ⇒ cut[s, fM, fS] (5)

∀s : exit[s, fM, fS] ∧ assert[s, fM, fS] ⇒ post[s, fM, fS] (6)

∀s : cut[s, fM, fS] ∧ assert[s, fM, fS] ∧ ¬exit[s, fM, fS]

⇒ assert(nextc(next[s, fM, fS]) (7)

Eq. 4–7 state that:

for any state s that satisfies pre, state s must be a

cutpoint and satisfies the condition of assert (Eq. 4).

An exit state s is a cutpoint (Eq. 5).

If state s is a cutpoint and state s satisfies the condition

of assert, then state s must satisfy post (Eq. 6).

If state s is a cutpoint, not exit and satisfies the

condition assert, then the next reachable cutpoint must

satisfy assert (Eq. 7).

IV. PROCESSOR DESCRIPTION

Our soft–processor is influenced by ARM-7 [1] and Xilinx

PicoBlaze [2]. We adopt PicoBlaze’s data-path architecture

and ARM-7’s instruction set as our soft-processor template.

The data-path block diagram of the soft–processor is shown

in Fig. 2. The main components of a soft–processor are the

on–chip Random Access Memory (on-chip RAM), on–chip

Read Only Memory (on-chip ROM) (includes the machine

code program), registers (include program counter, instruction

register, and pipeline registers), the ALU, the decoder, and the

Input/Output (I/O) ports.

P

C

+

1 decoder

registers

IO

on−chip

 RAM

ALU

on−chip

ROM

Fig. 2.

Soft–processor data-path block diagram.

In our architecture, program and data are represented in

separate memory modules. Application program is stored in

the on–chip ROM block. Application data are stored in the on–

chip RAM block. We eliminate indirect addressing process by

implementing two independent addressing registers, Program

Counter register PC for the on–chip ROM and Memory

address register Madd for the on–chip RAM.

The data-path operation has straightforward implementa-

tion. Program counter PC defines the address of current

instruction to be fetched. This instruction is immediately

decoded by the decoder and results in the ALU control logic

and registers and memory addressing. All the data are fed

to ALU for data manipulation operations. The result of ALU

operation is a write back operations to either registers, on–chip

RAM, I/O, or PC update.

Custom instructions and customizable pipelines. In our

data-path architecture description, the effect of instruction set

and pipeline customization are localized to a particular block

while maintaining the generic implementation for the remain-

der. For example, the instruction set customization mainly

affects the ALU module. Extending instruction set means

more functionality covered by ALU module, while the rest of

modules remains the same. The pipeline customization adds

more register layers on the decoder. Similar to the instruction

set customization, the remainder of the modules are kept intact.

We have also developed an instruction set template where

designer can customize and extend pre-built instruction sets

with a new instruction. Every instruction can use up to four

generic registers (Rd, Rn, Rm, Rs), memory address reg-

ister (Madd) and an immediate data (Imm). The register Rn,

Rm, Rs are the source/operand registers. The register Rd is

solely used as the target destination register. An instruction is

defined by a tuple of triple of (assembly code construct, desti-

nation, operation). For example, A logical AND instruction is

defined as ((AND Rd Rm Rn) Rd (logand Rm Rn)).

A new instruction functionality is restricted to the derivation

of the predefined arithmetic and logical constructs.

The soft–processor’s Verilog description follows a processor

template module construct. At the bottom level, there are

four groups of modules; application program, ALU, decoder,

and auxiliary. The application program module (prog_list)

contains the application machine code. The ALU module

contains the functionality that is implemented and possi-

bly used to compute instructions from the application pro-

gram. The decoder module is a group of modules that

decode current instruction into control signals, immediate

data (used by ALU) and address registers (decode_Rn,

decode_reg_control, etc). The auxiliary module is

the program counter incrementer function. The decode_Rn

and prog_list modules Verilog descriptions are as follows:

module decode_Rn (inst, Rn);

input [31:0] inst;

output [3:0] Rn;

assign Rn = inst[19:16];

endmodule

module prog_list (pc_data, inst);

input [9:0] pc_data;

output [31:0] inst;

assign inst = ...

(pc_data == 12) ? ... : // MV R0 R15

...

(pc_data == 15) ? ... : // BZ R0 #6

...

(pc_data == 20) ? ... : // B #-5

(pc_data == 21) ? ... : // WRO R2

...

endmodule

The top level core module contains Input/Output (I/O)

interfaces, modules connectivity, registers (includes PC,

MAdd, Regn, MEMn and a write-back control sequence.

The core module Verilog description of the processor is as

follows:

module core(di, clock, do, Oflag);

...

reg [31:0] REGn[0:15], MEMn[0:1023], PC, do ;

reg [9:0] Madd;

reg Oflag;

...

prog_list i_prog_list ...

reg_control i_decode_reg_control ...

alu i_alu ...

...

always @(posedge clock)

begin

IC_pc = pc_next_data;

if (opcode == ‘WRO) Do = alu_data;

...

if (reg_control) REGn[Rd_add] = alu_data;

end

endmodule

The above is used as the template for our soft–processor

generator (Fig. 1).

The introduction of custom instruction often changes ALU

functionality, and may affect how the write back process

is performed. The changes on internal operations will be

reflected in a new machine code program, and a new processor

implementation. For example, we merge (LDRd R3) and

(ADD R2 R2 R3) into a single instruction (ADDd R2 R2).

The LDRd instruction loads data from on–chip memory and

store it in register R3. The ADD instruction adds the value of R2

and R3, and store the result in register R2. The new instruction

ADDd performs an addition operation of register R2 and data

from on–chip memory, and stores the result in register R2. We

introduce this new instruction to the Processor Generator by

submitting the new instruction construct ((ADDd Rd Rm)

Rd (plus<32s> Rm Madd)).

Another customization concerns having different number

of pipeline stages in a processor. Adding pipeline stages

affects decoder and write back operations, if the number of

pipeline stages is customizable. As an example, consider a

three-stage pipeline architecture, fetch-decode-execute, that we

have implemented. The three-stage pipeline uses two variables

pipe0 and pipe1, to capture the pipeline organization and a

control variable corresponds to a finite-state-machine (fsm).

The fsm variable is used to address pipeline hazard when the

program counter and processor mode are changed. When the

PC is changed, the instructions stored in pipeline registers are

no longer valid and need to be flushed. The processor mode

is then changed from execution mode to pipeline flush mode.

The pipeline flush mode is represented by a non-zero value in

the fsm variable.

V. FORMAL MODELLING AND VERIFICATION

Our processor generator produces a formal model of the

soft–processor system (Fig. 1). We use the ACL2 theorem

prover as our verification environment. We describe briefly

below how the formal model in ACL2 is constructed from the

Verilog module against its formal model function. All variables

and wires in Verilog are declared with explicit size. They can

have a single bit or a bit–vectors of size n. The formal model

has three data-types: boolean, unsigned-byte, and signed-byte.

Similarly, a single bit variable/wire is represented as of type

boolean. The bit vector of size n is represented as either a

unsigned–byte or a signed-byte with size n.

Every module in the Verilog description is represented as

a function in ACL2. We map the relational representation in

Verilog into a functional relation representation in the formal

model in ACL2. Module instantiation corresponds to function

evaluation. For example, module prog_list contains the

machine code. It has one input argument: the address of

program counter (pc_data). The result of evaluating this

function will be discussed later. The prog_list function

in ACL2 is as follows:

(defun prog_list (pc_data)

(declare (type (unsigned-byte 10) pc_data))

(case pc_data

...

(12 27262991)

...

(15 184550406)

...

(20 167772165)

(21 100794384)

...))

The top level module core contains three groups of op-

erations: register declaration, module instantiation, and data-

storage operation. Consider memory allocation for Verilog

and ACL2. In the Verilog description, the memory covers

the registers. Registers are used in the state machine of the

processor: each register has a one-to-one mapping in ACL2

as a state variable. The state machine representation in ACL2

is as follows:

(defstobj machine-state

(DIn :type (signed-byte 32))

(ProgC :type (unsigned-byte 10))

(MEMn :type (array(signed-byte 32)(1024)))

(Madd :type (unsigned-byte 10))

(REGn :type (array(signed-byte 32)(16)))

(DOut :type (signed-byte 32))

(FlagO :type T))

There are two differences between these representations.

First, all core module Verilog arguments, both input and

output ports, are represented as state variables. In the core

algorithm verification, it is not necessary for users to provide

vector inputs as they are represented by symbolic constants.

On the other hand, functions in ACL2 can be used in two ways:

as descriptions in formal logic, or as executable specifications

to produce simulation results. The input port is useful during

simulation—real data can be used and the ACL2 formal model

can be simulated using test-vectors. Second, an insight on

how the registers are used is needed when constructing a

state variable. Specifically, the variables which are declared

as bit–vectors. All variables used in data-manipulation need

to be declared to have type of signed-byte. Other bit-vectors

variables/wires, such as instructions, are declared of type

unsigned–byte.

The second operation in the core module is module

instantiation. Modelling module instantiation is straight for-

ward. Instantiations are represented as a sequence of function

declaration. For example, the instantiation of prog_list

module with input pc_data and output inst is as follows:

Verilog: prog_list

i_prog_list (.pc_data (pc_data), .inst (inst));

ACL2: (inst (prog_list pc_data))

The final operation in the core module is data-storage

operation. In most cases, the result of data manipulation

from ALU needs to be write–back either to the register,

RAM, PC, or I/O. These process is controlled by clock

function. We implement the clock function of HDL as

the state-update operation. The state-update is a

process where a sequence of operation is update the content

of state-register is performed. A sketch of the core module

in ACL2 is as follows:

(defun core (st)

(let*
(...

(inst (prog_list pc_data))

(reg_control (decode_reg_control ...))

(alu_data (alu ...))

...

(st (update-progc pc_next_data st))

(st (if (equal opcode *WRO*)(update-do alu_data st)st))

...

(st (if reg_control (update-regn alu_data st) st)))

st))

The correctness of an application program is verified using

core formal model as the execution engine. The verification

script for the application program is organized into two parts.

The first part contains a collection of theorems about the

instruction set and the processor organization, which are

independent of the code that it executes. The second part

contains the assertions about the application program. We have

developed a template for defining theorems about customizing

instructions of a soft–processor.

Theorems about the processor are deduced from the pro-

cessor’s formal description. They contains specific features

about the processor that have been proven against its for-

mal description. These theorems can be grouped into three

categories: module theorems, ALU theorems, and next-state

theorems. The module theorems are focused on maintaining

the correctness of the processor organization which includes

the interconnection between modules. For example, input port

of prog_list module is connected to PC register through

pc_data wire. The output of the module is connected to

decoder through inst wire. The (pc_data) and (inst)

wire interconnection is defined to be bit–vectors of size 10 and

32 respectively. The prog_list ACL2 function explicitly

constrains the input argument by declaring the input to have a

unsigned-byte type with size of 10. The ACL2 statement is

as follows: (declare (type (unsigned-byte 10)

pc_data))). In this functional representation, there is no

explicit statement about the outputs. We show that the function

satisfy output constraints by proving a theorem about the

function. The theorem is as follows:

(defthm prog_list_gives_p32

(implies (unsigned-byte-p 10 pc_data)

(unsigned-byte-p 32 (prog_list pc_data))))

The theorem states that

for any given input-data with the type of unsigned-byte

and size of 10, the result of evaluating prog_list

function with the input–data is of unsigned-byte type

and size 32.

The ALU theorems are a group of theorems about data-

manipulations. Consider a 32-bit addition function +32bvs,

one of the theorems of this function is as follows:

(defthm +bv32-0

(implies (and (integerp x)

(< x (expt 2 31))

(<= (- (expt 2 31)) x))

(equal (+bv32s x 0) x)))

The theorem states that:

for any integer x and the value is less than 231 and

greater or equal than −231, then the result of adding

x to 0 is x.

A set of basic arithmetic (addition, subtraction) and logical

(XOR, AND, OR) operations library has been developed for

the processor. It includes the functional definition of each

operations and its corresponding theorems. The theorems set

the rules and constraints on how data-manipulation operations

will correctly work. The library is sufficient to handle any

derivative instruction customization using predefined opera-

tors. No new theorem are needed to handle permutation of the

predefined operator.

The last group is the next–state theorems. The next–state

theorems are a single step evaluation of the instructions. These

theorems are used by ACL2 as rewrite rules in application

program evaluation. One theorem is needed for every instruc-

tion implemented in a processor. We prove a general next-

step theorem of instruction rather than proving each machine

code [7]. For example, the next step theorem for the addition

instruction, ADD Rd Rm Rn, is as follows:

∀s. statep(s) ∧ curr − opc = ∗ADD∗

⇒ s([PC] = [PC] + 1; [Rd] = [Rm] + [Rn])
(8)

Eq. 8 states that

for any state s that satisfies the state predicate and

the current instruction opcode is ∗ADD∗, the next

state evaluation would increase the program counter

PC value by 1 and the result of adding the value

of register Rm and register Rn would be copied to

register Rd.

Changes in soft–processors model due to customization

are also reflected in the formal models and their supporting

theorems. In most cases, both instruction and pipeline cus-

tomizations only required a straight forward adaptation in the

formal model descriptions. As long as custom instructions only

use combination of pre-define operations, we only need to

proof the equivalent next-state theorems of the instructions.

For example: adding new instruction ADDd, as described in

Section IV, requires only one additional theorem about the

next-state for ADDr. The theorem is as follows:

∀s. statep(s) ∧ (curr − opc = ∗ADDd∗)

⇒ s([PC] = [PC] + 1; [Rd] = [Rm] + [Madd])
(9)

When a new operator is introduced as part of the customiza-

tion, a theory (set of definitions and theorems) about the

operator is also needed.

One major difference between a pipelined and a non-

pipelined processor is about information evaluated during the

decode cycle. In a non-pipelined architecture, this informa-

tion is immediately calculated from the current instruction.

In a pipelined architecture, the execution relies on control

information evaluated and stored during the decode cycle.

The relations between current instruction and control informa-

tion are lost. We define such relationship information in the

correct decode constraint. The constraint is shown in Eq. 10.

correct decode =

(opc = (dec opc pipe0)) ∧ (reg ctrl = (dec reg ctrl opc))∧

(pc ctrl = (dec pc ctrl opc)) ∧ (mem ctrl = (dec mem ctrl opc))

(10)

The equation states that the opc, pc ctrl, reg ctrl, and

mem ctrl are the results from decoding an instruction in

pipe0. The next-state theorem assumes that the processor’s

state s satisfies these constraints. All updates during execution

need to be specified in the next-state theorem. This includes the

flow between fetch and decode. A new instruction is fetched

and stored in pipe1. Meanwhile the instruction in pipe1 is

moved to the next pipeline register. This instruction is also

decoded and the results are stored in their respective registers

opc, pc ctrl, etc. The next-state theorem for ADD is as

follows:

∀s.statep(s) ∧ (curr − opc = ∗ADD∗) ∧ correct decode(s) ∧ (fsm = 0)

⇒ s([PC] = [PC] + 1; [Rd] = [Rm] + [Rn]; decode(pipe1);

pipe0 = pipe1; pipe1 = new instruction) (11)

Pipeline customization introduces processor mode to handle

pipeline hazards. Existing theorems are only correct when the

processor is in execution mode. This constraint is propagated

to all next-state theorems. Furthermore, theorems about exe-

cution result when the processor in a flush mode need to be

included in the next-state theorems group.

The remaining task, elaborated in the next section, is to

develop the assertions for an application program.

VI. CASE STUDY

In this case study, we present our approach to verify an

application program and show how the verification script can

easily be adapted to support processor customization. We

illustrate our approach with an application program SUM. The

program calculates the summation of an array of (n + 1)
elements:

∑n

i=0 Xi.

A high-level functional description of SUM is captured in

a recursive style [15]. This description acts as the high-level

specification in the verification of the application program. The

sum_spec functional description is as follows:

(defun sum_spec (X n)

(cond ((zp n) (nth 0 X))

(t (plus<32s> (sum_spec X (- n 1)) (nth n X)))))

The function plus<32s> is a high-level representation

for the 32-bit addition function similar to +bv32s. The

sum_spec function accumulates the first (n+1) elements of

the X array.The application program machine code resides in

the program memory/Read Only Memory (ROM). Separating

program memory and data memory avoid the complication of

a self modifying program and ease the verification process.

In general, the machine code implementation includes initial

operation to read data from external environment and store

them in the local memory/Random Access Memory (RAM).

After reading all data, the summation process will be started.

In this verification, we only consider the main summation

algorithm, omitting the process of reading data from external

environment. We assume that the data have been correctly

read and stored in RAM. The machine code of the summation

function is as follows:

...

:PRE (MVIM #0) ;Madd = 0

(LDRd R2) ;R2 = [Madd]

:LOOP (BZ R0 #6) ;if (R0=0) PC=:END

(SUBI R0 R0 #1) ;R0 = R0 - 1

(ADDIM #1) ;Madd = Madd + 1

(LDRd R3) ;R3 = [Madd]

(ADD R2 R2 R3) ;R2 = R2 + R3

(B #-5) ;PC = :LOOP

:END (WRO R2) ;Dout = R2

:EXIT ...

The machine code program reads data from memory, adds

them together and stores the result in register R2. The process

is repeated until the content of register R0 is 0. The final step is

to send the result to the output port using the WRO instruction.

Note that MVIM and ADDIM are respectively instructions for

moving and adding an immediate constant C, specified as #C,

to the memory address register Madd.

This machine code is used to reduce the instruction set table

and ALU functionalities. Only instructions that are being used

will be implemented in the processor. The simplest processor

is configured as a non-pipelined architecture, and optional

instruction set extension is not used.

Proving the correctness of the operation requires a general

assumption about the data. One assumption is that both the

specification and the formal processor model operate on an

array X of size (n+1). Another assumption is that the array

data are stored in the MEMn of the state machines. We define

a data assume function that states that array X is represented

in the specification and the formal model.

To verify the correctness of the implementation, one needs

to define the assertion’s cutpoints. Cutpoints are the reference

points that link the specification and implementation. In the

summation function, we define four cutpoints denoted by the

labels in the machine code: PRE, LOOP, EXIT, and END.

PRE contains condition of program operation. In this ex-

ample, the program operates on a data array of size (n+1).

This means that at least one datum is available when the core

algorithm is ready to be executed. PRE has two assumptions:

the symbolic value n is already stored in register R0, and

register R0 has to contain a non-negative integer.

LOOP contains the invariant properties of the iterative pro-

gram. It links the result of iterative evaluation of the program

against its specification. We state that when the program

counter reach LOOP, the value of n will always equal or

greater than zero and the value of Register R0 is equal or

less than n (has been reduced at least by one). There are two

more properties of interest: the data pointer which indicates the

amount of data processed, and the data container which stores

the summation results. The amount of data which has been

processed is denoted by (n - R0) and stored in Register

MAdd. The container register R2 is equal to the summation of

(n - R0) data.

END is the post loop termination. It contains the final

evaluation of the program for an array of size n+1. Here we

know that the register R0 has the value zero and the data

container register R2 has the final result of data summation.

EXIT describes the final state of the system after the

program is completed. The evaluation result of the sum_spec

function is presented at the data-output variable/port DOut.

A summary of the assertions for these cutpoints is shown in

Table I. The correctness is obtained by formally proving that

the operational semantics of the processor model satisfies the

condition defined by the assertions and the data constraints.

In the SUM program, we perform instructions customization

by merging LRDd and ADD instructions as ADDd. Since the

customization did not introduce new arithmetic or logical

PC Assertion

PRE 0 ≤ R0 ∧ R0 = n

LOOP 0 ≤ n ∧ R0 ≤ n ∧ Madd = (n - R0) ∧
R2 = SUM (X, n - R0)

END R0 = 0 ∧ R2 = SUM (X, n)

EXIT DOut = SUM (X, n)

TABLE I
SUM: NON-PIPELINE ASSERTIONS.

definitions, only next-state theorem associated with this

new instruction need to be proved. The criteria of correctness

remain the same; existing verification script can be used

with minor modification. Specifically, adjusting the value of

predicates LOOP, END, and EXIT to reflect changes in address

for instruction allocations. The assertions shown in Table I can

be reused without any modification.

The second customization involves adding a three-stage

pipeline. Pipelining uses more registers to store information

from each pipeline stage. The general top-level correctness

criteria remain unchanged. Internally, additional assertion con-

straints are needed on the newly-added state variables. Table II

shows the assertion for a three-stage pipeline architecture.

For clarity, we represent instruction machine code with its

assembly representation.

PC Assertion

PRE 0 ≤ R0 ∧ R0 = n ∧ fsm = 0 ∧ opcode = *MVIM* ∧
pipe0 = (MVIM #0) ∧ pipe1 = (LDRd R2)

LOOP 0 ≤ n ∧ R0 ≤ n ∧ fsm = 0 ∧ opcode = *BZ* ∧
Madd = (n - R0) ∧ R2 = SUMn (X, n - R0) ∧
pipe0 = (BZ R0 #6) ∧ pipe1 = (SUBI R0 R0 #1)

END R0 = 0 ∧ fsm = 0 ∧ opcode = *WRO* ∧
pipe1 = 0 ∧ pipe0 = (WRO R2) ∧ R2 = SUMn (X, n)

EXIT DO = SUMn (X, n)

TABLE II
SUM: PIPELINE ASSERTIONS.

Pipeline customization affects the assertion properties

(PRE, LOOP, END). While all non-pipeline properties de-

scribed in Table I are preserved, additional information is

needed. Specifically, information about pipeline properties is

captured in registers fsm, opcode, pipe0, and pipe1. The

assertions indicate that the processor is about to execute in-

structions defined as cutpoints. In a non–pipelined architecture,

the predicate PC is the memory address of current instruction.

In a three-stage pipeline, this relation has changed to PC+2.

The immediate relation information is lost between PC and

current instruction. One way to rectify this is by adding an

assertion on the condition of the pipeline and opcode. One

common property is the processor mode defined by the fsm

register. It states that fsm has the value of 0, which means

the processor is in execution mode.

We have developed unpipelined soft–processors for three

application programs: Fibonnaci (FIB), Summation func-

tion (SUM), and Boolean Inner Product (BIP), as well as

soft–processors with custom instructions (SUMc, BIPc,

BIP+) and with three-stage pipelining (FIB-3, SUM-3,

SUMc-3, BIPc-3, BIP+-3). The suffix “c” and “+”

denote respectively customization by merging two instruc-

tions, and customization by replacing logical operation with

arithmetic operation. Suffix “-3” denotes three-stage pipelin-

ing. Our approach involves developing re-usable verification

scripts. One can often start verifying the correctness of an

application program using the simplest processor architecture.

Properties from this simple processor can be reused in subse-

quent customizations. We conduct three kinds of experiments:

swapping/replacing arithmetic/logical operators, customizing

instruction by merging, and customizing with a three-stage

pipeline. Swapping logical operator XOR to arithmetic operator

plus<32s> does not change the assertion. The verification

script is immediately applicable without any changes. The last

two customization experiments confirm the approach that we

previously discussed.

Performance measurements are obtained by synthesizing

the Verilog processor descriptions using Xilinx ISE tools. We

base resource usage and performance estimation on a Xilinx

xc5vlx30 device. The ACL2 verification is carried out on a

system with an Intel i7 processor and 6 GB memory. The

results are shown in Table III.

Design LUT/FF/ Speed Power Time Energy Verify
RAM (MHz) (mW) (µs) (nJ) (s)

FIB 241/43/0 163.3 0.8 4.3 3.44 17

FIB-3 286/75/0 207.6 0.9 4.3 3.87 90

SUM 363/54/2 137.0 1.5 4.4 6.6 35

SUM-3 374/107/2 192.2 1.8 4.2 7.56 105

SUMc 367/53/2 137.3 1.7 3.6 6.12 35

SUMc-3 364/108/2 183.9 1.9 3.8 7.22 105

BIP 433/53/3 137.1 1.6 5.8 9.28 58

BIP-3 434/107/3 198.9 2.2 5.0 11 168

BIPc 434/53/3 143.0 1.9 4.9 9.31 58

BIPc-3 450/112/3 213.1 2.1 4.2 8.82 168

BIP+ 426/53/3 134.4 1.7 5.9 10.03 59

BIP+-3 434/111/3 215.1 2.0 4.6 9.2 170

TABLE III
RESULTS FROM THREE CASE STUDIES.

The above results (except for the ACL2 verification which

verify all possible cases) cover generation of 100 Fibonacci

numbers, summation of 100 numbers, and inner product of

two vectors with 100 booleans. They show that, for computing

Fibonacci, the unpipelined FIB is best; although FIB-3 has a

faster clock, it suffers from pipeline flushing. For summation,

the unpipelined SUMc with custom instruction turns out to be

fastest and consumes the least energy, although it consumes

more power than the unpipelined SUM. For inner product, BIP

consumes the least power, but the pipelined BIPc-3 with

custom instruction is 38% faster and 5% more energy efficient

than BIP, although it consumes 31% more power than BIP.

For all our cases, ACL2 completes the verification in fewer

than 3 minutes.

VII. SUMMARY

We have presented a verification approach for customized

soft–processors. There are two distinct flows in this approach:

design flow and verification flow. In the design flow, an

application program is compiled producing the machine code.

This machine code is used to customize the instruction set

by stripping the unused functionality. A customizable soft–

processor template is used to generate application-specific

processor implementation in Verilog and its corresponding

formal model. In the verification flow, the correctness of a

machine code program is obtained by evaluating the program

in the target soft–processor system and verifying it against

the high-level specification. We have presented two soft–

processor customization techniques, instruction customization

and pipelining customization, to demonstrate our approach.

Although our current prototypes are simple, they show

that the proposed approach is viable and promising. Further

research includes supporting a variety of processors, cus-

tomizations, and applications, as well as exploring the logical

foundation of this approach and the opportunities for its further

automation.

VIII. ACKNOWLEDGEMENT

The support of UK EPSRC, the European Union Sev-

enth Framework Programme under Grant agreement number

248976 and 257906, the HiPEAC European Network of Ex-

cellence, Maxeler Technologies, and Xilinx Inc. is gratefully

acknowledged.

REFERENCES

[1] ARM. ARM-7 Datasheet, DDI 0020C, December 1994.
[2] Xilinx. PicoBlaze 8-bit Embedded Microcontroller User Guide, UG129,

June 2011.
[3] S. Bard and N.F. Rafla. Reducing Power Consumption in FPGAs by

Pipelining. Proc. Midwest Symp. on Cir. and Sys., 2008.
[4] W. Bevier, W. Hunt, J.S. Moore and W. Young. An Approach to System

Verification. Technical Report 41, Computational Logic Inc., 1989.
[5] A. Chattpadhyay, H. Myer and R. Leupers. LISA: A Uniform ADL for

Embedded Processor Modeling, Implementation, and Software Toolsuite
Generation. Processor Description Languages, Elsevier, 2008.

[6] R. Dimond, O. Mencer and W. Luk. Application-Specific Customisation
of Multi-Threaded Soft Processors. IEE Proc. Computers and Digital

Tech., 153(3):173–180, 2006.
[7] A. Fox and M. Myreen. A Trustworthy Monadic Formalization of the

ARMv7 Instruction Set Architecture. Proc. Int. conf. on Interactive

Theorem Proving, 2010.
[8] A. Hagiescu and W.F. Wong. Co-synthesis of FPGA-Based Application-

Specific Floating Point SIMD Accelerators. Proc. FPGA, 2011.
[9] W. Hunt and S. Sword. Centaur Technology Media Unit Verification, Case

study: Floating–Point Addition. Proc. Int. Conf. on Computer Aided Verif.,
2009.

[10] M. Kaufmann, J.S. Moore and R. Boyer. ACL2 version 4.1 (2010).
http://www.cs.utexas.edu/∼moore/acl2

[11] G. Klein et al. seL4: Formal Verification of an OS Kernel. Proc. 22nd
ACM Symp. on Operating Sys. Principles, 2009.

[12] S.K. Lam, T. Srikanthan and C.T. Clarke. Architecture-Aware Technique
for Mapping Area-Time Efficient Custom Instructions onto FPGAs. IEEE
Trans. on Computers, 60(5):680–692, 2011.

[13] J.S. Moore. A Grand Challenge Proposal for Formal Methods: A Verified
Stack. Proc. 10th Anni. Coll. of UNU IIST, 2002.

[14] J.S. Moore. Symbolic Simulation: An ACL2 Approach. Proc. Int. Conf.
on Formal Methods in Computer-Aided Design, 1998.

[15] M. Myreen and M. Gordon. Transforming Programs into Recursive
Functions. Proc. Brazilian Symp. on Formal Methods, 2008.

[16] S. Ray et al. A Mechanical Analysis of Program Verification Strategies.
Journal of Automatic Reasoning. 40(4), 2008.

[17] S. Singh and C.J. Lillieroth. Formal Verification of Reconfigurable
Cores. Proc. FCCM, IEEE Computer Society Press, 1999.

[18] J.G. Tong et al. Soft-Core Processors for Embedded Systems. Proc. Int.

Conf. on Microelectronics, 2006.
[19] P. Yiannacouras, J. Rose and J. G. Steffan. VESPA: Portable, Scalable,

and Flexible FPGA-Based Vector Processors, Proc. CASES, 2008.
[20] J. Yu et al. Vector Processing as a Soft Processor Accelerator. ACM

Trans. on Reconfig. Tech. and Sys. 2(2), 2009.

