
Parametrized Hardware Architectures for the Lucas
Primality Test

Adrien Le Masle, Wayne Luk
Department of Computing

Imperial College London, UK
{al1108,wl}@doc.ic.ac.uk

Csaba Andras Moritz
BlueRISC, Inc

Amherst, MA, USA
andras@bluerisc.com

Abstract—We present our parametric hardware architecture
of the NIST approved Lucas probabilistic primality test. To
our knowledge, our work is the first hardware architecture
for the Lucas test. Our main contributions are a hardware
architecture for calculating the Jacobi symbol based on the binary
Jacobi algorithm, a pipelined modular add-shift module for
calculating the Lucas sequences, a dependencies analysis and a
scheduling of the Lucas sequences computation. Our architecture
implemented on a Virtex-5 FPGA is 30% slower but 3 times
more energy efficient than the software version running on a
Intel Xeon W3505. Our fastest 45 nm ASIC implementation is
3.6 times faster and 400 times more energy efficient than the
optimised software implementation in comparable technology.
The performance scaling of our architecture is much better
than linear in area. Different speed/area/energy trade-offs are
available through parametrization. The cell count and the power
consumption of our ASIC implementations make them suitable
for integration into an embedded system whereas our FPGA
implementation would more likely benefit server applications.

I. INTRODUCTION

Many public-key cryptographic algorithms require large
prime numbers in order to generate a key pair. This is
for example the case of the Diffie-Hellman key exchange
protocol or the most popular Rivest, Shamir and Adleman
(RSA) encryption scheme. The common method for finding
a large prime number consists in testing randomly generated
numbers until a prime is determined. The AKS primality
test [1] determines if a number is prime in polynomial time.
This test is deterministic. However, due to the complexity
of implementing this algorithm in hardware as well as in
software, probabilistic tests are still in use.

A common primality tester first tries to divide the number
under test by a few first primes, then performs a number
of Miller-Rabin probabilistic tests [2]. The error probability
of such a primality test depends on the bitwidth of the
number under test and on the number of Miller-Rabin tests
performed. The American National Institute of Standards and
Technology (NIST) gives recommended values for different
algorithms and different key sizes [3]. However, even with
well-chosen parameters there is still a small probability that
a composite number passes the primality test. Ultimately, a

The support of BlueRISC, Alpha Data, Xilinx, UK EPSRC and the HiPEAC
NoE is gratefully acknowledged. The research leading to these results has
received funding from the European Union Seventh Framework Programme
under grant agreement number 248976 and 257906.

Lucas probabilistic test can be performed to ensure that the
number is prime. In fact, as of today no composite number
passing an appropriate number of Rabin-Miller tests plus a
Lucas test is known.

FPGAs and ASICs are relevant platforms for cryptographic
algorithm implementations. First, the structure of FPGAs
makes them particularly fit for pipelined applications, which is
the case for most of the basic cryptographic operations. Sec-
ond, FPGAs and ASICs can be used to embed security into low
power environments keeping very good performance. Finally,
a pure hardware implementation of a cryptographic algorithm
is inherently less vulnerable than its software counter-parts
which are usually run in a multi-tasking operating system.
For instance, software-based attacks such as cache-attacks [4]
do not apply to hardware.

This paper presents the first hardware architecture for the
NIST approved Lucas probabilistic primality test. Our main
contributions include:

• A hardware architecture for calculating the Jacobi symbol
based on the binary Jacobi algorithm

• A pipelined modular add-shift module for calculating the
Lucas sequences

• A dependencies analysis and a scheduling of the Lucas
sequences computation

• An implementation of the proposed design on a Xilinx
Virtex-5 FPGA and in TSMC 65 nm and 45 nm ASIC
processes

• A comparison of the performance of our hardware imple-
mentations with an optimised software implementation in
terms of speed and energy efficiency

Our architecture implemented on a Virtex-5 FPGA is 30%
slower but 3 times more energy efficient than the software
version running on a Intel Xeon W3505. Our design is scalable
and the performance scaling of our architecture is much better
than linear in area. Hence we expect the energy efficiency of
our FPGA designs would improve with advances in technology
and area available. Our 65 nm ASIC implementation is more
than 2 times faster and 40 times more energy efficient than the
FPGA implementation. Our fastest 45 nm ASIC implementa-
tion is 3.6 times faster and 400 times more energy efficient
than the optimised software implementation.

The rest of the paper is organised as follows. Section II
explains the background relevant to our work. In section



III, we present the challenges we face when designing the
Lucas primality tester and how we solve them. In section IV,
we compare our software, FPGA and ASIC implementations.
Finally, section V concludes the paper.

II. BACKGROUND

The Lucas primality test is a probabilistic test based on the
properties of the Lucas sequences. We first introduce the Lucas
sequences and the Lucas theorem. Then we describe the Lucas
primality test algorithm.

A. Lucas Sequences

The Lucas sequences U(a, b) and V (a, b) of the pair (a, b)
are the sequences:

U(a, b) = (U0(a, b), U1(a, b), U2(a, b), ...) (1)
V (a, b) = (V0(a, b), V1(a, b), V2(a, b), ...) (2)

such that for each k ≥ 0:

Uk(a, b) =
αk − βk

α− β
(3)

Vk(a, b) = αk + βk (4)

where α and β are the two roots of the quadratic equation
x2 − ax+ b = 0, with a, b chosen such that a, b 6= 0 and the
discriminant D = a2 − 4b 6= 0 [5].

Let us define the Jacobi symbol
(a
n

)
. For a integer

and p prime, we have:

(
a

p

)
=


0 if a = 0 mod p
1 if a 6= 0 mod p and x2 = a mod p

is soluble for some integer x
−1 if a 6= 0 mod p and x2 = a mod p

is not soluble

For an integer n with prime decomposition n = pα1
1 pα2

2 ...pαk

k ,
we have: (a

n

)
=

(
a

p1

)α1
(
a

p2

)α2

...

(
a

pk

)αk

The Lucas theorem is defined as follows [5].

Lucas Theorem: Let a, b, D, and Uk be as above. If n is
prime, gcd(b, n) = 1 and

(
D
n

)
= −1, then n divides Un+1.

The Lucas test is based on the contrapositive of the
Lucas theorem stating that if, under the previous assumptions,
an odd positive integer n does not divide Un+1, then n is
composite.

B. Lucas Test Algorithms

A simple algorithm performing a Lucas Test is given in
Alg. 1. Note that a Lucas test alone is not enough to determine
whether a number is prime with a low probability of error.
Many composite numbers passing the Lucas test are known
indeed. That is why the Lucas test has to be combined with

Algorithm 1: Simple Lucas test
Input: n odd integer
Output: composite if n is composite, probably prime if

n is probably prime
Choose a, b 6= 0 such that D = a2 − 4b 6= 0,1

gcd(b, n) = 1
and

(
D
n

)
= −1

Compute Un+1(a, b)2

if Un+1(a, b) mod n = 0 then3

return probably prime4

else5

return composite6

another probabilistic primality test such as the Miller-Rabin
test.

Consider line 1 of Alg. 1. Different methods to choose a, b
and D are given in [6], [7]. In particular, it is shown that D
should not be a square modulo n. In that case, the Lucas test
would be an ordinary primality test. That is in fact ensured
by the condition

(
D
n

)
= −1. A method proposed by Selfridge

[7] consists in choosing D as the first element in the sequence
{5,−7, 9,−11, 13, ...} such that

(
D
n

)
= −1, a = 1 and b =

(1 − D)/4. If n is square, it can be shown that
(
D
n

)
> −1

for any D. Hence, so that the algorithm terminates, we have
to check if n is a perfect square either before looking for a
correct D or after a few trials for D.

Consider line 2. Several methods can be used to compute
Un+1. A simple method is to use equation 3 directly. However,
this method is not efficient as it requires two exponentiations
and possibly one division. Instead we can use a recurrence
relation. For example, we can easily show that:

Uk(a, b) = aUk−1 − bUk−2 (5)
Vk(a, b) = aVk−1 − bVk−2 (6)

In [8], a more complex recurrence relation is used to come
up with an efficient method to compute the Lucas sequences:

Ui+j(a, b) = UiVj − bjUi−j (7)

Vi+j(a, b) = ViVj − bjVi−j (8)

The American National Institute of Standards and Tech-
nology (NIST) approved Lucas probabilistic primality test is
given in Alg. 2. The NIST algorithm first checks if n is
a perfect square. If not, it uses the algorithm described by
Selfridge to find a correct value for D. This test is sometimes
called the Lucas-Selfridge probabilistic primality test. Lines
4-5 rely on the fact that if

(
D
n

)
= 0, a factor of n exists [6]

and we can therefore stop the test. Lines 6 to 18 computes
Un+1(a, b), with a = 1 and b = (1−D)/4, using a modified
version of the method presented in [8]. After r iterations,
U = Un+1(a, b).

In [3], the NIST gives an algorithm to determine whether
a number is a perfect square. This algorithm is complex for



Algorithm 2: Lucas probabilistic primality test (from [3])
Input: n odd integer
Output: composite if n is composite, probably prime if

n is probably prime
if n is a perfect square then1

return composite2

Find the first D in the sequence3

{5,−7, 9,−11, 13,−15, 17, ...} for which the Jacobi
symbol

(
D
n

)
= −1.

if
(
D
n

)
= 0 for any D in this sequence then4

return composite5

k = n+ 16

Let krkr−1...k0 be the binary expansion of k, with7

kr = 1
U = 1, V = 18

for i = r − 1 to 0 do9

Utemp = UV mod n10

Vtemp = (V 2 +DU2)/2 mod n11

if ki = 1 then12

U = (Utemp + Vtemp)/2 mod n13

V = (Vtemp +DUtemp)/2 mod n14

else15

U = Utemp16

V = Vtemp17

end18

if U = 0 then19

return probably prime20

else21

return composite22

hardware implementation as it requires divisions and squaring.
A much simpler binary algorithm is presented in [9]. This
algorithm returns the integer square root of an n-bit number
together with the remainder using only shifts, additions and
subtractions. The number tested is a perfect square if the
remainder is equal to zero. We use this algorithm in our
implementation as described in the next section.

Line 3 of Alg. 2 requires the ability to compute the Jacobi
symbol

(
D
n

)
. As before, the algorithm given by the NIST in

[3] is not fit for fast hardware implementation as it requires
several modular reductions. Some more relevant binary Jacobi
algorithms using only shifts, additions/subtractions and com-
parisons are presented in [10], [11]. The changes we make to
the Jacobi symbol calculator and the perfect square test would
not affect compliance to the NIST standard overall.

C. Parametric Montgomery Multiplier
Montgomery multiplication is commonly used to perform

modular multiplication in hardware as it is fast and area-
efficient. The Montgomery product of two n-bit integers A
and B modulo an odd n-bit integer N is:

P = A.B.2−n mod N (9)

Montgomery multiplication introduces an extra factor 2−n

which is usually dealt with by converting the numbers in N-

residue, that is Montgomery multiplying them by 22n mod N
before performing modular multiplications. Then the result
is converted back to normal representation by Montgomery
multiplying it by 1.

The architecture of the Montgomery multiplier used in this
paper is presented in Fig. 1. Short vertical and horizontal lines
represent registers. Each Montgomery cell operates on sub-bits
of the input A in a pipeline fashion. We call Np the number
of pipeline stages. Inside each cell, a number of additions are
performed by carry-save adders (CSA). Each addition depends
on the previous one with a loop-carried dependency of one.
Hence the computation cannot be parallelised. However, the
carry-save adders can be replicated in series so that several
additions are performed in one clock cycle. This is equivalent
to unrolling the loop. The number of replications is called
Nr. A more precise description of the CSA-based parametric
Montgomery multiplier architecture and the algorithm used are
given in [12].

III. LUCAS PRIMALITY TESTER DESIGN

Our Lucas Primality tester is based on Alg. 2 recommended
by the NIST. We divide our Lucas hardware into three sub-
modules:

1) Perfect square test module (lines 1-2)
2) Jacobi symbol calculator module (lines 3-5)
3) Lucas sequence (or Un+1(a, b)) calculator module (lines

6-21)
Module 1 is an implementation of the algorithm presented

in [9]. This algorithm is straightforward and only performs
shifts, additions and subtractions.

In the following, we focus on module 2 and 3 which are
the most interesting ones. Three main challenges have to be
addressed when designing these modules:

Challenge 1. The Jacobi symbol calculator module has
to work with negative integers and must not contain any
complex modular reduction that would greatly increase
the area taken by the design.

Challenge 2. We need to design parametric and efficient
modules for the two main operations of the Lucas
calculator: (a) modular multiplication and (b) modular
add-shift.

Challenge 3. These two operations have to be rescheduled
to optimise the speed of the design, making the most of
the pipeline capabilities of the modules.

A. Challenge 1: Jacobi Symbol Calculator

Classical Jacobi algorithms require a full modular reduction
at each iteration. This operation can only be implemented with
a divider which is area consuming. This is not the case of
the binary Jacobi algorithm presented in [10]. We modify this
algorithm to compute

(a
b

)
for negative a. Our modified binary

Jacobi algorithm is presented in Alg. 3. It is based on the
general identities of the Jacobi symbol described in [10].



Montgomery

cell 1

B
N

S=0
C=0

Montgomery

cell 2

Montgomery

cell 3

Montgomery

cell 4

A[0:7] A[8:15] A[16:23] A[24:31]

MUX

0

Add
Add P

CSA 

2.1

CSA 

2.2

Control 

Logic

Fig. 1. Montgomery multiplier for Np = 4 and Nr = 2

Algorithm 3: Binary Jacobi algorithm
Input: a integer, b odd positive integer
Output:

(a
b

)
t = 11

if a < 0 then2

a = −a3

if b mod 4 = 3 then t = −t4

end5

while a 6= 0 do6

// SHIFT
while a mod 2 = 0 do7

a = a/28

if (b mod 8 = 3) or (b mod 8 = 5) then t = −t9

end10

// SWAP
if a < b then11

interchange(a, b)12

if (a mod 4 = 3) and (b mod 4 = 3) then t = −t13

end14

// NEWA
a = (a− b)/215

if (b mod 8 = 3) or (b mod 8 = 5) then t = −t16

end17

if b = 1 then18

return t19

else20

return 021

All the modular reductions use a fixed modulo which is a
power of two. In that case, x mod y = (x & (y − 1)). These
operations are therefore very simple to implement in hardware.
To reduce the critical path and therefore increase the maximum
clock frequency, the comparators and the subtractors are
pipelined.

B. Challenge 2: Lucas sequence calculator

Our Lucas sequence calculator performs the operations of
lines 6 to 21 of Alg. 2. This part of the algorithm consists

Algorithm 4: Decomposition of the operations performed
in the for loop of the Lucas primality test algorithm

Utemp = U.V mod n1

Vtemp = V 2 mod n2

temp1 = U2 mod n3

temp1 = D.temp1 mod n4

Vtemp = (Vtemp + temp1)/2 mod n5

if ki = 1 then6

U = (Utemp + Vtemp)/2 mod n7

temp2 = D.Utemp mod n8

V = (Vtemp + temp2)/2 mod n9

else10

U = Utemp11

V = Vtemp12

of several modular multiplications and modular add-shift op-
erations. The operations performed in the for loop can be
decomposed as shown in Alg. 4.

If k is an (r+1)-bit number with kr = 1, the algorithm
performs between 4r and 5r modular multiplications. We reuse
the parametric Montgomery multiplier presented in [12] to
perform these modular multiplications and solve challenge 2.a.
All the operations are performed in n-residue representation,
with n the number under test. Our multiplier has two main
parameters: the number of pipeline stages Np and the number
of replications Nr.

Similarly, the algorithm performs between r and 3r modular
add-shift operations. Alg. 5 shows how the modular addition
with right shift is implemented. Note that the values of the
two operands of this addition are always less than the modulo.
Hence the modular reduction can be performed by a simple
subtraction.

We develop a pipelined hardware design of the modular
add-shift module. All the operations are computed by homo-
geneous blocks, the number of blocks being a parameter of the
design. Our architecture is shown in Fig. 2. Short horizontal
and vertical lines represent registers. The first row of adders
computes A+B. Its output is given to the second row of adders
which computes A+B +N and to a shifter which computes



Algorithm 5: Modular addition with right shift
Input: N odd integer, A < N and B < N positive

integers
Output: S = (A+B)/2 mod N
if (A+B) mod 2 = 1 then1

S = (A+B +N)/22

if S ≥ N then S = S −N3

else4

S = (A+B)/25

(A+B)/2. The output of the second row of adders is shifted
right and given to a row of subtractors. These subtractors
compute (A+B+N)/2−N . They are also used to determine
if (A+B+N)/2 ≥ N . The MUX Select generates the select
signal of the multiplexer according to the borrow out of the
row of subtractors and the value of the LSB of A + B. If l
is the number of adders/subtractors in each row, after l + 2
cycles of latency our module generates one result per clock
cycle. This solves challenge 2.b.

Our Lucas calculator has four main parameters: the bit-
width of the number under test, the number of pipeline stages
of the Montgomery multiplier, the number of replicated carry-
save adders in each multiplier’s pipeline block and the pipeline
depth of the modular add-shift module. By combining Mont-
gomery multiplication, often regarded as the best technique
for modular multiplication, and our pipelined modular add-
shift architecture, we get rid of the need for direct modular
reduction. A proper scheduler needs to be designed to make
the most of our parametric modules.

C. Challenge 3: Scheduling

To increase the speed of Alg. 4 we reschedule the modular
multiplications and the modular additions. In particular we
want to use the pipeline of the Montgomery multiplier in
a relevant way. To keep the design simple we decide to
execute the calculations of (Utemp + Vtemp)/2 mod n and
(Vtemp + temp2)/2 mod n even if ki = 0. In that case,
the result is disregarded. Hence temp2 always needs to be
calculated and we always perform 5 Montgomery multipli-
cations and 3 modular additions at each iteration. The true
dependencies between the different operations are shown in
the dependency graph of Fig. 3. Output and anti-dependencies
have already been removed by register renaming.

The latency and the throughput of the Montgomery mul-
tiplier depend on the bit-width of the inputs, the number of
pipeline stages and the number of replications. The latency
of the modular add-shift module depends on the number of
adders/subtractors blocks used in each row. However using
a pipeline depth of more than 3 for the multiplier is under-
efficient given the dependencies shown in the dependency
graph of Fig. 3. Sticking to the instruction numbering intro-
duced in the table of Fig. 3, we come up with the following
schedule: Inst.3, Inst.1, Inst.2, Inst.4, Inst.6, Inst.5, Inst.7,
Inst.8. Fig. III-C shows this schedule for a pipeline depth

Np = 3. To keep the example simple, we assume that each
multiplier’s pipeline stage takes 2 clock cycles to complete its
operations. We also assume that the latency of the modular
adder is 2 clock cycles. A1 and A2 represent the 2 pipeline
stages of our modular adder. M1 to M3 represent the 3 pipeline
stages of the multiplier. In the actual implementations, the la-
tency of a multiplier’s pipeline stage is higher than the latency
of the modular adder (42 and 10 respectively for our fastest
implementation presented in section IV) and the number of
pipeline stages of the module adder is chosen to optimise
the speed of the Lucas test. However, this simplification does
not change the interpretation of this table. From clock 1 to
clock 10, the multiplier performs 5 multiplications without
stalling. At clock 11, no more multiplication can be given to
the multiplier until Inst.7 terminates. Hence the multiplier has
to stall. This is due to the data dependency between Inst.3 (the
next multiplication to be performed) and Inst.7 which itself
depends on Inst.5. This situation shows that the multiplier’s
pipeline cannot be run full all the time. This leads to some
unavoidable performance loss.

Our particular schedule may not be optimal for all the
values of the parameters but we found out that it is a relevant
compromise under the assumption that the addition time is
shorter than the multiplication time.

The main components of our Lucas calculator module are
a Montgomery multiplier, a modular add-shift module and
several registers to store the values of Utemp, Vtemp, temp1,
temp2, D, U , V and k. We also need an adder to compute
k = n + 1 and a subtractor to negate D mod n when it is
negative. A leading zeros detector is used to identify the most
significant bit in the binary representation of k. Multiplexers
select the inputs to the Montgomery multiplier and the modular
add-shift module.

FIFOs and dependency tables record the state of the Mont-
gomery multiplier’s pipeline and of the modular add-shift
module. This enables the scheduler to prevent read-after-write
dependencies and to feed the Montgomery multiplier and the
modular add-shift pipelines correctly.

D. Lucas prime tester

The square test module, the Jacobi symbol calculator
module and the Lucas calculator are integrated into our Lucas
prime tester. The square test and the search for the value
of D are performed in parallel. If the number tested is a
perfect square or if a D such that

(
D
n

)
= 0 is found, the

test finishes and returns 0 (the number is declared compos-
ite). Otherwise, the Lucas sequence calculator is started as
soon as a correct value for D is found. Then a comparator
tests if Un+1(a, b) = 0. The test finishes and returns 1 if
Un+1(a, b) = 0 (the number is declared probably prime) or 0
if Un+1(a, b) 6= 0 (the number is declared composite).

IV. RESULTS

A. FPGA results

We implement our design on a Virtex-5 XC5VLX330T-
1 FPGA which is part of an Alpha Data ADM-XRC-5T2



Fig. 2. Hardware design for modular add-shift

Instructions
1. Utemp = U.V mod n
2. Vtemp = V 2 mod n
3. temp1 = U2 mod n
4. temp1 = D.temp1 mod n
5. Vtemp = (Vtemp + temp1)/2 mod n
6. temp2 = D.Utemp mod n

7. U =

{
Utemp if ki = 0
(Utemp + Vtemp)/2 mod n if ki = 1

8. V =

{
Vtemp if ki = 0
(Vtemp + temp2)/2 mod n if ki = 1

7 8

3 21

4

5 6

7 8

Iteration i-1

Iteration i+1

Iteration i

Fig. 3. Analysis of the true dependencies in the Lucas sequence calculation algorithm

Clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...
Inst.3 M1 M1 M2 M2 M3 M3 M1 M1 M2 ...
Inst.1 M1 M1 M2 M2 M3 M3 M1 ...
Inst.2 M1 M1 M2 M2 M3 M3 ...
Inst.4 M1 M1 M2 M2 M3 M3 ...
Inst.6 M1 M1 M2 M2 M3 M3 ...
Inst.5 A1 A2 ...
Inst.7 A1 A2 ...
Inst.8 A1 A2 ...

Fig. 4. Lucas sequence calculator schedule for a 3-stage multiplier’s pipeline



board. Our hardware design is compared with an optimised
software implementation of Alg. 2 using dedicated functions
of the GMP library 5.0.1 for all the operations and compiled
with the Intel Compiler 12.0. The targeted architecture for
our software implementation is an Intel Xeon W3505 @ 2.53
GHz with 3 GB of main memory. Only one core of the
Xeon processor is considered. We report the average execution
time, the dynamic power consumption and the average energy
for both the hardware and the software implementations. A
random set of 10 000 1024-bit values is used as input. For the
software version, the dynamic power is measured with a watt-
metre at the output of the system. The dynamic power of the
FPGA is estimated using the XPower Estimator spreadsheet
v. 12.3 after mapping the design for the targeted board. The
activity rate is kept to its default value of 12.5%. The synthesis
operations reporting a clock of around 200 MHz for all the
variations of our designs, we set the clock of the FPGA to a
realistic value of 150 MHz for this estimation.

The results are reported in Tab. I. The parameters Np and
Nr represent respectively the number of pipeline stages of our
Montgomery multiplier and the number of replicated carry-
save adders in each pipeline block.

TABLE I
FPGA IMPLEMENTATION RESULTS OF 1024 BIT LUCAS PRIMALITY

TESTERS

Type Area Average Dynamic Average
Ex. Time Power Energy

(LUTs) (ms) (W) (mJ/op)
Hardware 56 329 24.34 5.3 129.00(Np = 1, Nr = 1)
Hardware 58 739 12.66 5.4 68.37(Np = 1, Nr = 2)
Hardware 60 431 13.16 5.4 72.38(Np = 2, Nr = 1)
Hardware 70 651 7.33 5.8 42.51(Np = 2, Nr = 2)
Hardware 68 386 11.27 5.8 65.37(Np = 3, Nr = 1)
Hardware 82 792 6.61 6.0 39.66(Np = 3, Nr = 2)
Hardware 106 158 4.29 6.1 26.17(Np = 3, Nr = 4)
Hardware 142 647 3.11 6.2 19.28(Np = 3, Nr = 8)
Software N/A 2.40 26 62.40

We see that the execution time decreases almost linearly
with the number of replications Nr of our multiplier. The
execution time is less impacted by an increase in the number
of pipeline stages Np. This is due to the fact that the pipeline
of the multiplier is not always run full. Recall that Np = 3
is a theoretical maximum for the number of pipeline stages
due to the date dependencies in the Lucas algorithm. On the
contrary, the only factor limiting Nr is the area available. The
power consumption of our design slightly increases with Nr
and Np as the area and clock fanout increase. However this
increase in power consumption is negligible compared with the
decrease in execution time. In fact, the performance scaling of
our architecture is much better than linear in area. Hence the

average energy consumed by our design is still significantly
reduced when increasing Nr and Np.

Our most energy efficient design is 30% slower but 3 times
more energy efficient than the software version. This design
takes 70% of the total area available in the Virtex-5 LX330T.
Most of the time is spent in Montgomery multiplications. The
particular structure of our Montgomery multiplier makes it
much faster than a software implementation if inputs can be
provided at a high throughput without stalling the pipeline. In
this application, the data dependencies in the algorithm limit
the maximum value for the number of pipeline stages Np and
therefore the achievable speed of our multiplier. However, the
results could be improved further by increasing the number
of replications Nr if a bigger FPGA is available. In fact, the
scalability of our design in terms of replications is only limited
by the area available. Upcoming FPGAs such as Virtex 7 will
be several times bigger than this Virtex-5 allowing much better
performance while still having unused area. Hence we expect
the energy efficiency of our FPGA designs would improve
with advances in FPGA technology. It should also be noted
that the Virtex-5 FPGA (65 nm) is one generation behind the
Xeon W3505 CPU (45 nm).

Server applications would benefit from augmenting the CPU
with one of more FPGAs configured with this design. In
these applications, power consumption can turn out to be as
important as performance. As a matter of fact, improving the
energy efficiency of the system can lead to huge savings in
fixed costs (cooling equipment) and variable costs (energy
bill).

B. ASIC results

We synthesize our design for the TSMC 65 nm
tcbn65gplustc library using Synopsys Design Compiler ver-
sion D-2010.03-SP5-1. Our fastest design in 65 nm is also
synthesized for the TSMC 45 nm tcbn45gsbwptc library to
allow a fair comparison with the Xeon W3505 CPU which also
adopts 45 nm technology. We suppose that all the inputs of our
Lucas module are driven by a D flip-flop. We also assume that
all the outputs of our module have the capacitive load of the
same D flip-flop. We estimate the power of each synthesized
architecture using PrimeTime-PX. For our estimation, a single
1024-bit input is considered. This input goes through all the
steps of Alg. 2, requiring a full calculation of the Lucas
sequence. Hence, we get worst-case results for the execution
time and the dynamic power consumption. In order to obtain a
more accurate estimation of the power consumption, a virtual
clock network is created for each architecture. Our results are
reported in Tab. II. The area is given in 2-input NAND gates.
One NAND gate corresponds to 4 transistors.

We see that for our 65 nm architectures running at 1 GHz,
the variation of the execution time with Nr and Np follows
the same trend as the FPGA implementation. Namely the
execution time decreases almost linearly with Nr whereas it is
less impacted by an increase in Np. However, for Nr greater
than 4, the replicated carry-save adders of our Montgomery
multiplier are on the critical path of the Lucas module. Hence



TABLE II
ASIC IMPLEMENTATION RESULTS OF 1024 BIT LUCAS PRIMALITY

TESTERS

Type Area Freq. Exec. Dynamic Average
Time Power Energy

(kGates) (GHz) (ms) (mW) (mJ/op)
65 nm ASIC 400 1.00 5.43 206.7 1.12(Np = 1, Nr = 1)
65 nm ASIC 416 1.00 2.82 215.7 0.61(Np = 1, Nr = 2)
65 nm ASIC 464 1.00 2.93 249.2 0.73(Np = 2, Nr = 1)
65 nm ASIC 498 1.00 1.62 264.2 0.43(Np = 2, Nr = 2)
65 nm ASIC 533 1.00 2.51 281.3 0.71(Np = 3, Nr = 1)
65 nm ASIC 595 1.00 1.46 297.1 0.43(Np = 3, Nr = 2)
65 nm ASIC 709 0.75 1.69 223.9 0.38(Np = 3, Nr = 4)
65 nm ASIC 838 0.50 2.01 149.4 0.30(Np = 3, Nr = 8)
45 nm ASIC 618 1.66 0.90 220.4 0.20(Np = 3, Nr = 2)

Software N/A 2.53 3.30 28 000 92.40

the Lucas prime tester’s maximum frequency decreases, which
results in a significant performance lose. This threshold in
the maximum value of Nr is not observable on our FPGA
implementations as they run at a much lower frequency.

Our fastest 65 nm ASIC implementation is more than 2
times faster than the FPGA implementation while only con-
suming 300 mW. It is at least 40 times more energy efficient.
Our fastest 45 nm ASIC implementation is 3.6 times faster and
400 times more energy efficient than the optimised software
implementation. The cell count and the power consumption of
our implementations make them suitable for integration into an
embedded system, different speed/area/energy trade-offs being
available through parametrization. Using our architecture, the
Lucas test could therefore be integrated into a customisable
core.

C. Security

Another primordial aspect of crypto-systems, often consid-
ered more important than speed and energy consumption, is
security. If we suppose that an attacker can obtain physical
access to the crypto-system, it seems clear that a hardware
implementation of the Lucas test is more secured than its
software counter-part. In a software environment, vulnerabili-
ties of the operating system and both software-based [4] and
hardware-based [13] attacks can be exploited to compromise
the crypto-system. A hardware-based crypto-system is more
robust in the sense that it is only vulnerable to hardware
attacks. Moreover a hardware crypto-system can be effectively
designed to prevent these attacks whereas a software will
always be dependant on the security of both the underlying
operating system and the underlying hardware.

V. CONCLUSION AND FUTURE WORK

This paper presents our parametric hardware architecture of
the NIST approved Lucas probabilistic primality test. Primality

testing is needed by the key generation process of many public-
key crypto-systems. The use of a Lucas test as the last step of
a probabilistic prime tester can greatly reduce the probability
of error of the overall test. To our knowledge, our work is
the first hardware implementation of this test in the literature.
Our architecture implemented on a Virtex-5 FPGA is 30%
slower but 3 times more energy efficient than the software
version running on a Intel Xeon W3505. A 65 nm ASIC
implementation is more than 2 times faster and 40 times more
energy efficient than the FPGA implementation. A 45 nm
ASIC implementation is 3.6 times faster and 400 times more
energy efficient than the optimised software implementation
in comparable technology. Our design is scalable and the
performance scaling of our architecture is much better than
linear in area. The cell count and the power consumption of
our ASIC implementations make them suitable for integration
into an embedded system whereas our FPGA implementation
would more likely benefit server application. Moreover if we
suppose that an attacker can obtain physical access to the
crypto-system, implementing such a test purely in hardware
greatly reduces the vulnerability of a crypto-system when
compared to a software implementation.

Current and future work includes pipelining our Jacobi
symbol calculator module and investigating a systolic array
solution, making the instruction scheduling of our Lucas pri-
mality tester parametric, developing models and tools to find
the optimum instructions scheduling given the bit-width and
the pipeline depth of the different sub-modules, and developing
protections against side-channel attacks.

REFERENCES

[1] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Ann. of Math,
vol. 2, pp. 781–793, 2002.

[2] M. O. Rabin, “Probabilistic algorithm for testing primality,” Journal of
Number Theory, vol. 12, no. 1, pp. 128 – 138, 1980.

[3] Information Technology Laboratory (NIST), “Digital Signature Stan-
dard,” pp. 68–76, FIPS PUB 186-3.

[4] D. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: The case of AES,” in Topics in Cryptology, CT-RSA 2006, vol.
3860, 2006, pp. 1–20.

[5] Z. S. McGregor-Dorsey, “Methods of primality testing,” MIT Undergrad.
Journal of Math., vol. 1, 2000.

[6] R. Baillie and S. S. Wagstaff, Jr., “Lucas pseudoprimes,” Math. Comp.,
vol. 35, pp. 1391–1417, 1980.

[7] C. Pomerance, J. L. Selfridge, and S. S. W. Jr, “The pseudoprimes to
25e9,” Math. Comp., vol. 35, pp. 1003–1026, 1980.

[8] M. Joye and J.-J. Quisquater, “Efficient computation of full Lucas
sequences,” Electronics Letters, vol. 32, no. 6, pp. 537–538, Mar 1996.

[9] J. W. Crenshaw, “Integer square roots,” http://www.embedded.com/98/
9802fe2.htm.

[10] J. Shallit and J. Sorenson, “A binary algorithm for the Jacobi symbol,”
SIGSAM Bull., vol. 27, no. 1, pp. 4–11, 1993.

[11] G. Purdy, C. Purdy, and K. Vedantam, “Two binary algorithms for
calculating the Jacobi symbol and a fast systolic implementation in
hardware,” in 49th IEEE Inter. Midwest Symp. on Circuits and Systems,
vol. 1, Aug. 2006, pp. 428 –432.

[12] A. Le Masle, W. Luk, J. Eldredge, and K. Carver, “Parametric encryption
hardware design,” in 6th Inter. Symp. on Reconf. Computing, 2010, pp.
68–79.

[13] A. Pellegrini, V. Bertacco, and T. Austin, “Fault-based attack of RSA
authentication,” in Proceedings of the Conference on Design, Automation
and Test in Europe (DATE ’10), 2010, pp. 855–860.


