
Power Profiling and Optimization for
Heterogeneous Multi-Core Systems

Kuen Hung Tsoi and Wayne Luk
Department of Computing, Imperial College London

{khtsoi, wl}@doc.ic.ac.uk

ABSTRACT

Processing speed and energy efficiency are two of the
most critical issues for computer systems. This paper
presents a systematic approach for profiling the power
and performance characteristics of application targeting
heterogeneous multi-core computing platforms. Our ap-
proach enables rapid and automated design space explo-
ration involving optimisation of workload distribution
for systems with accelerators such as FPGAs and GPUs.
We demonstrate that, with minor modification to the
design, it is possible to estimate performance and power
efficiency trade off to identify optimized workload distri-
bution. Our approach shows that, for N-body computa-
tion, the fastest design which involves 2 CPU cores, 10
FPGA cores and 40960 GPU threads, is 2 times faster
than a design with only FPGAs while achieving better
overall energy efficiency.

1. INTRODUCTION
Utilizing multiple cores to perform computation in

parallel is one of the most promising ways to improve
performance in advanced computer systems. Besides
multi-core processors, it is also possible to achieve this
parallelism through customized cores in reconfigurable
logic or massively parallel processors in a GPU (graph-
ics processing unit). While computation time decreases
with increasing parallelism, power consumption is now
a critical consideration for computer systems.
In an ideal homogeneous architecture, processing ca-

pability and power consumption are evenly distributed
among its cores. Thus the decrease of computation time
and the increase of system power are linear with the
number of active cores. So the total energy cost (the
Power-Time product) of solving a particular problem
is constant. However, these assumptions are not valid.
First, performance improvement suffers from the law of
diminishing return such that speedup may not scale lin-
early with the number of cores. Second, not all energy
consumed by the system contributes to useful compu-
tation. Power consumption overhead is not linear with
the number of active cores. Third, the achievable per-
formance is limited by architectural factors such as I/O
bandwidth and cache size. Conflicts and arbitration
of critical resources degrade performance. The situa-
tion becomes more complicated when different types of
multi-core processing units are involved. It is impor-
tant to optimize the energy and power efficiency for
such platforms.

In this work, we consider a single machine containing
heterogeneous multi-core processing units: multi-core
CPUs, custom cores in FPGAs (Field Programmable
Gate Array), and massively parallel GPUs. CPUs are
the most common multi-core computing device. To in-
crease the parallelism of an application, FPGAs and
GPUs are usually used as hardware accelerators. These
accelerators are often connected to the CPU through
the host system bus. Our aim is to use automated power
profiling techniques to find the most energy efficient de-
sign (measured by the number of operations per joule)
for an application, and compare that with the design
with the highest performance.
There are studies in power modelling for FPGAs and

GPUs and various models have been proposed [1–6].
Some of these studies provide analytical treatment of
device power behaviour. In this work, we adopt a com-
plementary approach based on profiling with actual per-
formance and power consumption measurement, the re-
sults from which are used in calibrating simplified ana-
lytical models. Our approach reveals, for the first time,
the impact of parallelism in different types of proces-
sors on speed, power consumption and energy efficiency.
The novel aspects of our approach include:

- A technique for profiling performance and power
characteristics of various multi-core accelerators.
The approach can be applied to applications for
identifying trade-off between performance, power
consumption and energy efficiency of systems based
on heterogeneous accelerators.

- Facilities to measure, control and optimize power
efficiency for heterogeneous accelerators automati-
cally. Current supported hardware devices include
multi-core CPUs, FPGA accelerator boards and
GPU platforms.

- An application-specific model for estimating the
achievable energy efficiency. The model makes use
of profiling results to estimate the performance of
different multi-core processors. Two applications
targeting CPU, FPGA and GPU illustrate the ef-
fectiveness of our approach.

The rest of the paper is organized as follows. Sec-
tion 2 reviews previous work on power, performance
and energy modelling of hardware accelerators. Sec-
tion 3 presents a systematic approach to profile power
efficiency on various hardware accelerators. Section 4
presents a power efficiency model and an optimization

ACM SIGARCH Computer Architecture News 8 Vol. 39, No. 4, September 2011

process for systems with heterogeneous processing units.
Section 5 applies the profiling and optimization approach
on an N-Body application and an Asian option pricing
application for a system with CPU, FPGA and GPU.
Section 6 summaries the achievements of this work.

2. BACKGROUND
In 2008, a power model [1] was proposed to predict

and reduce runtime power consumption by considering
the voltage, frequency and parallelism parameters as
well as the performance requirement for an application.
Runtime results are collected by instruments to provide
data for an empirical model which adapts voltage and
concurrency parameters. In 2009, a fine-grained power
management scheme was proposed by moving threads
between cores with heterogeneous power-performance
ratios [2]. The overhead of changing thread location
is significantly less than that of scaling the voltage or
frequency of the core on which the thread is currently
running. These methods require precision timing in-
strument and training for the model.
Power consumption issues also attract much attention

in the FPGA community. In 2005, a multi-level power
modelling framework was proposed for the VPR tool [3].
The framework models both dynamic and static power
characteristics of the connections, lookup table clusters
and transitional glitches. In 2010, a method was pro-
posed to optimize the degree of parallelism based on
effects of execution energy and reconfiguration energy
in an FPGA [4]. This work achieved significant energy
reduction in filter designs by runtime reconfiguration of
coefficient-optimized modules.
As GPUs are becoming mature platforms for general

purpose computing, interest in their power and energy
efficiency is rising. In 2008, an early study [5] measures
the real-time energy behaviour of GPU and locates the
break-even point of the power-performance trade off of
an example in the CUDA SDK. In 2009, power measure-
ment of the major components inside a GPU platform
including the processing cores and the memory hierar-
chy was reported [7]. In the same year, more compre-
hensive experiments are performed [6]. Using CUBLAS
and ATLAS as the workload in the experiment, real-
time measured values are identified by inserting special
workload as time markers.
Our approach does not require precision timing in-

struments or special instrumentation. It is applicable
to a wide range of applications.

3. PROFILING APPROACH

3.1 Parameters and Measurement
Our experiments measure computation time and power

consumption. These measurements provide the basis
for power-performance trade off and optimizations. A
program for a specific algorithm often needs to per-
form tasks which are not made explicit in the algorithm.
These tasks, such as data formatting and memory man-
agement, are considered as overhead. The total run-
time of a program is the sum of the time overhead (To)
and the computation time (Tc), Ttotal = To + Tc. In
this work, we focus on Tc which is defined as the time

Design Variable
Identification

Implementation

Schemes

Source
Modifications Designs

ReferencceAlgorithm

Data Set
Designs for

Profiling

Profiling

Results
Profiling

Process

Measurement

Test Vector

Multi−Core

Specifications

Generation

Setup

Figure 1: A profiling flow for assessing power-
performance trade off in multi-core platforms.

Table 1: Common Variables
Name Platforms Meaning

application-specific

loop count N/A kernel loop iterations
bytes/core N/A data for one core
data size N/A total data size
bytes/flop N/A data:operations ratio

platform-specific

active cores (nc) all active cores assigned
threads (nt) CPU/GPU threads created
thread blocks (ntb) GPU # of thread blocks
threads/block (tpb) GPU # of threads per block
frequency (cf) FPGA core frequency

spent on the algorithm kernel. In our profiling method,
the accelerators in the system are considered as power
consuming atomic modules. The characteristics of the
specific algorithm and implementation are captured in
the measurements. As we consider the total power con-
sumption of the system, its idle power consumption is
also covered in this work.

3.2 Profiling Flow
After identifying the properties to be measured, the

design techniques and the profiling procedures are pre-
sented here. Each multi-core platform has specific fea-
tures which should be captured in different ways. Fig-
ure 1 shows the steps in this profiling flow.
In the profiling flow, the first step is to extract rep-

resentative design variables which can be varied to ex-
plore different implementation schemes. There are two
types of variables: ones depending on the application
and the data set, and ones depending on the type of
multi-core computing platform. Table 1 presents some
common variables used in the profiling flow. This is not
a complete list and not all of them are applicable ev-
ery time. Application developers need to verify these
application-specific and platform-specific variables.
It is important to profile the implementations using

proper data set for accurate results. This is achieved
by using sample data sets which target full application
execution. The test vector generation process can be
embedded in the modified source code such that it can
provide data segments in suitable size according to the
profiling variables. Since our measurements are in the
scale of seconds, the experiments may need to repeat
the kernels for a prolonged execution time. The power
consumption of the complete system is measured and
recorded by monitoring software connected to external
equipment, which is detailed in Section 4.

ACM SIGARCH Computer Architecture News 9 Vol. 39, No. 4, September 2011

The profiling process is performed by running the
modified designs in different implementation schemes
to capture the impact of energy efficiency due to the
changes in design variables. This can be automated by
exploiting the embedded features of the modified imple-
mentation, and by appropriate scripting programs.
First, the original application is modified using tech-

niques discussed in Section 3.3 for each type of multi-
core devices. The modified CPU and GPU programs
have parametrised workload distribution and synchro-
nization code segments. So an implementation can be
generated by altering the parameters and recompiling
the source code. Due to the long synthesis time, the
FPGA program adopts a unified interface supporting
parameter alteration at run time without recompiling.
All of these programs will also monitor and output the
execution time for further analysis.
Second, developers can select a set of discrete vari-

able values to reduce the effort in exploring the design
space. These values and their corresponding positions
in the program are captured in a configuration file. A
profiler written in Perl is used to help automating the
evaluation tasks. The profiler reads in the configura-
tion file and performs the necessary changes to gen-
erate the required executables. These executables are
then launched and monitored. At the same time, the
external power monitoring program records the power
consumption behaviour during each execution.
Finally, the profiling results are stored in a table used

to estimate the power-performance trade-off by meth-
ods such as piecewise linear approximation. An power
estimator with interpolation function is created for pro-
cessing profiled data and user input constraints.

3.3 Device Specific Profiling Techniques
We use OpenMP to parallelise a design for a multi-

core CPU platform. The main loop is partitioned so
that each thread has an identical kernel. The workload
is evenly distributed among threads. To enable design
space exploration, the reference design is modified to
support creating different number of threads by varying
the per-thread workload distribution in each iteration.
Assigning a single thread to each core may not fully

utilize the silicon resource due to memory access la-
tency of the cores and data dependency of the kernel.
On the other hand, performance does not scale linearly
with the number of threads due to factors such as cache
efficiency, internal pipelining of the cores and thread
management overhead. The profiling experiment starts
with a single thread and increases the number of threads
until saturation.
Figure 2 shows a common architecture for profiling

multi-core FPGA design. Unlike multi-threaded CPU
implementation, more complicated mechanisms are used
to facilitate the profiling functions for FPGA. First,
communication to external devices such as host CPU
and memory modules is usually fixed with a predefined
speed. If the operating frequency of the cores is changed
in each experiment, synchronizing logic is required to
enable correct communication across different clock do-
mains. For this reason, asynchronous FIFOs between
customized cores and external interface are inserted.
The clock source to the cores under test is generated by

Collector

Data

Distributor

Data

DCM

FIFOs
Output

Input
FIFOs

DCM

External

Memory

Clock
Source

External

DCM

memory clock

host clock

co
re

 c
lo

ck

fr
eq

.
re

g
en

ab
le

 r
eg

co
re 0

co
re 1

co
re 2

co
re n

H
o

st
 I

n
te

rf
ac

e

FPGA

Figure 2: Common architecture of profiling a
multi-core FPGA design.

a digital clock manager (DCM). Host software is able to
configure the frequency of this DCM at runtime before
each experiment.
Second, it is difficult to remove a core from a config-

ured FPGA device without resynthesizing the design.
Thus the profiling version of FPGA design controls the
number of active cores using independent enable sig-
nals. The host program sets the enable vector at the
beginning of each experiment. The major modification
is to generalize the workload distribution circuit.
We represent and explore the GPU implementation

schemes in a 2D space. The first dimension is the num-
ber of threads per block (tpb) and the second dimension
is the number of thread blocks (ntb). GPU architecture
usually limits the maximum value of tpb while the ntb is
usually defined by the application developer. These two
variables determine the utilization of the GPU hardware
(mostly FPU cores) and thus the power consumption
and performance of the specific application.
To enable the profiling functions in a GPU imple-

mentation, The tpb and ntb values are parametrised by
command line operation. The kernel is modified to in-
clude a loop in which the iteration count depends on
the tpb and ntb values. The amount of data processed
by the kernel adapts to the implementation schemes.

4. MODELLING AND OPTIMISATION
Continuous power monitoring facilities are installed

for the experiments. A FLUKE i30 current clamp is
used to measure the (host) input AC current, Ih. This
current clamp has S = 100mV/A output sensitivity in
±1mA resolution. The output of the clamp, Vh, is mea-
sured, in mV scale, by a Maplin N56FU digital multi-
meter (DMM). The readings on the DMM is collected
and recorded by the host computer through USB in-
terface. The open source QtDMM software is used as
the retrieving and logging tool. The logger is set to col-
lect readings in a sample period of sp = 0.1 seconds and
write them to a file with time stamp. Since Vh = S×Ih,
the actual power, Ph, is automatically calculated by the
framework using the following equation where Vp = 220
Volts is the main power voltage:

Ph = Ih × Vp = Vh/S × Vp (1)

The computation time of the application under pro-
filing is measured by recording time stamps before and
after the kernel execution. The gettimeofday() func-
tion is used to output the time stamps and compute the

ACM SIGARCH Computer Architecture News 10 Vol. 39, No. 4, September 2011

difference between them. These time stamps are also
used in computing the energy consumption of the ker-
nel. After aligning them with those inside the QtDMM
log file, a user can extract the encapsulated readings
and integrate them to find the total energy consumed
during the kernel computation period as:

Eh = sp ×
∑

Ph[i] = ((sp × Vp)/S)×
∑

Vh[i]. (2)

Here Ph[0], Ph[1], ... correspond to the system power
consumption in each sample. This method measures the
total energy consumption of the host system including
all accelerators. To find the active energy consumption
of a specific kernel, the idle system power is subtracted
from the measured reading. In our testbed, the idle
system power is around 160 Watts.
We use a profiling based application-specific model

to capture system behaviour. For example, many ap-
plications contain kernels of loop structure with a fixed
number of iterations and a fixed number of operations
inside the loop body. Even in this simple form, com-
plex behaviour may be experienced by the system due
to the execution environment and the platform architec-
ture. Such complexity is difficult to be captured in pure
mathematical model while our profiling process can pro-
vide useful information in practice.
In our current implementation, the profiling results

are stored in tabular format with the parameter values
and the measured results in a row. The performance
values are recorded as kernel computation time in sec-
onds. The power consumption results are recorded as
the average power reading in Watts. The energy result
is computed as in Equation 2.
Linear interpolation is used in characterising perfor-

mance and power consumption of implementation schemes
based on the profiling functions for each multi-core ar-
chitecture. The modeling functions for the CPU, FPGA
and GPU are in the form of: ∗c(nt), ∗f (nc, cf) and
∗g(tpb, ntb). The ∗ symbol can either be P for power,
E for energy or T for kernel computing time. Table 1
shows a summary of the parameters. Additional checks
are required in the interpolation to avoid infeasible im-
plementation schemes.
The profiling and modeling techniques are for appli-

cations running on a single type of multi-core archi-
tecture. For systems with multiple types of multi-core
processors, it is useful to allow heterogeneous proces-
sors to work collaboratively on a single application. We
extend our approach below to cover a system with mul-
tiple accelerators.
To capture energy efficiency, we define MFOpJ as

Millions Floating-point Operations per Joule. For a spe-
cific implementation I, it is calculated as:

MFOpJ(I) = (O(I)× 10−6)/E(I). (3)

Here O(I) denotes the number of floating-point (fp)
operations required by I, and E(I) is the energy con-
sumed during the execution of I. We focus on floating-
point operations since they are usually the performance
bottleneck and the power hungry component in the ker-
nel. The total number of fp operations of a kernel, K,
is computed as

O(I) = lcount(K)× lsize(K), (4)

where lcount is the total number of iterations of the
main-loop (i.e. the number of times the computation
kernel is called) and lsize is the total number of fp op-
erations inside the kernel. By substituting Equation 2
and 4, we can expand Equation 3 to:

MFOpJ(I) =
lcount(K)× lsize(K)× 10−6

((sp × Vp)/S)×
∑

Vh[i]
. (5)

The unified MFOpJ unit models the behaviour of a
specific application running on multiple types of multi-
core platforms. It allows evaluating trade-off between
different implementation schemes on the same hard-
ware, and between different hardware architectures.
Utilizing theMFOpJmodel, several steps are required

to achieve optimised energy-performance trade off.

1 The software reference design is analyzed to ex-
tract the lcount and lsize parameters of the kernel.

2 Representative configurations (with the nt, nc and
cf parameters) are implemented.

3 The kernel power and execution time are measured
and used to obtain the MFOpJ merit as shown in
Equation 5.

4 The MFOpJ values of other design configurations
are obtained by an interpolation program.

5 The heterogeneous multi-accelerator efficiency is
modeled by eliminating duplicate system energy.

6 The MFOpJ is estimated for design spece explo-
ration and energy-performance optimisation.

5. CASE STUDIES AND RESULTS

5.1 Implementation Platform
The host platform is an HP z400 workstation with

an Intel Xeon W3505 CPU at 2.53GHz. The Alpha-
Data ADM-XRC-5T2 acceleration card has one Xilinx
Virtex-5 XC5LX-330T FPGA device and is attached
to the host system through a 8x PCIe interface. The
nVidia Tesla C1060 accelerator has a GTX280 GPU
chip at 1.3GHz and is interfaced to the host through a
16x PCIe slot. Since it is difficult to isolate the power
consumption of these devices from other host peripher-
als, we instead measure the total power consumption at
the input of the power supply unit.
The host system runs a Linux OS with 2.6.33.4 ker-

nel. Intel C Compiler (ICC) 11.1 is used to compile the
CPU based implementations which are optimized with
the -fast flag. Thread parallelization is implemented
using the OpenMP extension. The FPGA design is syn-
thesized and implemented using Xilinx ISE Design Suit
version 12.1 with highest optimization effort level en-
abled in all steps for maximum speed. The GPU imple-
mentation is compiled and executed using the nVidia
CUDA 3.0 environment.

5.2 N-Body Simulation
Applying the steps in Section 4, the MFOpJ merit fig-

ures of this example are obtained. First, we identify the
lcount(K) and lsize(K) values as shown in the next para-
graph. Second, we implement multiple designs based
on the accelerator specific parameters and measure the
performance as shown in Figure 3. A full design space

ACM SIGARCH Computer Architecture News 11 Vol. 39, No. 4, September 2011

 140

 160

 180

 200

 220

 240

 260

 280

 0 10 20 30 40 50 60 70 80 90

p
o

w
e

r
(W

)

time (s)

N-Body High Performance

Figure 3: Power consumption of CPU, FPGA
and GPU for N-Body simulation.

exploration is then performed by interpolation based on
the measured results as shown in Figure 4. This merit
helps us to identify the most energy efficient configura-
tion of FPGA implementation.
The computation inside a single iteration of the kernel

consists of 20 single precision floating-point operations.
This kernel is iterated for N2 times in a nested loop
structure for one time step in simulation. In the ex-
periment, we use a data set with size N = 81920 and
partition the workload in the outer loop to minimize
data dependency and communication between separate
cores. SoO(nbody) = N2×20 = 1.34×1011. The FPGA
implementation achieves 320MHz for a single core and
200MHz for a 10-core design. The maximum number
of cores in FPGA is mainly limited by the available
DSP blocks used in the floating-point operators. The
decrease in frequency is due to the longer connection in
both control and data path.
Figure 3 shows the power behaviour of the three types

of multi-core devices when running the N-Body appli-
cation. In this experiment, the same data set is used to
test the CPU, FPGA and GPU in three separate runs.
The three pulses in Figure 3 shows these activities in
the same order. The area under each pulse is the en-
ergy when the specific device is used. The GPU device
continues (for 15 seconds) to consume power after the
application is terminated. This is the device manage-
ment overhead of the GPU.
We first measure, in MFOpJ, the results of the CPU

based implementation when the number of threads in-
creases. The results show that, using Intel compiler,
we achieve 18 MFOpJ maximum efficiency and the effi-
ciency improvement stops after the number of threads
goes beyond 2, which is expected since our CPU has
two physical cores.
Figure 4 shows an interpolated surface for theMFOpJ

profiling results of the FPGA implementation. Number
of cores and core frequency are variables in the exper-
iments. From the results, we can see that the design
with 10 cores at 200MHz is the most energy efficient
scheme for FPGA. The performance is relatively static
with the frequency changing, while it is more linear with
respect to the number of cores. This is due to the fact
that the possible range of frequency variation is only
(320 − 200)/200 = 60% while there are 10 times dif-

Figure 4: FPGA based N-Body simulation re-
sults (interpolated).

Figure 5: GPU based N-Body simulation results
(interpolated).

ference in the core number. Although the surface in
Figure 4 extends to all implementation schemes in the
full range of both variables, the practical interpolation
function will identify the infeasible schemes and returns
invalid MFOpJ values for them.
Figure 5 shows the MFOpJ results of GPU designs

obtained in a similar way as in the FPGA experiments.
The variables are the number of thread blocks (ntb) and
number of threads per block (tpb). From the results, we
observed that power consumption and performance are
relatively static when ntb ≥ 4 and tpb ≥ 128. The
MFOpJ performance drop significantly when the vari-
able values go below these threshold.

5.3 Asian Option Pricing
The kernel of the Monte Carlo (MC) Asian Option

simulation is to evaluate the pricing values along a given
path. The MC simulation size is set to N = 106 and
each path contains step = 3650 intermediate points. 14
floating-point operations are required to calculate one
data point and thus O(asianopt) = N × steps × 14 =
5.11 × 1010. The paths are then partitioned and dis-
tributed to different cores to achieve parallelism. In this
application, random numbers are generated on the same
core where they are processed and the outputs are accu-
mulated from the cores. So the effects of memory access
and data communication are negligible. Currently, op-
erations in fixed-point arithmetic in the random number
generation function are not covered in this experiment
since we focus on floating-point operations.
Figure 6 illustrates the power and performance char-

acteristics of three performance optimized implementa-
tions running on the CPU, FPGA and GPU hardware.
To profile this application, the same set of variables

ACM SIGARCH Computer Architecture News 12 Vol. 39, No. 4, September 2011

 140

 160

 180

 200

 220

 240

 260

 280

 0 10 20 30 40 50 60 70 80 90

p
o

w
e

r
(W

)

time (s)

Asian Options High Performance

Figure 6: Power consumption results for differ-
ent types of multi-core processors for Asian op-
tion pricing.

Table 2: Results Summary
Designs Schemes Power Time MFOpJ

(W) (s)
N-Body simulation

CPU nt ≥ 2 196.7 36.6 18.6
FPGA cf = 200, nc = 10 167.6 7.4 108.2
GPU ntb ≥ 60, tpb ≥ 128 264 9.26 54.9
Hybrid 1 - 301 3.9 114.3

MC Asian option pricing

CPU nt ≥ 2 196 35.3 7.4
FPGA cf = 200, nc = 10 177 1.83 157.8
GPU ntb ≥ 60, tpb ≥ 128 266 2.57 74.7
Hybrid 2 - 277 1.1 167.7

are used as in our N-Body simulation. The number
of FPGA cores ranges from 1 to 10, operating from
200MHz to 320MHz. As in the N-Body example, re-
sults are obtained for different implementation schemes
by changing the design variables. The results show that
this design can be scaled more linearly than the N-Body
simulation due to the absence of memory and commu-
nication overhead.

5.4 Summary of Results
The experimental results of the two applications are

summarized in Table 2. The first three designs of each
application are optimized for performance. In the hy-
brid designs, the workload is partitioned to different
processors according to their performance-optimized re-
sults. The objective is to allow the processors to finish
the assigned workload such that the total computing
time is minimized. In the N-Body application, the hy-
brid design includes both CPU, FPGA and GPU imple-
mentations in the same configuration as shown in the
table. The workload distribution is 10% to CPU, 50%
to FPGA and 40% to GPU. In the Asian option pricing
application, since the CPU performance is so slow that
only FPGA and GPU are used: 60% to the FPGA and
40% to the GPU.
Although these hybrid designs are created for perfor-

mance, they also achieve the best MFOpJ scores. This
is because of the large idle power consumption (around
160W) of the host system. When this idle power be-
comes the dominant factor, shorter runtime will con-
sume less idle energy and thus less overall energy.

The combined energy efficiency cannot be obtained
by summing the MFOpJ values of all separate multi-
core processors, since the idle components will be re-
peated. We can instead use the active power compo-
nent MFOpJ’, which is different from those shown in
Table 2. For example, the FPGA and GPU N-Body
designs score 2387 and 139 in terms of MFOpJ’. In this
case, the most efficient design in terms of dynamic en-
ergy would be using the FPGA alone.

6. CONCLUSION
This paper presents an approach of optimizing de-

signs for energy efficiency and computing performance
based on three different multi-core architectures: CPU,
FPGA and GPU. Our approach includes the measure-
ment facilities, the implementation profiling flow, and
the combined energy-performance model and optimisa-
tion process. This approach has been applied to several
applications, two of which are included in this paper.
Future work includes supporting a wider range of ap-
plications and FPGA run-time reconfiguration.

Acknowledgement The support of Imperial College
London Research Excellence Award, UK Engineering
and Physical Sciences Research Council, Alpha Data,
nVidia and Xilinx is gratefully acknowledged. The re-
search leading to these results has received funding from
the European Union Seventh Framework Programme
under grant agreement number 248976 and 257906.

7. REFERENCES
[1] M. Curtis-Maury et al., “Prediction models for

multi-dimensional power-performance optimization
on many cores,” in Proc. Int. Conf. on Parallel
Architectures and Compilation Techniques, 2008,
pp. 250–259.

[2] K. K. Rangan et al., “Thread motion: fine-grained
power management for multi-core systems,”
SIGARCH Comput. Archit. News, vol. 37, no. 3,
pp. 302–313, 2009.

[3] F. Li et al., “Power modeling and characteristics of
field programmable gate arrays,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst.,
vol. 24, no. 11, pp. 1712–1724, Nov. 2005.

[4] T. Becker, W. Luk, and P. Y. K. Cheung,
“Energy-aware optimisation for run-time
reconfiguration,” in Proc. IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM), 2010, pp. 55–62.

[5] M. Rofouei et al., “Energy-aware high performance
computing with graphic processing units,” in Proc.
Workshop on Power Aware Computing and
Systems, 2008.

[6] R. Suda and D. Q. Ren, “Accurate measurements
and precise modeling of power dissipation of
CUDA kernels toward power optimized high
performance CPU-GPU computing,” in Proc. Int.
Conf. on Parallel and Distributed Comput. App.
and Tech., 2009, pp. 432–438.

[7] S. Collange et al., “Power consumption of GPUs
from a software perspective,” in Proc. Int. Conf. on
Computational Science, 2009, pp. 914–923.

ACM SIGARCH Computer Architecture News 13 Vol. 39, No. 4, September 2011

