
CUSTOMIZABLE SECURITY-AWARE CACHE FOR FPGA-BASED SOFT PROCESSORS

Maciej Kurek, Ioannis Ilkos, Wayne Luk

Department of Computing, Imperial College London

ABSTRACT
This paper describes a security-aware cache targeting field-
programmable gate array (FPGA) technology. Our design
is based on an architecture with a remapping table, which
provides resilience against side-channel timing attacks. We
show how this cache design can be optimised for FPGA re-
sources by an index decoder with content addressable mem-
ory structure, which can be customized to meet various re-
quirements. We show, for the first time, how our security-
aware cache can be included in the Leon 3 processor, and its
performance and resource usage are evaluated.

1. MOTIVATION AND CONTRIBUTIONS

The architectural schemes employed by modern processors,
such as caches and branch predictors, are of great signif-
icance towards achieving speed and efficiency. However,
their inherent characteristics also potentially expose secu-
rity vulnerabilities. While these vulnerabilities vary in their
impact and difficulty of exploitation, they can be as danger-
ous as the exposure of cryptographic keys. Data cache side-
channel attacks are such an attack vector extensively studied
with various mitigation techniques proposed. The problem
with most of the methods of attack prevention is the speed
and power efficiency degradation. A new way of countering
the problem was proposed without the drawback of perfor-
mance degradation [1]: a cache architecture that is not only
security-aware, but also has a performance advantage over
the traditional cache architecture. However, it has been de-
signed using a transistor-level description, targeting imple-
mentation in application-specific integrated circuit (ASIC)
technology. The main objective of this research was to de-
sign, present and evaluate a fast and resource-cheap method
of countering the side-channel cache timing attacks target-
ing FPGA based devices.

This paper describes a customizable security-aware cache
inspired by [1]. Our contributions are:

• An index-remapping circuit targeting FPGA technol-
ogy, which is used in building customisable security-
aware caches with different amounts of associativity
(Section 3).

• Implementation of our design on the M5 simulator
and Xilinx FPGAs, providing a security-aware cache

for the Leon-3 soft-processor with and without a Mem-
ory Management Unit (MMU) (Section 4).

• Evaluation of our approach, showing the resource us-
age and performance of the modified Leon-3 proces-
sor. In contrary to ASIC, the increased associativity
not only leads up to 25% higher clock speeds, but also
decreases the lookup table (LUT) and flip flop usage
respectively by 7% and 30% at the possible expense
of increasing miss rate, depending on specific appli-
cations (Section 5).

2. BACKGROUND

Side-channel cache attacks make use of timing information
to infer additional information about an algorithm’s state.
There are three types of cache based attacks: trace-driven
attack, the access-driven attacks and cache timing attacks.

Cache side-channel attacks exploit the variance in la-
tency of memory accesses due to the cache. Knowing the
cache architecture and the replacement policy of the target
processor over a number of processor cycles, an attacker
uses the channel created by the inherent cache properties in
order to infer confidential data. There are many examples
of various side-channel attacks, the most prominent being
cache side-channel timing attack against AES [2, 3, 4].

Side-channel attacks pose a serious threat to modern com-
puter systems. A range of potential countermeasures have
been developed to counter the problem, but unfortunately
their usability is severely limited due to performance degra-
dation they impose on the system. For example, Disabling
the Cache solves the problem of cache side-channel attacks
but imposes large performance degradation. Constant Tim-
ing programming requires code recompilation and slows
down the application, furthermore it only forces the attacker
to use a larger number of samples to extract the desired in-
formation. Cache Partitioning prevents the attacker from
information theft by denying the possibility to interfere with
other users cache partition [5], but at the same time limits
usable cache size.

The main novel idea behind the security-aware cache is
the addition of a layer of indirection between the cache in-
dices and the access of actual cache lines, so that each mem-
ory block can be assigned to an arbitrary cache line [1]. The

1



Memory

kn 2 0

12 kn

Virtual cache
(n + k) index bits

Physical cache
n index bits

0

12 n

kn 2

Fig. 1: Mapping memory to the physical cache.

index bits of the memory address are used to access a remap-
ping table (RMT), which in turn returns the actual cache line
number to be accessed. Additionally, this remapping stage
allows us to have an arbitrarily large virtual cache accessed
by the index bits of the address, which can be remapped to
a smaller physical cache.

We utilize a physical cache indexed by n bits (having to-
tal size (2n) × blocksize bytes), but we extend the virtual
cache by k bits. This provides greater resilience to conflict
misses. The virtual cache does not exist. Instead, it is imple-
mented by associating a Line Number Register (LNReg) to
each physical cache line, which stores the (n+k) bits of the
virtual cache line (the index) and is used at the remapping
stage. The concept can be clearly seen in Fig. 1.

Along with the remapping data, the LNReg stores an
additional field containing the context of the process the
cache line belongs to. This is used in the Security-Aware
Random Replacement Algorithm (SecRAND) [1] in order to
protect processes from the external interference. There are
three types of misses in SecRAND: (a) Index misses occur
if there is no LNReg holding the needed index. (b) Con-
text misses happen when there is an index match, but either
the requested or stored line has a different context, then the
context is protected. Protected block was written to cache
by a process wanting to be safe against channel attacks from
processes from a different context. (c) An unprotected tag
misses. This means that the index is matched with a line and
context but a tag does not match the requested address.

The replacement policies are different for each type of
miss. In case of a regular miss, the behaviour of the cache is
the same as a direct-mapped cache. In the case of a context
miss, interference between different processes might leak in-
formation. Thus, we do not cache the incoming data from
the memory but send them directly to the CPU pipeline.

However, in order to substitute for the cache miss that oc-
curred, we evict a random cache line from our cache. This
eviction also serves as a measure to avoid one process’ mo-
nopoly on the cache. In case of an index miss we select a
random cache line, evict it if necessary and update it.

The security of the cache stems from the fact that given
an access to a cache line from a victim process, the attacker
process (with a different context identifier) can observe the
eviction of any cache line number with equal probability.
The new cache provides security against all of the previously
mentioned types of cache side-channel attacks. The speed of
the cache is a result of the improved conflict miss ratio (due
to the larger indices used to map the cache) and the imple-
mentation of the remapping stage with minimal overhead
atop the address decoder, using transistor-level granularity.

3. SECURITY AWARE CACHE ON FPGA

Any device that is designed for ASIC can, in principle, be
implemented on an FPGA device. The challenge is to make
the resulting FPGA circuit efficient. The theoretical descrip-
tion of the security-aware cache address decoders implies a
content addressable memory (CAM), which is used to find
the correct index, and to issue index hit/miss. It is the ana-
logue of the LN register array in the ASIC SecRAND [1]
as well as the main cache sub-component differentiating the
two designs.

The main challenges with security-aware cache FPGA
implementation are related to the FPGA CAM implemen-
tation: high resource cost of CAM memories, multi-cycle
read/write CAM operations, and increased critical path of
CAM combinational word matching circuit.

To implement the LN registers, our design makes use of
a CAM index decoder with a combinational word match-
ing circuit. It leads to a cache design which is called the
single-set security-aware cache. To counter the excessive
resource demand of FPGA CAM implementation, we pro-
pose a new cache architecture which we call L-associative
security-aware cache. In contrary to ASIC, the increased
associativity not only leads to higher clock speed but also
improves the resource utilization of the design.

3.1. Single-set security-aware cache

In order to make the design portable, we make use of re-
sources that are synthesizable on any FPGA platform. We
design the CAM using a register file along with a combina-
tional search circuit with an encoder (Fig. 2).

The CAM memory matching circuit extends cacheline
addressing circuitry remapping the indices before they are
used to access cache lines. The CAM matching is done
in the same cycle as the access to cache line. Note that
the CAM matching circuit effectively becomes part of the
cacheline addressing circuitry logic, therefore from control

2



perspective read/write operations can be performed in the
same way as in an unmodified cache. This means that any
existing design can be extended with security-aware cache
features without modifying the cache control.

When an access is issued to the tag/data array, we do not
use the usual address index of width n to access a tag/data
line. We access the CAM memory decoder with index of
width n+k where k is the extended index used to improve
performance [1]. This index is later mapped to a tag/data
array with n lines. When we issue a write to cache if the
index that we search resides in the cache, we use the address
provided from the CAM memory to access the appropriate
cache line. If it does not reside in the CAM, we use the
number generated from a random number generator to both
index tag/data line as well as map the index to a line in the
CAM memory. This way we ensure a single-cycle write to
the tag/data lines and the CAM memory. To reduce the po-
tential critical path, we register the write parameters, and
perform write to CAM in the following cycle. Doing that
we need to check whether a write is issued in the previous
cycle, and whether there is an index match. The index from
the write buffer has precedence over the CAM mapped in-
dices as the written index is more recent.

3.2. Associative security-aware cache

The previously described cache can be expensive in terms of
both LUTs and flip flops. The L-Associative security-aware
cache (where L is the number of sets) is based on applying
associativity principle to the single-set security-aware cache.
As depicted in Fig. 3, we use one index remapping scheme
to map indices in all of the sets. This decreases the resource
usage up to L times compared to a single-set security-aware
cache with the same capacity.

As the cache makes use of a number of sets, and only
one line address decoder, the set validation mechanism is
redesigned. The set validation control mechanism can be
based on a number of different resources, and is highly de-
pendent on the choice of the underlying CAM based de-
coder. We also extend the cache with a valid table. The
valid table stores L bits per line, each indicating whether a
set within a line is valid. In the ideal situation we can eas-
ily extend the tag array to incorporate valid tables, making a
cheap and fast extension.

The drawback of this design is that when a cache line
eviction occurs and an LNReg is updated, we invalidate all
of the lines that made use of the former index. The hit rate
degradation will depend on the application using the cache
as well as on the number of sets; the higher the associativity,
the higher the miss rate. The cache has the drawback of a
larger block-size, without the advantage of spatial locality.

The index 

remapping 

circuit

Tag bits Index bits RMT id

Data Id

=?

Conflict?

TagData Id Tag

Index Out

=?

Conflict?
Index hit

Fig. 3: L-associative security-aware cache index remapping
circuit, with L=2. RMT denotes the remapping table.

3.3. Security Algorithm

The replacement policy depends on the decoder we use and
on the cache write policy. If we use write-through policy, no
dirty block has to be written back to memory during a pro-
tected line tag miss. Write-back policy is not recommended
for this design. On a cache miss, all of the sets would have
to be written back to memory. This could cause stalls, or re-
quire large buffers as the bus is optimized for small blocks.

There are two versions of the algorithm that we can use
for the L-associative cache. The first is similar to SecRAND,
and assigns all of the sets to one context. It is similar to
increasing block size without increasing data pre-fetching.
We implement this version of the algorithm.

In the second version each set can have a different con-
text. On a tag miss involving a protected line, instead of
writing to a randomly selected set we choose one that is un-
protected (if there is one) and we write the new tag/data to
that set. If all of the sets are used within one line, we fol-
low the previous algorithm with the difference of invalidat-
ing one line within all of the sets. This version has perfor-
mance advantage, although there could be of a possible side-
channel achieved by over-accessing one line by an attacker.
Furthermore this version is resource-wise more expensive as
we have to store the context for every single set, as opposed
to storing a line in the previous version.

4. IMPLEMENTATION

4.1. The modified M5 system

We build upon the M5 simulation suite. We evaluate the
security-aware cache using both the Alpha and SPARC ISA.
The latter would provide results for comparison with the
FPGA implementation. We implement the new cache de-
signs by modifying the cache subsystem. The security-aware
replacement policy is implemented according to the cache
tags interface mandated by the simulator. Additionally, the

3



n+k

2n

Index Bits Write Bit

Index Out

Index Hit

Random Number

Decoder

Encoder

Index reg.

Write reg.

Write to reg.

n+k

Q

Q
SET

CLR

D

=?

Q

Q
SET

CLR

D

=?

Q

Q
SET

CLR

D

=?

n+k

=?

MUX
MUX

n

n

n

n

n

n+k

E

E

E

n+k

Tag/Data arrays

o The encoder is used to verify which register matches the 

index.

o The MUXs, AND gate and the OR gate are used to verify 

which index should be used to access tag/data arrays.

o On a read we have to verify, if the LNRegs were updated 

on the previous cycle. The write to register has 

precedence over LNRegs, as it contains the most recent 

data. 

o If we write to the cache, we have to check whether the 

LNRegs or write to register contains a given index, and if 

not return the random number to address tag/data 

arrays. This way we ensure single cycle read/write 

operations.

LNRegs

Fig. 2: Security-aware cache index remapping circuit. The E signal enables a register.

cache controller is enhanced to account for the extra infor-
mation on the types of misses required, as well as the new
write-back policies in case of an L-associative cache.

In order to perform the experiments, we use a series of
benchmarks to model the system workload accurately: the
Rijndael, Blowsfish and Sha benchmarks of the MiBench
suite [6] for embedded device benchmarking, the Qsort and
FFT benchmarks of the MiBench suite, the Linpack linear
equation solver and the Cache-chek benchmark.

The selection of the MiBench security suite is done on
the grounds that we want to examine how the new cache
designs fare specifically when it comes to cryptographic al-
gorithms, while Qsort and FFT are selected based on the fact
that they experience different behaviour during the cache op-
tions. The rest of the MiBench suite are left out because they
stress embedded CPU parameters, rather then the cache. Fi-
nally, the Linpack and cache-chek benchmarks are chosen
because they are known to put a burden on the cache.

4.2. Security-aware cache implementation

The main elements of our security-aware cache are the index
remapping circuit, validation mechanism, and replacement
algorithm.

While there is an elegant way of performing remapping
on top of the address decoder circuits in ASIC [1], FPGAs
do not support transistor-level granularity. Since FPGA block
random access memory (BRAM) already contains its own
decoding logic (which cannot be bypassed), we remap an
index address to another index address to be decoded by the
BRAM circuits, instead of remapping the index address di-
rectly to a cache line selector signal.

In order to create a portable design, we implement the

remapping stage using flip-flops. Although intellectual prop-
erty (IP) CAM memories are available for nearly all FPGA
platforms, they are based on edge-triggered circuits [7] which
can lead to additional cycle penalty. This renders the cache
unportable, as it necessitates a redesign of the cache con-
troller while the latency of all memory instructions is in-
creased by one or more cycles, degrading the effective In-
structions Per Cycle (IPC) metric.

Given that we use memory-based remapping, we must
have a way of ensuring the validity of the remapped data for
all set blocks. In order to store validity bits for each of the
blocks for a cache set, we have two options: storing them
with the LNRegs or using the cache tag’s validation table.
The first solution is more expensive since it can greatly in-
crease the number of required flip flops of the design.

The next section describes the cache controller of the
Leon 3 soft processor to adopt our security-aware cache for
both MMU and non-MMU enabled designs, to disambiguate
between regular and index misses. Additionally, we shall
extend the MMU cache controller to identify context misses.

4.3. Leon 3 processor

LEON3 is an open source, SPARC v8 compliant CPU core
written in VHDL. It is designed primarily for embedded ap-
plications, combining high performance and low power con-
sumption. The processor uses a Harvard architecture, with
separate configurable data and instruction caches. The data
cache uses a write-through policy with no-allocate on write.
LEON3 either works without an MMU, or with the refer-
ence SPARC v8 MMU [8]. Therefore, its IP contains two
different cache controllers, with or without MMU support,
interfacing with the cache memory.

4



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
is

s 
ra

te

Cache miss rates (16 kB cache size)

DM

2way

4way

L = 1, k = 2

L = 1, k = 3

L = 2, k = 2

L = 2, k = 3

Fig. 4: Miss rates for 16kB cache across all benchmarks.
DM, 2way, 4way caches are not security-aware.

 

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 8 16 32

M
is

s 
ra

te

Cache size (kB)

Rijandael miss rates

DM
L = 1, k = 1
L = 1, k = 2
L = 1, k = 3
2way
L = 2, k = 1
L = 2, k = 2
L = 2, k = 3
4way
L = 4, k = 1
L = 4, k = 2
L = 4, k = 3

Fig. 5: Rijandael miss rates for different cache parameters.

We modify the LEON3 cache memory and data cache
controller to incorporate our changes. Given that the full se-
curity algorithm requires context information, we focus our
design on the single core MMU-enabled LEON3 processor
and use the single core non-MMU version as a testbed plat-
form for the remapping stage alone (i.e. the cache coherency
algorithms have not been modified).

The remapping stage is inserted as a layer between the
cache index generation of the cache controller and the ac-
tual BRAM memories holding the tags / data of the cache.
Subsequently, we modify the data cache controller in order
to implement the new cache replacement algorithm. We en-
hance the cache controller control register with two extra
fields, indicating if we are returning from an index miss or
a context miss. In order to incorporate the remapping vali-
dation mechanism in the tag array, we use the pre-existing
block valid bits (to avoid further costs) and modify them ac-
cordingly: whenever we require a set invalidation, we reset
the valid bits of all related cache blocks.

5. EVALUATION

5.1. Simulation

We present how the customization of the security-aware cache
using L (amount of associativity) and k (number of bits by

which we extend the index) as well as cache size affects
the cache hit-rate. We observe that the single-set security-
aware cache does not have a negative impact on cache per-
formance. Actually it reduces the miss rate due to the reduc-
tion of context misses, achieving the optimal miss rates for
the cache sizes of 16 kB and 32 kB.

We observe that increasing the associativity of the security-
aware cache tends to degrade cache performance. This is ex-
pected due to the eviction of multiple blocks in case of index
misses. We also observe, for Rijandael, that increasing the
k parameter does not improve the hit rate; in most cases it
actually degrades it. One reason is that the random set to be
evicted for each cache miss might be needed again and if so,
the eviction will result in additional cache misses. Using the
L-associative cache (which evicts multiple blocks) increases
the amount of data evicted, thus the probability of such ad-
ditional misses, resulting in larger performance penalty of
using higher k values.

The cache miss rates across all benchmarks for different
16 kB cache designs are depicted in Fig. 4. In some cases,
our security-aware caches do not degrade the performance
to a noticeable extent, while in some cases (such as FFT)
they are more effective. The Rijndael, Qsort and Linpack
benchmarks suffer noticeably when we use the L-associative
cache due to index miss evictions of multiple cache blocks.

5.2. Extended Leon 3 performance and customization

For FPGA synthesis, placement and routing of the Leon 3
processor we use Xilinx ISE 11.5. The testbed FPGA plat-
form is based on Xilinx Virtex 4 XC4VFX12. The selection
of this FPGA platform since it is a low-resource FPGA that
can stress our designs and allow us to pinpoint their disad-
vantages. The user can customize the cache with k and L
parameters in addition to the original Leon 3 parameters.

As depicted in Fig. 8, we observe a significant linear in-
crease of the LUT usage as the cache size increases. The ma-
jor causes of this increase are the additional logic required
for the encoding and decoding of the cache indices, as well
as the additional comparators required to compare the larger
cache indices. This problem is alleviated by using an L-
associative cache because for a given overall cache size, the
number of cachelines is reduced.

We compare L=(1,2,4), 8 kB, k=1 caches. The 4-set
cache achieves a 25% improvement and the 2-set achieves
a 11% improvement in terms of clock speed over the 1-set
cache. The flip flop utilization also improves (4068, 3060,
2879), and the 2-set cache achieves the best LUT utiliza-
tion (7311, 6728, 6846). We notice a speed advantage of the
4 kB security-aware cache over the 2-set ordinary cache in
terms of clock speed for k=1 and 3. The clock speed of the
8 kB security-aware 4-set cache is just 6% slower than the
corresponding ordinary cache.

5



 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 8

Fl
ip

 F
lo

p
s

Overall cache size (kB)

LEON3 - non MMU: Flip Flops

DM

L = 1, k = 1

L = 1, k = 2

L = 1, k = 3

2way

L = 2, k = 1

L = 2, k = 2

L = 2, k = 3

Fig. 6: Flip flop usage, without MMU

 

0

10

20

30

40

50

60

70

80

1 2 4 8

C
lo

ck
 S

p
e

e
d

 (
M

H
z)

Overall cache size (kB)

LEON3 - non MMU: Clock Speed

DM

L = 1, k = 1

L = 1, k = 2

L = 1, k = 3

2way

L = 2, k = 1

L = 2, k = 2

L = 2, k = 3

Fig. 7: Clock Speed, without MMU

We compare the two possible cache validation table im-
plementations, BRAM and flip flop. BRAM implementation
has an advantage in terms of achievable clock speed and re-
source usage. For an 8kB cache with L=2 and k=3, 8 kB
cache the difference between BRAM and flip flop based de-
sign in terms of LUTs, flip flops and clock speed is (8691,
4351, 59 MHz) and (8028, 4092, 61 MHz), at the slight ex-
pense of BRAMS.

Due to the additional index bits required for the remap-
ping stage, flip flop usage increases with k. The value of k
should be either 1 or 2, as increasing it beyond that imposes
resource cost with no hit rate improvement (Fig. 4-8).

Although the resource cost of the MMU and non-MMU
version of the design is different, they follow similar pat-
terns in terms of resource usage when adjusting the k and L
parameters.

6. SUMMARY

This paper describes single-set and associate security-aware
caches targeting FPGA technology. We show, for the first
time, how such caches can benefit the Leon 3 soft proces-
sor. The security-aware cache has several parameters and
features which results in a large design space. We know
that the impact of k and L on the design performance is non
trivial and application dependent, but there are a few gener-
alizations which we can make. For example, reducing the L
parameter will reduce the amount of resources used to im-

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 4 8

LU
Ts

Overall cache size (kB)

LEON3 - non MMU: LUTs

DM

L = 1, k = 1

L = 1, k = 2

L = 1, k = 3

2way

L = 2, k = 1

L = 2, k = 2

L = 2, k = 3

Fig. 8: LUT usage, without MMU

plement remapping stage linearly, while increasing the k pa-
rameter will increase the amount of decoding logic and stor-
age linearly. Increasing the block size will reduce resource
required, since fewer remapping registers will be needed.
Further work includes evaluating the resource and perfor-
mance impact of various combinations of the cache param-
eters with a wide range of benchmarks, and exploring tech-
niques for optimising such parameters automatically to meet
application-specific requirements.

Acknowledgement. The support of UK EPSRC, Xilinx,
and the HiPEAC Network of Excellence is gratefully ac-
knowledged.

7. REFERENCES

[1] Z. Wang and R. B. Lee, “A novel cache architecture with en-
hanced performance and security,” in MICRO 41. IEEE Com-
puter Society Press, 2008, pp. 83–93.

[2] D. Bernstein, “Cache-timing attacks on AES,”
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[3] J. Bonneau and I. Mironov, “Cache-Collision Timing Attacks
against AES,” in Cryptographic Hardware and Embedded Sys-
tems – CHES 2006, pp. 201–215.

[4] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and
Countermeasures: the Case of AES,” in Topics in Cryptology
- CT-RSA 2006, The Cryptographers Track at the RSA Confer-
ence 2006. Springer-Verlag, pp. 1–20.

[5] D. Page, “Partitioned cache architecture as a side-channel de-
fense mechanism,” http://eprint.iacr.org/2005/280.pdf, 2005,
retrieved June 15, 2010.

[6] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” IEEE International Workshop on
Workload Characterization, WWC-4, pp. 3–14, 2001.

[7] J.-L. Brelet, “Xilinx Application Note XAPP201: An
Overview of Multiple CAM Designs in Virtex Family De-
vices,” pp. 1–6, Dec 1999.

[8] D. Weaver and T. Germond (eds.), The SPARC Architecture
Manual, Prentice Hall, 1992.

6


