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Optimizing Hardware Design by Composing
Utility-Directed Transformations
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✦

Abstract—Utility-directed transformations involve changing a design to
optimize for given constraints while preserving behavior. These changes
are often achieved by techniques such as linear programming or ge-
ometric programming. We present a systematic approach composing
multiple utility-directed transformations for optimizing and mapping a
sequential design onto a customizable parallel computing platform such
as a Field-Programmable Gate Array (FPGA). Our aim is to enable
automatic design optimization at compile time. Design goals specified
by users drive the design transformations. Each utility-directed trans-
formation achieves part of the overall goal, and multiple utility-directed
transformations, connected by pattern-directed transformations, are
composed to fulfil the overall design requirements. The utility-directed
transformations in this work produce performance-optimized designs by
exploiting data reuse, MapReduce and pipelining for the target parallel
computing platform. Moreover, it is shown that performing transforma-
tions in different orders allows users to trade speed for resources, and
design performance for compile time. Several applications are used to
evaluate this approach on FPGAs. The system performance of a 64-bit
matrix multiplication is shown to improve up to 98 times compared to the
original design, in the target hardware platform.

Index Terms—Design optimization, data reuse, MapReduce, pipelining,
geometric programming.

1 INTRODUCTION

Hardware designers increasingly use high-level descriptions,
such as C, to ease design description, development and sim-
ulation, and to enable fast design space exploration. To meet
design goals, designers must apply multiple optimizations to
their design, making it more efficient but without affecting its
intended functionality. This makes it difficult for designers to
quickly optimize designs.

Compilation techniques have been developed to automate
optimization by using design transformations. Like the classifi-
cation of adaptation policies in automatic computing [1], most
of the transformations can be divided into two types: pattern-
directed transformations (PDTs) [2], [3], [4], [5] and utility-
directed transformations (UDTs) [6], [7], [8], [9]. Similar to
action policies [1], a PDT defines explicitly the design to
be transformed, the transformed design, and the conditions
that trigger the transformation. What is also needed is a
mechanism for designers to specify the desirable properties
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of the transformed design and algorithms that can find such
a design, rather than the transformed design itself which may
not yet be identified. UDTs model design goals that capture
desirable properties of the transformed design using utility
functions, and characterize design spaces using constraint
functions. Similar to adaption in utility function policies [1],
the transformation in a UDT is selected to achieve the mini-
mum/maximum value of the utility function in certain design
contexts including algorithm and hardware characteristics. As
a result, the UDTs provide designers with a convenient means
of describing complex optimizations.

PDTs have been widely used in existing compilation tools as
described in Section 2, while UDTs have been less frequently
used in design optimizations [6], [7], [8], [9]. This is because
there are challenges in using UDTs. First, UDTs require mod-
eling techniques to capture design contexts and the impacts
of optimization techniques on designs, i.e. the capability of
evaluating different transformation options. The complexity of
the models should also be taken into account. Second, UDTs
usually impose particular requirements on input designs, and
thus need support from front-end and back-end tools or manual
direction to complete the optimization process.

In this paper, we propose a new approach for design
optimization. The proposed approach provides multiple UDTs
with different optimization objectives, or with the same ob-
jectives but using different optimization techniques. PDTs are
used to preprocess designs, transforming them to the required
input forms for UDTs. In this way, multiple UDTs can be
composed to enable automatic and powerful design optimiza-
tions. This approach allows users to work at more abstract
design levels, where design goals are described and, where
necessary, desired transformations and transformation orders
can be specified. The overall design goal is then achieved
by a sequence of transformations, each fulfilling a particular
subgoal. For instance, if one wants to minimize the execution
time of a design, then one could first choose loop pipelining,
then reusing data and finally parallelizing loops.

The contributions of this paper are:
• a systematic approach composing utility-directed trans-

formations for automatic design optimization (Section 3);
• utility-directed optimizations based on geometric pro-

gramming (GP) models, concurrently exploiting opti-
mization techniques: data reuse, MapReduce, and pipelin-
ing (Section 4); and

• an evaluation of our approach based on three benchmarks
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Fig. 1. A sequence of transformations applied to 2-D
matrix multiplication: four PDTs and two UDTs.

from digital signal processing, image processing, and
scientific computing (Section 5).

In this paper, we target designs captured in sequential
languages like C, and we transform and map them automat-
ically onto a parallel computing structure. The dependence
between transformations is investigated to determine the order
in which to apply them. The output is a transformed C-like
hardware description, preserving input design functionality,
with explicit timing and parallelism descriptions. A meta
language CML [10] is used to specify PDTs. Three UDTs are
presented in this paper for optimizing design speed. Based on
geometric programming, these UDTs explore the design space
of using data reuse, MapReduce and pipelining for design
optimization.

Fig. 1 shows an example sequence of PDTs and UDTs
applied to matrix-matrix multiplication. The original design is
transformed by four PDTs and two UDTs, and the output is an
optimized design. The optimization techniques are explained
in the rest of the paper. Each UDT has multiple transformation
paths, and only one path is chosen according to design
goals and target platform specified by users. Note that the
second UDT also considers the design status after previous
transformations. This example is used throughout the paper to
explain how the proposed approach works.

The rest of the paper is organized as follows: Section 2
describes related work and tools. Section 3 presents our
optimization methodology composing UDTs. Section 4 details
these transformations. Section 5 presents experimental results
from applying our approach to several real applications. Sec-
tion 6 concludes with plans for future work.

2 BACKGROUND

Pattern-directed transformations (PDTs) match and transform
syntax or dataflow patterns of input programs. Each user-

Fig. 2. Example of pattern-directed transformation: de-
composing (DE) an expression with two arithmetic opera-
tors into two expressions each with one operator.

defined pattern occurring in a program is transformed to a
user-specified form if Boolean conditions hold. Fig. 2 shows
a PDT decompose (DE), described in CML, with an empty
condition. This transformation can reduce logic levels of the
generated circuit, improving system clock frequency.

PDTs for hardware compilation have been explored by
researchers such as di Martino et al. [3] on data-parallel loops
written in C source code, as part of a synthesis method from C
to hardware. Compiler toolkits such as SUIF [4] and CoSy [5]
allow multiple syntax patterns to be used together. However,
these approaches give no support for including utility-directed
transformations. Syntax pattern matching and transforming can
also be done in tree rewriting systems such as TXL [11], but
such general systems make it hard to incorporate hardware-
specific knowledge into the transformations.

In our approach, PDTs are written in a domain-specific
language called CML [10], based on CTT [12] and compiled
into a C++ description; the resulting program then runs a
source-to-source transformation. PDTs could be written once
by domain or hardware experts, then used many times by non-
experts. We identify several kinds of transformation: input
(transforming code into a suitable form for a UDT), tool-
specific and hardware-specific (optimizations for particular
synthesis tools or hardware platforms). We provide a library
of useful transformations: general-purpose ones such as loop
restructurings, and special-purpose ones such as transforming
Handel-C arrays to RAMs.

In contrast, utility-directed transformations (UDTs) do not
explicitly specify how to transform programs. Instead, they
involve optimization problems; user-specified design goals
and specifications form the objectives and constraints of
the optimization problems. The solutions to the optimization
problems determine how transformations are carried out. For
example, one may want a power-efficient design that meets
specific Speed and Area requirements. This design could
be generated by a utility-directed transformation according to
design parameters �x determined by the following optimization
problem:

minimize P(�x)

subject to S(�x) ≥ Speed

A(�x) ≤ Area

where P(�x), S(�x) and A(�x) are the system power, speed and
area models, respectively.

Programs with composite objects such as arrays and iter-
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ation statements such as loops usually need UDTs for more
efficient designs. For example, a geometric programming (GP)
model [6] determines loop tile size for multiple loops to
improve data locality in a hierarchical memory system. Liu
et al. [7] propose a GP framework to automate exploration
of the data reuse and loop-level parallelization design space
in the context of FPGA targeted hardware compilation. An
integer linear programming model is proposed in [8] for
pipelining outer loops in FPGA hardware coprocessors. Lam et
al. [9] use a tabu search approach to determine loop unrolling
factors. System speedup over a single CPU implementation
is considered as the utility function. In [13], a model of
affine recurrent equations represents a biological application,
for acceleration on FPGAs. All these approaches need support
from front- and back-end tools or manual transformations to
complete the optimizations.

Table 1 lists several commercial hardware compilers, each
targeting different C-like languages. Optimizations used in
these tools are mostly pattern-directed and specific program-
ming rules are added upon the traditional C. Rewriting a
design from C/C++ to their target inputs, e.g. Impulse C or
Handel-C, is not trivial. Our approach complements these tools
by automating code transformation and, more importantly,
automating complex design optimizations.

High-level synthesis frameworks, SPARK [14],
ROCCC [15], DEFACTO [16], Hyper-LP [17], and
LegUp [18], perform optimization transformations, such
as code motion, loop transformation, dynamic renaming,
pipelining, retiming, scalar replacement, data reuse, operation
chaining, and area-saving binding, to optimize hardware
circuit performance. In these frameworks heuristic and
probabilistic optimization algorithms are used to guide the
transformations. However, these approaches do not allow
users to specify transformations, do not exploit large scale
parallelism, and the optimization algorithms only give local
suboptimal solutions.

In this paper, we combine UDTs to allow the automation
of sophisticated design optimizations. The proposed approach
is instantiated in this paper as follows. We generalize the
transformations used in [28], [29] into PDTs and UDTs,
so that more transformations can be integrated. We extend
the UDT [7] which optimizes data locality and data-level
parallelism to considering practical design constraints, and we
combine it with UDT [29], which optimizes data-level and
instruction-level parallelism, using PDTs. This instantiation
can automatically exploit multiple techniques to optimize
designs. Among them, data reuse [30], [31], [32], pipelining
[8], [33] and MapReduce [34], [35] are particularly powerful.

Each of these three design optimization techniques requires
design space exploration to determine the optimal designs for a
given target hardware platform. Moreover, these techniques are
related [7], [29]. We show in the result section that combining
these techniques in utility-directed transformations can find
more efficient designs and allows designers to trade off design
speed and area, automating design space exploration.

3 SYSTEMATIC APPROACH

Our systematic approach starts with a sequential but possibly
inefficient design, and applies multiple transformations, driven
by user design goals and specifications, to achieve a more ef-
ficient design. User design goals could involve maximizing or
minimizing a system metric (e.g. minimizing execution time)
or a specific target for a system metric (e.g. execution time less
than 1 second). User specifications could include the target
hardware platform (e.g. Xilinx XC5VSX240 FPGA), chosen
transformations, the execution order of transformations, and
so on.

Our approach provides multiple UDTs that users can
choose; different UDTs perform different optimization objec-
tives. A UDT involves an optimization problem (OP) in the
following form and can be used as a library or an executable.

UDT:Name{Objective, ExecutionOrder,
Requirements, Related PDT,
InputProgram,
OP(Input: Program parameters,

Platform parameters,
Design status;

Output: Design parameters)}

ExecutionOrder is a whole number, indicating the exe-
cution order of a UDT. A UDT with ExecutionOrder=0
does not execute, and a UDT with ExecutionOrder=a
executes prior to a UDT with ExecutionOrder=b iff
a < b. Requirements describes the required input form for
a UDT, e.g. loop affinity. Related PDT specifies those PDTs
which help transforming input programs for the associated
UDT.

In our current approach, there is a default order of executing
a set of transformations, depending on the design goals. An
example is shown in Fig. 1, where the design goal is to
optimize speed and the order of applying the transforma-
tions follows hardware optimization principles. The effects
of these transformations on matrix multiplication are shown
in Section 5. Users are allowed to experiment with different
transformation orders to choose the best. We are developing
methods (such as [36]) which enable automatic exploration of
the transformation ordering, so that users have the options to
manually tune the order in applying transformations or rely
on automatic methods.

Our approach meets user design goals by combining multi-
ple optimization stages. Different stages may achieve different
goals. For example, one stage optimizes speed and another
optimizes power consumption. At each stage, an appropriate
UDT is chosen by default (if users do not specify it), in terms
of the characteristics of the input code and the design goal.
If the input code is not in a suitable form, PDTs are used
to transform the code into a form such that an appropriate
UDT can be applied. The input program parameters
(such as the number of loop levels), specified platform
parameters (such as the number of available DSP blocks),
and the design status after prior UDTs (such as DSP
block utilization) instantiate the optimization problem involved
in the UDT. The solution to the optimization problem tells us
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TABLE 1
Some commercial hardware compilers.

Tools Source Target Optimization techniques

AccelDSP Synthesis [19] MATLAB RTL automatic conversion of floating-point to fixed point, user specified loop unrolling,

user specified pipestage operation, user specified RAM/ROM mapping

Catapult C Synthesis [20] C++ RTL loop unrolling, pipelining and merging, memory mapping and allocation

PICO Express [21] C SystemC, RTL, exploitation of parallelism at multiple levels, pipeline architecture of processing array

CoDeveloper [22] Impulse C HDL software/hardware co-design support, loop unrolling and pipelining

Streams-C

SC Compiler [23] SystemC EDIF, RTL automatic tree balancing, logic sharing, re-timing and rewriting, variable width reduction

Cynthesizer [24] SystemC RTL datapath optimization: pipeline, loop unrolling, etc.

DK Design Suite [25] Handel-C EDIF, RTL re-timing, tree balancing, ALU mapping, memory pipelining transformations

C2H [26] C HDL loop pipelining, memory access pipelining, parallel scheduling, arithmetic resource sharing

AutoESL [27] C/C++/SystemC RTL loop unrolling and pipelining, resource binding, function inlining, user specified array mapping

whether a more efficient design exists. If it does, then the
input code is transformed according to the output design
parameters determined by the optimization problem, and
the design status after the transformation (such as system speed
and resource utilization) is logged.

The transformed design status provides information, such
as the number of execution cycles and on-chip memory
resource utilization, based on mathematical models used in
utility functions which capture system behavior in a cycle
accurate way and represent on-chip embedded resource uti-
lization accurately. The effects of clock frequency are not
explored in the transformations presented in this paper, since
the overall execution time depends also on number of clock
cycles. Some transformations such as pipelining would tend
to improve clock frequency while preserving number of clock
cycles, while parallelization can improve number of cycles and
degrade clock frequency. However, we observe that the overall
execution time is dominated by the number of execution cycles
when multiple UDTs and PDTs are composed, as shown
in Section 5. During design exploration we assume a fixed
clock frequency (which can be known for a target hardware
platform), to avoid repeatedly running the placement and
routing toolchain.

After each stage, the transformed design is evaluated: if it
meets design requirements specified by users, then the trans-
forming procedure stops, otherwise further transformations
follow. Finally, the chosen sequence of UDTs and PDTs is
recorded. This sequence of transformation choices documents
the design process, a) forming an audit trail to check design
correctness after many transformations, and b) allowing reuse
for other applications. If the design goals and specifications
set by users are met after the sequence of transformations,
then an optimized design is generated. Otherwise, users need
to look at the log information, identify the reasons for failure
and change the design goals and specifications accordingly.

The advantages of composing UDTs are:

• individual UDTs can be simpler, thus allowing fast and
accurate solution to optimization problems;

• complex optimizations are supported;
• customization of transformation sequences allows opti-

mizations to be adapted to applications, and trade-offs
between system speed, power and area.

Fig. 3. Combining utility-directed transformations into a
single approach. UDTs have a set of associated PDTs.

Fig. 3 shows the implementation of our approach. The input
design is a sequential C description, and the final design output
could be any behavioral hardware description; this paper uses
Handel-C [25]. The transformation choice and design metric
evaluation at each stage, as described above, are done in
the controller [37]. PDTs perform common transformations,
such as function inlining, multi-D array to 1-D array, pointer
to array dereference, and subexpression elimination. These
transformations reveal the data flow of the input code and
ease extraction of input code parameters for UDTs. Moreover,
some PDTs, as shown in Section 5, can optimize the logic
circuit and exploit fine-grain parallelism of hardware.

In Fig. 3, there could be multiple UDTs, each addressing
a particular design goal. In this paper, two UDTs are im-
plemented for exploring combined data reuse and MapRe-
duce transformations (UDT1) and combined MapReduce and
pipelining transformations (UDT2), since these optimization
techniques are inter-linked. The design goal is to optimize
speed, and hardware resources in the user target platform
constrain the transformations. UDT1 optimizes data locality
and loop-level parallelism for data-dominated applications,
which have the MapReduce pattern and process large amounts
of data stored in off-chip memory, with predictable memory
access pattern. The controller directs input codes with these
characteristics to this transformation. UDT2 exploits loop-level
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parallelization and pipelining. These two transformations are
based on geometric programming (GP) [38] models and are
described in Section 4, where the two GP models are also
combined to concurrently make decisions on both transforma-
tions.

The specification of transformation ordering can be de-
scribed using script. Python code for the sequence of transfor-
mations in Fig. 1 applied to matrix multiplication is presented
below. Specific meaning of some of parameters listed below
is out of the scope of this paper; details can be found in [37].

1: InDesign=parse("matmult.c")
2: des1=2DArrayTo1DArray(InDesign)
3: Program_params=[("numLoop1", 3),

("loopBound1", [64, 64, 64]),
("loopParallelizability1", [1, 1, 1]),
("numArray1", 3), ...]

4: Platform_params=[("numRAMBlock", 168),
("blockSize", 16384), ("memBandwidth", 32),
("numMultiplier", 168)]

5: des2=UDT1(Speed, 1, "affineLoop", [], des1,
OP(Program_params, Platform_params, [],
Out_design_params))

6: des3=decomposeExpressions(des2)
7: des4=reduceFanout(des3)
8: des5=parallelize(des4)
9: Program_params=[("loopLevel", innermost),

("loopBound2", [64]),
("loopParallelizability2", [1]), ...]

10: Design_stat=[("numMultiplier", utilization),
("numRAMBlock", utilization), ...]

11: OutDesign=UDT2(Speed, 2, "affineLoop", [],
des5, OP(Program_params, Platform_params,
Design_stat, Out_design_params))

12: unparse(OutDesign, "out.c")

The following explains each line in the above code:
1) The input file is parsed into a variable InDesign.
2) PDT 2-D array to 1-D array is applied, producing des1.
3) Program parameters are placed into a variable

Program_params as a list of key-value pairs. Each
transformation is responsible for checking its parameters
are correct. Note that values can be integers, booleans,
strings or arrays of other values; we omit some of the
parameters for space reasons.

4) Platform parameters are similarly placed in another
variable.

5) UDT1 is applied to des1, yielding des2.
6) Three PDTs are applied to des2, yielding des5.
9) Parameters for UDT2 are placed in a key-value list.

10) Design status for UDT2 is stored. Note that the uti-
lization of embedded multipliers and RAM blocks is
updated after UDT1.

11) UDT2 transformation takes place.
12) Finally, the design is unparsed to an output file.
This script is just a simple sequence, and in practice we

use more features of the scripting language and provide more
parameters for each transformation [37].

Other UDTs can be integrated into the proposed approach,
e.g. a low power UDT [39]. Although users can define their
own UDTs, UDTs are expected to be defined by domain
experts and are used by application builders who may not
be experienced in hardware optimization. UDTs should be

defined based on application characteristics, in order to apply
to a set of applications. Asanovic et al. [40] identify seven
classes of computation and communication patterns, which
cover a large range of numerical applications. The UDTs
presented in this paper can work on three of the seven classes
and we intend to work on the others.

The design space exploration in each UDT with M variables
we present in this paper can be finished in polynomial time
O(Mk) [38] for some constant k, and exploring the order
of N UDTs needs O(N !). Therefore, in the worst case the
complexity is O(MkN !). However, N is not large (3 UDTs
in our experiments), and not all transformation orders are
sensible in practice. Domain experts can choose a limited
set of useful transformation orders in advance. Furthermore,
different orders of applying transformations can be evaluated
concurrently to reduce exploration time.

This section gives an overview of our approach to enable
the automation of system design optimization; the next section
presents the above mentioned UDTs in detail.

4 UDTS WITH GEOMETRIC PROGRAMMING

We observe that three optimization techniques, data reuse,
pipelining, and MapReduce, are inter-related. Memory re-
sources constrain all three techniques. Data reuse, after
distributing buffered data across multiple memory banks,
can improve memory bandwidth, benefiting pipelining and
MapReduce. Computational resources constrain pipelining and
MapReduce. This inter-relationship means that application of
these techniques separately may not lead to efficient designs.
Thus we present one UDT for optimizing both data locality
and loop-level parallelism within a single step, and another
UDT [29] exploiting MapReduce and pipelining. Some for-
mulae in the optimization problem models shown below are
nonlinear, due to the combination of the techniques. We
convert them into geometric programming problems and use
existing techniques to solve them.

Geometric programming (GP) [38] is the following opti-
mization problem:

min : f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p

where x � 0, and the objective function and inequality
constraint functions are all in posynomial form, while the
equality constraint functions are monomial. Unlike general
nonlinear programming problems, GP can be transformed
into a convex form with efficient solution algorithms with
guaranteed convergence to a global minimum [38]. Also,
as the addition and multiplication of posynomials are still
posynomial, multiple GP models can be combined or extended
to cover more complex transforming tasks.

Since our target output design in this paper is a Handel-C
description, as mentioned in Section 3, the design execution
model described in the rest of the paper is in line with Handel-
C semantics that each assignment in the C description takes
one clock cycle, although the formulation described below can
be extended to other cases. Our utility-directed transformations
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Fig. 4. Motivating example: matrix multiplication. For
brevity, N is a multiple of kl1≤l≤3

. forall: all for loop
iterations executing in parallel. pipeline: loop pipelin-
ing.

take care of the operation scheduling and resource allocation,
and the resource binding is left to the Handel-C synthesizer.

4.1 UDT1 with Data Reuse and MapReduce

This section presents UDT1, which uses a GP model to opti-
mize both data locality and loop-level parallelism in one step.
The target applications are data-dominated. The transformation
introduces for an array A an on-chip buffer RLA, loads
frequently used data of A from off-chip memory into RLA at
a loop level and replaces the array reference A with RLA for
accesses (data reuse) [30], [31]. Then, the buffered data are
distributed into different scratch-pad memory banks [7], [32]
to increase memory bandwidth. Finally, operations from differ-
ent loop iterations are mapped onto parallel processing units
(MapReduce), using loop strip-mining and interchange [41].
This UDT extends [7] to apply to MapReduce patterns, and
to consider computational resource constraints and ensure that
only data accessed by a processing unit are transferred to that
unit’s buffers.

We use N × N integer matrix-matrix multiplication, as
shown in Fig. 4, to illustrate the transformation. We assume
arrays A, B and C are stored in off-chip memory with a
single access port. Simple analysis shows that all elements
of the matrices A and B in the critical data path are accessed
more than once, loops i and j are parallelizable and the only

dependence between iterations of loop m is the accumulation
of sum. We introduce on-chip buffers for arrays A and B
to reduce off-chip memory access, and apply MapReduce to
loops i and j, so elements of C can be generated in parallel in
the map phase; the reduce phase outputs results sequentially
as there is only one off-chip memory port.

The possible transformation options are shown in (b) and (c)
of Fig. 4. There are two data reuse options (OP11 and OP12)
for array A and one (OP21) for array B. If the matrix size
is 64 × 64 elements (8 bits), the on-chip memory required
and the number of off-chip memory accesses for options
OP11 and OP12 of array A are (32768 bits, 4096) and (512
bits, 4096), respectively. Both options have the same off-chip
memory accesses, but different on-chip memory requirements.
The data reuse options govern which loop to partition. For
example, for options OP12 and OP21, only loops j and m

can be parallelized, because the single-port off-chip memory
accesses for loading RLA exist in loop i, as in Fig. 4 (b).
If loop i must be partitioned for higher parallelism, then
OP11 must be chosen as in Fig. 4 (c), requiring more on-
chip memory. This shows the inter-relationship between data
reuse and MapReduce.

The design space combining data reuse and MapReduce
increases exponentially with the number of array references
and the number of loop levels [7]. We thus formulate the
design space exploration as a GP optimization problem as
shown in the left-hand side of Fig. 5, with the objective of
minimizing execution time (1), subject to on-chip resource
constraints (2)–(8). This GP model allows the optimal solution
and is scalable with the problem size [7].

Table 2 lists notation used in this paper. Lower case letters
represent integer variables, corresponding to design parame-
ters used for transformation; capitals represent compile-time
constants: input program parameters and platform parameters
specified by users. These constant parameters are used to
instantiate the models.

The objective (1) of this transformation is to minimize
the number of execution cycles. There are three parts to
(1): the number of execution cycles taken by S statements,
except for the result reducing statement Sr (e.g. the statement
Store in Fig. 4 (b)) after mapping the loop nest to a parallel
structure, the number of execution cycles taken by the reduce
phase, and the cycles for loading reused data from off-chip
to on-chip memory. Together with the computational resource
constraints (6), the number of execution cycles spent on the
reduce phase and the upper bound on the number of data
elements accessed in one parallel segment of the partitioned
loops in (3), not considered in [7], complete the formulation.

Users can specify the constraints on the on-chip memory
B and the number of computational resources Cf in inequal-
ities (2) and (6) to trade area for speed. The requirements
of UDT1 for input programs are rectangular loop structure,
no pointers and statically determined memory access patterns.
Related PDTs are function inlining, pointer-to-array convert-
ing, loop restructuring, and so on. The design parameters,
data reuse variables ρij and loop parallelization variables kl,
determine how transformations are carried out in UDT1.
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min:
S∑

s=1,s�=Sr

Ws∏

l=1

vl +

Wr∏

l=1

(vl × kl) +

R∑

i=1

Ei∑

j=1

(ρij × Cij) (1)

subject to: for 1 ≤ l ≤ N, 1 ≤ j ≤ Ei, 1 ≤ i ≤ R, f ∈ F

Wr∏

l=1

kl ×
R∑

i=1

Ei∑

j=1

(ρij × bij) ≤ B (2)

∏

l∈Qi

vl ×
∏

l∈Pi

Ll × Size
−1

RAM × b
−1

ij ≤ 1 (3)

Ei∑

j=1

ρij = 1 (4)

ρij ∈ {0, 1}, 1 ≤ j ≤ Ei (5)
N∏

l=1

kl ×Wf ≤ Cf (6)

kl − (Ll − 1)×
l∑

j=1

ρij ≤ 1 (7)

Ll × k
−1

l × v
−1

l ≤ 1 (8)

k
−1

l ≤ 1 (9)

min: vl × ii+Cdata +
I∑

i=1

di + �log2 kl�+ notFull (10)

subject to: for f ∈ F, 1 ≤ i ≤ I

BW × kl ×M
−1

b × ii
−1 + notAlign× ii

−1 ≤ 1 (11)

Wf × x
−1

f × ii
−1 ≤ 1 (12)

RecII × ii
−1 ≤ 1 (13)

di × ii
−1 ≤ 1 (14)

kl × xf ≤ Cf (15)

Ll × k
−1

l × v
−1

l ≤ 1 (16)

Rif × x
−1

f × d
−1

i ≤ 1 (17)

1 ≤ kl ≤ Ll (18)

1 ≤ xf ≤ Cf (19)

Fig. 5. Optimization formulations for UDT1 (1)–(9) and UDT2 (10)–(19).

4.2 UDT2 with MapReduce and Pipelining
This section describes UDT2 exploiting MapReduce and
pipelining optimizations, and briefly describes the GP
model [29] involved in UDT2. This transformation can al-
ways be applied to applications for performing loop pipeline.
Target platform computational resources restrict the number
of parallel loop iterations, and bandwidth between processing
units and memories affects how operations are scheduled
after loop partitioning. This transformation generates a locally
parallel, globally pipelined structure to balance use of memory
bandwidth and hardware resources.

Fig. 4 (d) illustrates the problem, using the innermost loop
of matrix multiplication. Our approach first applies PDTs. The
original complex expression is decomposed into simple opera-
tions: two memory accesses, one multiplication and the result
accumulation. This example exhibits the MapReduce pattern:
multiplication executes independently on element pairs of
array RLA and RLB, while accumulation is achieved by
integer addition which is associative.

We thus map the innermost loop of matrix multiplication
onto a parallel computing structure, by loop strip-mining.
We need to determine the number of iterations (k3) of each
loop strip, running in parallel, and the initiation interval (ii)
of pipelining the outer loop controlling the strip counter, as
shown in Fig. 4 (d). Given a hardware platform with sufficient
multipliers, there are multiple design options for mapping the
innermost loop under different memory bandwidth constraints.
For example, if the memory bandwidth is 2N bytes per
execution cycle, Fig. 4 (e) (pipeline registers are not shown)
shows a design with loop m fully parallelized, which needs
log2 N +2 execution cycles; assuming each assignment takes
one clock cycle. When memory bandwidth is smaller, sev-
eral designs exist, combining local parallelization and global
pipelining. Even more design options result if multipliers are

also constrained. Finding the best design in terms of various
criteria is not easy, and requires design space exploration.

We therefore formulate mapping of loop l of a loop nest
onto a parallel computing platform in problem (10)–(19)
shown in the right-hand side of Fig. 5; detailed discussion
can be found in [29]. The design parameter variables include
the number of parallel partitions kl of loop l and pipeline
initiation interval ii. Once these parameters are determined,
the corresponding transformation is carried out. This transfor-
mation can be applied to a single loop level with compile-time
known loop bounds. Related PDTs are loop restructuring, loop
coalescing, and loop peeling.

If this utility-directed transformation (UDT2) is executed
after the transformation (UDT1) described in Section 4.1, then
the design status needs to be considered. For example, UDT1
transformation generates a design that utilizes C′

f DSP blocks,
increases memory bandwidth to M ′

b when introducing on-chip
buffers, and achieves a system speed T ′. When the problem
(10)–(19) is instantiated, Mb in (11) is replaced with M ′

b

and Cf in the constraint (15) for DSP resource becomes
Cf − C′

f . After the instantiation, the problem is solved. If
the execution time achieved by UDT2 is slower than T ′, then
UDT2 transformation is ignored and the design transformed
by UDT1 is retained.

4.3 Combined GP Model

The previous two sections respectively show two GP models
used in two UDTs. As the models are both GP, we could
combine them to simultaneously make design decisions on
data reuse, multi-level MapReduce and pipelining for appli-
cations with the target characteristics; for example matrix
multiplication has data reuse and two MapReduce patterns
in different loop levels. The combined model formulates the
whole design space and can find more efficient designs.
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TABLE 2
A list of notation (# means the number of).

Variable Description

ρij binary data reuse variables
kl # partitions of loop l

vl # iterations in one partition of loop l

d # duplications of reused data
ii initiation interval of pipeline
xf # resource f being used
di # execution cycles taken by computation level i of DFG
bij # on-chip RAM blocks required by the data reuse option j

of reference i in one segment of the partitioned loops

Program parameters Description

S # statements in a program
So # statements outside the innermost loop
Sr result reducing statement associated with MapReduce
Wr the innermost level of the loops under MapReduce
Ws loop level of statement s in a loop nest
N # loop levels
R # array references
Ei # data reuse options of array reference i

Ll # iterations of loop l

RecII data dependence constraint on ii in the computation
Qi set of loop indices in the indexing function of reference i

among loops (1, . . . ,Wr)

Pi set of loop indices in the indexing function of reference i

among loops (Wr + 1, . . . , N)

Wf # computational resource f required in a loop iteration
Rif # resource f required in computation level i of DFG
I # computation levels of DFG

BW required memory bandwidth in one loop iteration
F F types of computational resources involved

notFull 0: loop is fully partitioned; 1: loop is partially partitioned

Platform parameters Description

B # on-chip RAM blocks available
SizeRAM # data elements accommodated in on-chip RAM block

Cij # loading cycles of the data reuse array
of option j of reference i

Mb memory bandwidth available
Cf # computational resource f available

notAlign 0: data are aligned; 1: data are not aligned
Cdata # cycles to read one datum from on-chip RAM to registers

As hardware resources constrain MapReduce, the available
resources need to be allocated among multiple MapReduce
levels to obtain an efficient design. This is the link used to
combine the two GP models described in the previous two
sections. For simplicity, we present a new GP model exploring
data reuse, two-level MapReduce and pipelining with the
inner-level MapReduce pattern in the innermost loop of a loop
nest; it can be extended to many-level MapReduce cases.

The total number of execution cycles of a design comprises
four parts:

min: cyc = cycs + cycin + cycr +

R∑

i=1

Ei∑

j=1

(ρij × Cij) (20)

The number of cycles taken by statements outside the in-
nermost loop cycs is given by (21). The number of cycles
taken by statements inside the innermost loop after two-level
MapReduce and pipelining is (22). The number of cycles
cycr taken by the reduce phase of the outer loop MapReduce
is (23), where two expressions for cycr correspond respec-
tively to using a linear structure or a tree structure in the

reduce phase [29]. The resource link between the MapReduce
levels is (24), where we assume all computations are in the
innermost loop. It can easily extend to cover cases where some
computations execute in outer loops.

Together with the constraint models described in Section 4.1
and 4.2, this new model is used in providing a utility-directed
transformation, which does the same job as the previous two
UDTs but could generate more efficient designs.

cycs =

So∑

s=1

Ws∏

l=1

vl (21)

cycin =

N−1∏

l=1

vl × (vN × ii+ Cdata +

I∑

i=1

di

+�log2 kN �+ notFull) (22)

cycr =

Wr∏

l=1

(vl × kl) or cycr =

Wr∏

l=1

vl × log2

Wr∏

l=1

kl (23)

N∏

l=1

kl × xf ≤ Cf , f ∈ F (24)

A branch and bound algorithm used in [42] solves the inte-
ger GP in all three models, using the geometric programming
relaxation as a lower bounding procedure. Section 5 shows the
performance of these GP models; as expected, the combined
GP model produces more promising designs, but large problem
sizes are slow to solve.

5 EXPERIMENTAL RESULTS

In this section, we show results from applying our approach
to three kernels: multiplication of two 64 × 64 matrices
(MAT64), the motion estimation (ME) algorithm [43] used
in X264 and Sobel edge detection (Sobel) [44]. In addition
to these, applications such as correlation in signal processing
and the widely used Monte Carlo simulation are all cases
where our approach succeeds [29]. Table 3 shows benchmark
properties. Data reuse opportunities exist in all kernels, and
each benchmark contains the MapReduce pattern; we identify
two levels of MapReduce pattern in ME, MAT64 and Sobel.
We apply UDT1 to the outer level and UDT2 to the inner level.
Performance-optimized designs under different constraints are
represented by the chosen data reuse option for each array
reference, the number of parallel loop partitions of each loop
and the pipelining initiation interval, (ρij , kl, ii).

Our experiments use an FPGA-based system with off-
chip SRAM. Without loss of generality, we assume the off-
chip SRAM is accessed by a single port with two cycle
latency; these off-chip SRAMs store input data. The FPGA
is an XC2v8000, which has 168 embedded hard multipliers,
168 dual-port RAM blocks and runs at 100 MHz when all
hard multipliers are used. Users can specify other hardware
platforms, resulting in different platform parameters. The
generated parallel computing structure consists of multiple
processing units, each with its own two-level on-chip buffers:
registers and on-chip RAM configured as scratch-pad memory.
For ME and Sobel the frame size is that of the QCIF luminance
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TABLE 3
The properties of the benchmarks.

Benchmark # loops Refs MapReduce pattern Reuse
MAT64 3 2 2 levels: outer yes

loops and innermost loop
ME implicit 2 2 levels: implicit yes

and in SAD
Sobel 4 2 2 levels: outer two loops yes

and inner two loops

TABLE 4
Transformations used in experiments.

Utility-directed Description Purpose

UDT1 Data reuse and MapReduce Improve data locality
UDT2 MapReduce and Pipeline and parallelism

Pattern-directed Description Purpose

LM Loop merging Reduce data reuse dist-
DE Decompose expressions with

the 3-address rule Reduce logic level
RF Reduce fanout of variables

Par Parallelize independent statements Improve parallelism

component (144 × 176 pixels). All results are obtained after
synthesis, placement and routing.

The experimental results include:

• examining a series of pattern-directed and utility-directed
transformations on MAT64 and Sobel to show the perfor-
mance of the proposed approach;

• verifying the proposed UDTs on MAT64, sobel and ME,
and comparing the transformations executing in different
orders that result in different designs and allow a trade-off
between optimization results and running time for solving
optimization problems; and

• comparing the designs proposed by our approach with
other two approaches on MAT64.

5.1 Results after Each Transformation

Table 4 shows the transformations used in our experiments.
Table 5 and Figs. 6 and 7 show the effects of transformations
on MAT64 and Sobel, with the results normalized over original
designs.
UDT1 improves data locality and parallelism simultane-

ously, as shown in Table 5. We see that the number of off-chip
memory accesses is significantly reduced, up to 64 times for
the two benchmarks, resulting in significant power reduction
in off-chip accesses. Also, the outer loops are partitioned into
multiple parallel segments, considerably decreasing system
execution time, as shown in Figs. 6 and 7. The costs of these
improvements are the use of on-chip RAMs and slices. For
example, in Table 5, the second design of Sobel after UDT1
has 18 times less off-chip memory accesses and the outer two
loop levels are mapped into 144 executing parallel segments,
but requires 144 blocks of on-chip RAMs and nearly 150
times more slices, compared to the original design. The large
increase in on-chip resources is due to the transformed design
executing in a single-program-multiple-data (SPMD) model.
Users can trade speed for area, by specifying less number of
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Fig. 6. Effects of a series of transformations on MAT64.

available RAM blocks, for example, leading to slower speed,
as shown in Fig. 9.

As a result of the large and complex circuits, the trans-
formed designs also degrade clock frequency, as shown in
Figs. 6 and 7 (compare the second bar to the first). The PDTs
listed in Table 4 are used to optimize these circuits.

The last row of Table 5 shows the benefit of merging
loops in the Sobel code before UDT1, as an example of PDT
helping UDT. Without merging, UDT1 partitions the second
loop into 59 parallel segments, while after merging loops
UDT1 partitions the outer two loops of the code into 144
parallel segments. With the same on-chip RAM constraint
and off-chip memory access reduction, the latter halves the
execution time of the former, as Fig. 7 shows.

After UDT1, we apply multiple PDTs, listed in Table 4, one
by one to the two benchmarks. The order of applying these
transformations follows hardware optimization principles. DE
and RF improve clock frequency of the resultant designs
by reducing logic level and latency (Figs. 6 and 7). These
transformations often increase execution cycles and area as
they introduce intermediate registers to implement operations
in multiple cycles. Afterwards, Par parallelizes statements to
reduce execution cycles.

After each transformation, some design metrics may
worsen, but further transformations can still be applied to try
to meet the overall goal. For instance, execution times for
MAT and Sobel in Fig.6 and 7 increase after DE and RF, but
decrease after Par. In fact, without DE and RF to improve
clock frequency, the execution time after UDT2 would not
improve significantly.

Moreover, PDTs reveal more instruction-level parallelism
that can be exploited by UDT2. As Table 5 shows, UDT2
further partitions the innermost loop into parallel segments
and pipelines the operations. For example, the innermost loop
of MAT64 is partitioned by 2 and pipelined with ii = 1.
We partition the innermost loop into two parallel segments;
given that there are 168 multipliers in this device, UDT1 maps
the outer level MapReduce pattern onto 80 parallel processing
units, with two multipliers in each unit.

On the target platform, composing UDT1 and UDT2 with
several PDTs speeds up MAT64 and Sobel, by about 98 times
and 88 times, respectively, compared to the initial designs.
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TABLE 5
Results after UDT1 and UDT2 utility-directed transformations (a Before merging loop. b After merging loop).

Benchmark UDT1 UDT2
(ρij , kl) Num of on-chip block rams Off-chip access reduction (ρij , kl, ii)

MAT64 (1, 0, 1, 5, 16, 1) 160 64× (1, 0, 1, 5, 16, 2, 1)

Sobel (0, 1, 0, 1, 59, 1, 1)a 59 18× (0, 1, 0, 1, 59, 1, 1, 3)a

(1, 0, 0, 144, 1, 1, 1)b 144 18× (1, 0, 0, 144, 1, 1, 3, 1)b
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Fig. 7. Effects of a series of transformations on Sobel.
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Fig. 8. Design space exploration results for MAT64.

5.2 Design Space Exploration with UDTs

To verify the UDTs in Section 4, we apply them to MAT64,
Sobel and ME, and implement the resulting designs on the
target platform. The results in Section 5.1 use a series of
transformations, where UDT1 executes prior to UDT2. In this
section, We perform them in three orders: UDT1 before UDT2
(UDT1-UDT2), UDT2 before UDT1 (UDT2-UDT1) and con-
current UDT1 and UDT2 (UDT3) as described in Section 4.3.

Given the number of computational resources, memory size
and bandwidth, a performance-optimized design in the design
space is generated by the UDTs in the three orders; all designs
from the same order form a performance Pareto frontier. All
results are shown in Figs. 8, 9 and 10, where the y axis follows
a logarithmic scale. Fig. 8 (a) shows results for MAT64. First,
designs from the three orders exhibit the same trend, i.e.
execution cycles decrease as the available on-chip multipliers
increase, due to greater parallelism; Figs. 9 (a) and 10 (a)
show similar design trends. Users can constrain the design
exploration to obtain expected performance. Second, given the
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Fig. 9. Design space exploration results for Sobel.
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Fig. 10. Design space exploration results for ME.

same number of multipliers and comparing with the designs
given by UDT1-UDT2 and UDT2-UDT1, the designs from
UDT3 speed up to 6% and 72% respectively, and use about
0.5 and 8 times the respective number of on-chip memories.
In Sobel, multiplication operations are replaced automatically
by shift operations; Fig. 9 (a) shows designs from the three
orders under different on-chip memory constraints. Here, due
to no computational resource (multiplier) constraints between
the two MapReduce levels, the three orders generate the same
designs. Similarly, ME results are the same for each order, so
Fig. 10 (a) only shows the Pareto frontier from UDT1-UDT2
under different memory bandwidths. We observe that the com-
bined GP model UDT3 guarantees the performance-optimal
design in the design space, as it combines design spaces of
data reuse, MapReduce and pipelining, while UDT2-UDT1
achieves best resource utilization. Therefore, by specifying the
order of composing different transformations, users can bal-
ance the system metrics. Moreover, the combined model needs
over twice the run time, compared to separate approaches as
Table 6 shows. Run times are for calling YALMIP [42] from
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TABLE 6
Solution time comparison of three execution orders of

our UDTs.

Benchmark UDT3 (sec) UDT1-UDT2 (sec) UDT2-UDT1 (sec)

MAT64 136.0 49.3 57.3

Sobel 69.6 34.0 36.1

ME 136.8 15.3 16.7

MATLAB on a 3 GHz PC.
To verify these results, we implement several designs of

MAT64, Sobel and ME. Figs. 8 (b), 9 (b) and 10 (b) show
real execution times and the use of on-chip multipliers, RAM
blocks and memory bandwidth, respectively. These figures,
firstly, show similar trends in performance Pareto frontiers
to those in subfigures (a) under different design constraints.
This proves that our models can distinguish the performance-
optimal design from different design options.

The figures also show some sub-optimal designs. In
Fig. 8 (b), some designs proposed by UDT1-UDT2 and
UDT2-UDT1 lie above the Pareto line formed by results from
UDT3. Note that most designs from UDT2-UDT1 are worse
than those of UDT3, while UDT1-UDT2 has only four designs
worse than UDT3. This agrees with Fig. 8 (a). Also, Fig. 8 (b)
shows four designs with different parameters in angle brackets
from UDT3 and UDT2-UDT1. From these design parameters
we can see that UDT3 optimizes the design as a whole and thus
achieves better results, while UDT2-UDT1 gives the priority of
parallelism optimization to the inner loops. Fig. 9 (b) explicitly
shows parameters of performance-optimal and sub-optimal
designs of Sobel. For example, when the on-chip RAM block
constraint is 88, design (0, 1, 0, 1, 88, 9, 3) runs as fast as
design (0, 1, 0, 1, 88, 3, 1) from our GP model, but needs more
logic resources due to greater innermost loop parallelization.
There are two designs using all available on-chip RAM blocks,
as in the bottom-right corner of Fig. 9 (b), but they are still
slower than our design (1, 0, 0, 144, 1, 3, 1). Likewise, for
the same 8 bytes/cycle memory bandwidth in Fig. 10, the
design from our approach is (0, 1, 1, 9, 16, 5) rather than
design (0, 1, 1, 9, 8, 3) which matches the memory bandwidth;
our model identifies the 0.04ms speed difference. Finally, the
original unoptimized designs of MAT64, Sobel and ME are
also implemented, shown in Figs. 8 (b), 9 (b) and 10 (b).

The results above demonstrate that our approach can find
the performance-optimized design in the design space of data
reuse, MapReduce and pipelining, and that different transfor-
mation orders enable trading off a) speed and resources, and
b) design performance and compile time. These give users
flexibility to customize designs.

5.3 Comparison with Existing Approaches

To evaluate our approach, we compare matrix-matrix multipli-
cation against two existing approaches [45] and [46]. These
approaches implement a blocked matrix multiplication algo-
rithm with fixed-point arithmetic on FPGAs. Each approach
uses different hardware platforms and FPGA devices.

Table 7 compares estimated execution times for various
matrix sizes. Compared to [45], our approach is up to 4

TABLE 7
Performance comparison of our approach and [45]

and [46] in matrix-matrix multiplication.

Dimensions Virtex II Pro30 Virtex-5 VSX240
of Matrices [45] (ms) Ours (ms) Ours (ms) [46] (ms)

[64, 64] 0.799 0.213 0.026 0.022

[128, 128] 5.122 1.264 0.157 0.071

[256, 256] 45.318 15.366 1.763 0.454

times faster, since our approach extracts higher parallelism
by exploiting MapReduce and pipelining. Compared to [46],
our approach is slower by a factor of 1.2 to 3.8, because
[46] uses double buffering to pipeline data input/output with
computation. As matrix sizes increase, time spent on data load-
ing/unloading increases and thus the performance difference
between our approach and [46] increases. In future, we will
integrate outer loop pipelining into our model to bridge this
performance gap.

6 CONCLUSIONS

We present a systematic approach composing utility-directed
transformations for optimizing and mapping a sequential de-
sign onto an FPGA-based parallel computing platform. Our ap-
proach provides multiple UDTs, each performing optimization
transformations, and uses PDTs to connect UDTs. This enables
the automation of complex hardware design optimizations. The
combination of modular and parameterized UDTs allows users
to work at a high level to describe design goals and specifica-
tion. The approach is illustrated in this paper with two UDTs
connected by several PDTs. Two geometric programming (GP)
models guide speed optimizing UDTs, exploiting data reuse,
multi-level MapReduce, and pipelining techniques.

Results from applying our approach to three applications
show that design speed can improve up to 98 times compared
to sequential designs in the same platform. Our UDTs can
produce performance-optimized designs in the design space of
exploiting data reuse, MapReduce and pipelining under differ-
ent design constraints. Moreover, performing transformations
in different order allows users to trade speed for resources, and
design performance for compile time. Finally, compared to two
existing approaches for matrix multiplication, our automated
approach achieves performance between them.

Current and future work includes extending the current
UDTs to include techniques such as outer loop pipelining,
supporting more applications, adding more transformations
to capture the whole hardware system design flow such as
hardware/software partitioning and data representation opti-
mization, and moving appropriate compile-time optimizations
to run time. A direction of particular interest is to inves-
tigate extensions of the proposed approach to support self-
optimization of designs to adapt to internal and external
changes at run time. To avoid the time-consuming process of
placement and routing at run time, we can generate multiple
configurations and switch between them by either a) partial
run-time reconfiguration [47], or b) compiling them into a
single configuration and activating them at run time by clock
gating [48]. In both cases, placement and routing takes place
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at design time while system performance optimization takes
place at run time. In the future, we also intend to propose
transformations for GPGPUs to improve their performance
with reduced design effort.
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