
Optimising Performance of Quadrature Methods

with Reduced Precision

Anson H.T. Tse1, Gary C.T. Chow1, Qiwei Jin1,
David B. Thomas2, and Wayne Luk1

1 Department of Computing, Imperial College London, UK
{htt08,cchow,qj04,wl}@doc.ic.ac.uk

2 Department of Electrical and Electronic Engineering, Imperial College London, UK
d.thomas1@imperial.ac.uk

Abstract. This paper presents a generic precision optimisation method-
ology for quadrature computation targeting reconfigurable hardware to
maximise performance at a given error tolerance level. The proposed
methodology optimises performance by considering integration grid den-
sity versus mantissa size of floating-point operators. The optimisation
provides the number of integration points and mantissa size with max-
imised throughput while meeting given error tolerance requirement.
Three case studies show that the proposed reduced precision designs
on a Virtex-6 SX475T FPGA are up to 6 times faster than comparable
FPGA designs with double precision arithmetic. They are up to 15.1
times faster and 234.9 times more energy efficient than an i7-870 quad-
core CPU, and are 1.2 times faster and 42.2 times more energy efficient
than a Tesla C2070 GPU.

1 Introduction

Quadrature methods have been applied in different areas including pricing op-
tions [1], modeling credit risk [5], solving electromagnetic problems [14] and
calculating photon distribution [8]. Using quadrature methods to price a single
simple option is fast and can typically be performed in milliseconds on desktop
computers. However, quadrature methods can become a computational bottle-
neck, for example, when a huge number of complex options are being revalued
overnight under many different scenarios for risk management. Computational
complexity also scales exponentially with the number of underlying assets, so
accelerating multi-asset quadrature computation is a significant problem. More-
over, energy consumption of computation is a major concern when the compu-
tation is performed 24 hours a day, 7 days a week.

The ability to support customisable precision is an important advantage of re-
configurable hardware. Reduced precision floating-point operators usually have
higher clock frequencies, consume fewer resources and offer a higher degree of
parallelism for a given amount of resources compared with double precision op-
erators.

O.C.S. Choy et al. (Eds.): ARC 2012, LNCS 7199, pp. 251–263, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

252 A.H.T. Tse et al.

The use of reduced precision affects the accuracy of the numerical results.
However, with a higher throughput capacity using reduced precision, the inte-
gration grid spacing could be reduced which might actually increase accuracy.
This paper introduces a novel optimisation methodology for determining the
optimal combination of operator precision and integration grid spacing in order
to maximize the performance of quadrature method on reconfigurable hardware.
The major contributions of this paper include:

– optimisation modeling based on a step-by-step accuracy analysis and perfor-
mance model. A discrete moving barrier option pricer is used as an example
to graphically illustrate the analysis and to provide empirical evidence for
the model (Section 3);

– a methodology and algorithms to determine the optimal mantissa bit-width
and the integration grid density for a given integration problem by finding
the Pareto frontier satisfying a given error tolerance level (Section 4);

– case studies of two financial applications and one benchmark quadrature
problem using the proposed methodology, namely a discrete moving barrier
option pricer, a 3-dimensional European option pricer, and a discontinuous
integration benchmark (Section 5);

– performance comparison of the optimised FPGA implementation versus GPU
and CPU. Our results show that the proposed approach increases perfor-
mance by around 4 times, resulting in a total speed-up over double-precision
software of 15.1 times while maintaining the accuracy. The optimised FPGA
designs are 1.2 times faster and 42.2 times more energy efficient than com-
parable GPU designs (Section 6).

2 Background

There has been much interest in the use of accelerators such as FPGAs and GPUs
for high performance computing. GPUs use the same type of floating-point num-
ber representation and operation as CPUs, namely IEEE-754 double precision
and IEEE-754 single precision. Double precision has 53 bits of mantissa while
single precision has 24 bits of mantissa. GPUs are shown to provide significant
speedup over CPUs for many applications, especially when single precision is
used [11]. For quadrature methods in option pricing, a GPU design using single
precision running on NVIDIA Tesla C1060 demonstrated a speedup of 8.4 times
while a Virtex-4 FPGA demonstrated a speed-up of 4.6 times over a CPU [20].

FPGAs provide customisable floating-point number operation which could
be exploited to provide additional speedup. A mixed-precision methodology has
shown to provide an additional performance gain of 7.3 times over an FPGA-
accelerated collision detection algorithm [4]. Other works in bit-width optimi-
sation aim to improve performance by using minimum precision in a data-path
given a required output accuracy. One common approach is to develop an accu-
racy model which relates output accuracy to the precision of the data formats
used in the data-path. The area and delay of data-paths with different precisions

Optimising Performance of Quadrature Methods with Reduced Precision 253

� ��� ��

��������

��������

��������

	
 � � � �� �� ��

����

�������

�������	

��������

��������

�������	
����	����

Fig. 1. The εrms for different df at
mw=53

��������

��������

��������

�� �� �� �	 �
 �� �� �� �	 �
 �� �� �� �	 �
 �� �� �� �	 �
 �� ��

���

��������

��������

��������

��������

���������	��
���������

Fig. 2. The εrms for different mw at
df=12

are modelled based on the accuracy model. The design with a minimum area-
delay product can be obtained from the models. Common accuracy modeling
approaches include simulation [10], interval arithmetic [6], backward propaga-
tion analysis [7], affine arithmetic [12] [13] [16] [17], SAT-Modulo theory [9] and
polynomial algebra [3].

Our novel precision methodology presented in this paper is specialised for
solving quadrature problems. The optimal design is determined by optimising
both the spacing between integration grid points and the precision of floating-
point operators, instead of considering only the precision only in other common
approaches.

Let us now briefly introduce quadrature methods: numerical methods for ap-
proximating an integral by evaluating at a finite set of integration points and
using a weighted sum of these values. There are many different methods of nu-
merical integral evaluation. Two of the most common methods are based on the
trapezoidal rule and Simpson’s rule [19]:

Trapezoidal Rule:

∫ b

a

f(y)dy ≈ δy

2
{f(a) + 2f(a+ δy) + 2f(a+ 2δy) · · ·+ 2f(b− δy) + f(b)} (1)

Simpson’s Rule:

∫ b

a

f(y)dy ≈ δy

3
{f(a) + 4f(a+ δy) + 2f(a+ 2δy) + · · ·+ 4f(b− δy) + f(b)}

(2)

3 Optimisation Modeling

The proposed optimisation objective function is based on a step-by-step accu-
racy analysis and performance modeling. A barrier option pricer is used as an
example to illustrate the relationship between accuracy, throughput, integration
grid density and the precision of floating-point operations.

254 A.H.T. Tse et al.

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1.0e+02

ε r
m

s

 4

 5

 6

 7

 8

 9

 10

 11

 12
 11 15 19 23 27 31 35 39 43 47 51

εrms < 10-4

εrms < 10-3

εrms < 10-2

εrms < 10-1

εrms < 100

df

mw

Fig. 3. The contour plot of εrms of barrier
option pricer for different mw and df

 4
 5

 6
 7

 8
 9

 10
 11

 12

 11 15 19 23 27 31 35 39 43 47 51

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

throughput (φint)

df

mw

throughput (φint)

Fig. 4. The aggregated FPGA throughput

3.1 Accuracy Analysis

There are two sources of error affecting the “accuracy” of the integration result,
namely integration error εint and finite precision error εfin. The total error
εtotal is a function of both error sources. Integration error εint is the error due
to having a finite number of integration points within an integration interval.
Finite precision error εfin is the error due to non-exact floating-point arithmetic.
Floating-point number representation in computer has a finite significant bit-
width. The rounding of the intermediate or final result leads to precision loss.
We define grid density factor df as a variable which is inversely proportional
to the integration grid spacing and we define mw as the number of bits in the
mantissa. Therefore, we have εint(df) and εfin(mw) respectively to represent
their relationships.

To measure εtotal(mw, df), the root-mean-squared error εrms(mw, df) com-
paring with a set of reference results is used. The set of reference results are
computed using a large value of mw and df .

We investigate the result of εrms(mw, df) by computing a portfolio of 30 bar-
rier options using different mantissa bit-width and density factor. The computed
option values are compared with a set of reference values using mw = 53 (dou-
ble precision) and df = 20. Fig. 1 shows the graph of εrms(53, df). We can see
that the total error is decreasing with respect to df . Fig. 2 shows the graph of
εrms(mw, 12). This figure shows that with a sufficient large density factor, the
total error of the result decreases with increasing mantissa bit-width. In addi-
tion, this figure also indicates that at df = 12, increasing mantissa bit-width for
more than 33 would not increase the accuracy significantly. It is because εtotal
is dominated by εint but not εfin after mw reached 33. Therefore, using more
than 33 bits of mantissa is consuming unnecessary resources.

Fig. 3 shows the contour plot of εrms(mw, df) at different error levels for the
barrier option pricer and provides an overview of the total error using different
mw and df combinations.

Optimising Performance of Quadrature Methods with Reduced Precision 255

3.2 Performance Modeling

The performance of the system is defined with the following equation:

φint(mw, df) =
φpt(mw)

Npt(df)
(3)

φint is the throughput in aggregated integrations per second per FPGA, φpt is the
throughput in aggregated number of integration points per second per FPGA
and Npt is the number of integration points per integration. Furthermore, we
define pL as the degree of parallelism (number of replicated cores) and freq as
the clock frequency of the FPGA. With multiple replicated and fully pipelined
integration cores running in parallel, φpt is defined as:

φpt(mw) = pL(mw) · freq (4)

because each core can process one integration point per clock cycle. φpt and pL is
monotonically decreasing with mw. A higher mw leads to a larger core, so fewer
cores will fit in the FPGA, reducing degree of parallelism pL and lower aggregated
integration points throughput φpt. φpt is also monotonically decreasing with df ,
as a higher df leads to more integration points per integration Npt and fewer
integrations could be computed per second. Therefore, we have the following
inequalities:

φint(mwx , df) ≥ φint(mwy , df), ∀mwx < mwy (5)

φint(mw, dfx) ≥ φint(mw, dfy), ∀dfx < dfy (6)

Fig. 4 shows the 3D graph of aggregated FPGA throughput φint(mw, df) of the
barrier option pricer which is consistent with the above inequalities.

3.3 Optimisation Objective Equation

Our objective is to determine the set of (mw, df) which produces the design with
optimal performance while maintaining the same level of accuracy. We define εtol
as error tolerance level. With the results from Equation 3 and 4, the following
2-dimensional optimisation problem can be formulated:

max
mw,df

(
pL(mw) · freq

Npt(df)

)
,mw ∈ Z

+, df ∈ R
+, εrms(mw, df) < εtol (7)

For example, Fig. 5 and Fig. 6 show the 3D plots of the optimisation result of
barrier option pricer at εtol = 10−4 and εtol = 10−3 respectively by using the
result of Fig. 3 and Fig. 4. We can see from the figures that the optimal aggre-
gated throughputs are 350 and 1078 integrations per second. The corresponding
(mw, df) sets are (31,9.8) and (26,5.8).

256 A.H.T. Tse et al.

 4
 5

 6
 7

 8
 9

 10
 11

 12

 11 15 19 23 27 31 35 39 43 47 51

 0

 50

 100

 150

 200

 250

 300

 350

throughput (φint)

df

mw

throughput (φint)

Fig. 5. The aggregated FPGA throughput
satisfying εrms(mw, df) < 10−4

 4
 5

 6
 7

 8
 9

 10
 11

 12

 11 15 19 23 27 31 35 39 43 47 51

 0

 200

 400

 600

 800

 1000

 1200

throughput (φint)

df

mw

throughput (φint)

Fig. 6. The aggregated FPGA throughput
satisfying εrms(mw, df) < 10−3

4 Optimisation Algorithm and Methodology

This section provides the algorithms and a systematic way to apply the precision
optimisation technique for a quadrature problem. The optimisation algorithm
uses the property that the throughput of the integration decreases monotoni-
cally with respect to both mw and df as shown in inequalities (5) and (6). The
optimal throughput will only occur at the Pareto frontier points (Pareto set S)
of (mw, df) satisfying εrms < εtol and, therefore, it is not necessary to obtain
the εrms values for all (mw, df) combinations. Fig. 7 shows the Pareto frontier
of a barrier option pricer and the corresponding throughput as an illustration.

The detailed steps of our proposed one-pass optimisation process are:

1. Prepare a set of sample inputs.
2. Evaluate the results of the sample inputs as reference values.
3. Apply Algorithm 1 to obtain a Pareto set S.
4. Apply Algorithm 2 on S to obtain the optimal φint.

In step 2, we will typically use double precision (mw=53) and a sufficiently large
df to obtain the reference values such that the reference values are known to be
accurate. In step 4, the algorithm requires the values of function Npt(df) and
pL(mw) in order to compute φint. The function Npt(df) could easily be deter-
mined with the knowledge of the integration problem. The parameters pL can be
either obtained directly after the full FPGA implementation, or estimated using
the resource usage of a single-core FPGA design. Fig. 8 shows our estimation of
pL and the resource usage of a single-core barrier option pricer.

The whole optimisation process is completely automated in our case studies
by designing the hardware implementation as a parametric template, with mw

and pL as parameters. The hardware implementations for different values of mw

are generated, placed and routed automatically from the template for the use of
step 3 and 4.

Optimising Performance of Quadrature Methods with Reduced Precision 257

Algorithm 1. Algorithm for obtaining Pareto set S

1: S ← ∅
2: for mw ∈ mmin

w ..mmax
w do

3: perform binary search for min df s.t εrms(mw, df) < εtol
4: if found then
5: add tuple (mw, df) to S
6: end if
7: end for

Algorithm 2. Algorithm for determining the optimal precision and density
factor
1: φmax ← 0
2: for (mw, df) ∈ S do
3: if φint(mw, df) > φmax then
4: φmax ← φint(mw, df)
5: Soptimal ← (mw, df)
6: end if
7: end for

5 Case Studies

The hardware architectures of two financial applications and one benchmark
integration problem are designed. Simpson’s rule is used in all three case stud-
ies. The optimal combination of (mw, df) is determined using the optimisation
methodology and algorithms as described in the previous two sections with
εtol = 10−3. As the range of the floating-point numbers is known to be small,
the exponent size of the floating-point operators is set to 8. The accumulation is
performed in double precision (mw = 53) to minimise the loss of accuracy due
to insufficient dynamic range in the accumulator.

5.1 Discrete Moving Barrier Option Pricer

The first case study is the pricing of discrete barrier options, which is a real-world
pricing problem for which there is no closed-form solution. The pricing equation
of an barrier option using quadrature methods is derived from the Black and
Scholes partial differential equation [2]. For an option with an underlying asset
following geometric Brownian motion:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −Dc)S

∂V

∂S
− rV = 0 (8)

where V (S, t) is the price of the option, S is the value of the underlying asset,
t is time, r is risk-free interest rate, σ is volatility of the underlying asset, K is
exercise price, and Dc is continuous dividend yield.

258 A.H.T. Tse et al.

���

���

����

����

�

�

��

��

��

��

��
�
�
�
�
�
	

��

������	
�������

��������

������� ��������	�	����

�

���

	��

	

�

�

�� �� �� �� �
 �� 	� 		

�
�

��

�������������� ������������� �������

�������	�	����	����

Fig. 7. The Pareto frontier line of barrier
option pricer when εtol = 10−3

���

���

���

���

�	��

�	��

��	��

��	��

��	��

�

	

��
��
�
��
��
�

�

����

���

�����

����

�

��

���

���

�	��

�	��

�	��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�
��
�
��
�	

�������� ����	�
������

Fig. 8. pL estimation and the single core
resource utilisaion of barrier option pricer

The following standard transformations

x = log(St/K), y = log(St+Δt/K)

give us the solution of V (x, t) as:

V (x, t) = A(x)

∫ +∞

−∞
E(x, y)V (y, t+Δt)dy (9)

where

A(x) =
1√

2σ2πΔt
e(−kx/2)−(σ2k2Δt/8)−rΔt (10)

E(x, y) = e(yC2−(x−y)2C1), C1 =
1

2σ2Δt
, C2 =

2(r −Dc)− σ2

2σ2
(11)

Since C1 and C2 will not change during the whole pricing process, they can
be precomputed in software. Eq. (9) is the basic building block for quadrature
option pricing. To price a down-and-out discrete moving barrier option with m
time steps and Bm as the barrier price at time step m, we define the transformed
position of bm as:

bm = log(Bm/K), (12)

then the option price Vm at time step m can be computed using the equation:

Vm(x, tm) ≈ A(x)

∫ ymaxm

yminm

E(x, y)Vm+1(y, tm+1)dy, (13)

where
ymaxm = x+ 10σ

√
tm+1 − tm (14)

yminm = max(bm, x− 10σ
√
tm+1 − tm) (15)

The barrier option value is calculated iteratively backward from the expiry date
to the present date as shown in Fig. 9. The main data-path for the hardware
barrier core is shown in Fig. 10.

Optimising Performance of Quadrature Methods with Reduced Precision 259

V

V (S,T0)

T0 T1 T2 T3

Price

Time

0

M

N

Fig. 9. The backward barrier option
iteration process

exp

cnt

Ii

Acc C1

0.5Δy

C2

xbnV

y

out

Fig. 10. The hardware barrier option
pricing core

As the change of price exhibits a Brownian motion, the value of y fluctuates
proportional to

√
Δt. Therefore, the size of δy should also be defined proportional

to
√
Δt. We define the grid density factor df as

√
Δt
δy . Using the methods from

Section 4, the optimal (mw, df) is found to be (26,5.8).

5.2 Multi-dimensional European Option pricer

The option pricing equation with multiple underlying assets using quadrature
methods is based on the multi-asset version of Black and Scholes partial differ-
ential equation [1]:

∂V

∂t
+

1

2

d∑
i=1

d∑
j=1

σiσjρijSiSj
∂2V

∂Si∂Sj
+

d∑
i=1

(r −Di)Si
∂V

∂Si
− rV = 0 (16)

where r is the risk-free interest rate, d is the number of underlying assets, Si

are the underlying asset values, σi and Di are the corresponding volatilities and
dividend yields, and ρij is the correlation coefficient between underlying asset
values Si and Sj . Note that |ρij | ≤ 1, ρii = 1 and ρij = ρji. We make the
logarithmic transformations

xi = log(Si), yi = log(Si)

to be the chosen nodes at t and t+Δt. Let R be the matrix such that element
R(i, j) = ρij .The solution is:

V (x1, . . . , xd, t) = C

∫ +∞

−∞
. . .

∫ +∞

−∞
V (y1, . . . , yd, t+Δt)

E(x1, . . . , xd, yi, . . . , yd)dy1 . . . dyd (17)

C = e−rΔt(2πΔt)−n/2(|R|)−1/2(σ1σ2 . . . σd)
−1, (18)

260 A.H.T. Tse et al.

E(x1, . . . , xd, yi, . . . , yd) = exp(−1

2
αTR−1α), (19)

αi =
xi − yi + (r −Di − σ2

i

2)Δt

σi(Δt)1/2
(20)

We define the grid density factor df as
√
Δt
δy such that it is inversely proportional

to the grid spacing. The optimal (mw, df) is found to be (20,23).

5.3 Genz’s “Discontinuous” Benchmark Integral

Our last case study is Genz’s “Discontinuous” benchmark multi-dimensional
integral(21). It is a common test integral being used in evaluation of different
numerical integration methods. In our tests we use n = 4 as the dimension and
an integration domain of [0, 1)4. Fully parallelised designs are used in our FPGA
implementations and the data-paths can compute a single sample point per clock
cycle, with constants ci and wi:

I =

∫ ∫
· · ·

∫
fdis(x1, x2, · · ·xn)dx1dx2 · · · dxn (21)

fdis =

{
0 if x0 > w0 or x1 > w1

exp(
∑n

i=1(ci × xi)) otherwise
(22)

In this problem, we define df = N since its grid density should depends on the
number of grid points only. The optimal (mw, df) is found to be (11,96).

6 Result and Evaluation

We use the MaxWorkstation reconfigurable accelerator system from Maxeler
Technologies for our evaluation. It has a MAX3424A card with a Xilinx Virtex-
6 SX475T (XC6VSX475T) FPGA. The XC6VSX475T FPGA has a total of
297,600 LUTs, 595,200 FFs, 1,064 DSPs and 2,016 BRAMs. We set the target
clock frequency at 100MHz (freq). The card is connected to an Intel i7-870 CPU
through a PCI express link with a measured bandwidth of 2 GB/s. The Intel
CPU has 4 physical cores.

The Intel Compiler (ICC) is used in our software implementations with optimi-
sation flag -fast and SSE4.2 enabled. The software implementation is manually
optimised in order to achieve the maximum throughput. Multiple processes are
launched simultaneously in order to utilise all 4 physical cores of the quad-core
i7-870 CPU.

For the FPGA implementations, we use the MaxCompiler as our develop-
ment system, which adopts a streaming programming model similar to [15] and
supports customisable data formats so that floating-point calculations can be
performed with different mantissa bit-widths. The hardware implementations
are synthesized, placed and routed using Xilinx 13.1 ISE.

Optimising Performance of Quadrature Methods with Reduced Precision 261

Table 1. Comparison of different applications using i7-870 quad-core CPU, NVIDIA
Tesla C2070 GPU, double precision XC6VSX475T FPGA and reduced precision opti-
mised XC6VSX475T FPGA

Discrete barrier option 3D European option Genz’s benchmark

CPU FPGA CPU GPU FPGA CPU FPGA

arithmetic double double optimised double double double optimised double double optimised

clk freq. (GHz) 2.93 0.1 0.1 2.93 1.15 0.1 0.1 2.93 0.1 0.1

num. of cores 4 7 35 4 448 5 18 4 6 36

exec. time (sec.) 313 86.3 22.3 145 11.45 34.5 9.6 328.56 169.98 28.33

norm. speedup 1x 3.6x 14.0x 1x 12.7x 4.2x 15.1x 1x 1.9x 11.6x

opti. gain - 1x 3.9x - - 1x 3.6x - 1x 6.0x

APCC(W) 1,2 89 13 16 69 117 4 5 81 4 4

AECC(J) 3 27857.0 1121.9 356.8 10005.0 2026.7 138.1 48.0 26613.4 679.9 113.3

norm. energy 78.1x 3.1x 1x 208.4x 42.2x 2.9x 1x 234.9x 6x 1x

1 APCC = run-time power consumption - idle power consumption.
2 The idle power is 80W for FPGA and CPU system, and 154W for GPU system.
3 AECC = APCC × execution time.
4 In all applications, εtol = 10−3.

For the GPU performance result, we use NVIDIA Tesla C2070 GPU to mea-
sure the performance of our 3-dimensional European option pricer. The GPU
has 448 cores running at 1.15 GHz and has a peak double precision performance
of 515 GFlops.

The experiments are performed to compute a portfolio of 100 barrier options,
a portfolio of 576 3D-European options, and a set of 1120 Genz’s benchmark
integrals.

6.1 Performance Comparison

Table 1 shows comparisons of the implementations running on a CPU with
double precision arithmetic, an FPGA with double precision arithmetic, and
an FPGA with optimised precision using our proposed methodology. The GPU
result of the multi-dimensional European option pricer is also presented. The
computed results of all designs are all optimised for εtol = 10−3 and have the
same accuracy level. The measured execution time includes the data transfer
time, which means the speedup figures are measured end-to-end.

Using the reducedprecisionoptimisation techniqueswithXC6VSX475TFPGA,
we achieve 3.6 to 6.0 times speedup gain over the original double precision FPGA
designs. These optimised FPGA designs running on XC6VSX475T are 11.6 to
15.1 times faster than multi-threaded software designs running on a quad-core
Intel i7-870, and 1.2 times faster than a GPU design running on a Tesla C2070.

6.2 Energy Comparison

We also compare the energy efficiency of the three applications on different de-
vices. The average power consumption is measured using a remote power mea-
suring socket from Oslon R© electronics with an measuring interval of 1 second.
Additional power consumption for computation (APCC) is defined as the power
usage during the computation time (run-time power) minus the power usage at

262 A.H.T. Tse et al.

idle time (static power). In other words, APCC is the dynamic power consump-
tion for that particular computation. Since the dynamic power consumption
fluctuates a little, we take the average value of dynamic power to be the APCC.
The additional energy consumption for computation (AECC) is defined by the
following equation:

AECC = APCC× Total Computational Time. (23)

Therefore, AECC measures the actual additional energy consumed for that par-
ticular computation.

As shown in Table 1, the precision optimised FPGA designs demonstrate the
greatest energy efficiency over both CPU and GPU. It is 78.1 - 234.9 times more
energy efficient than an Intel i7-870 quad-core CPU, and 42.2 times more energy
efficient than a Tesla C2070 GPU.

7 Conclusion

We presented a precision optimisation methodology for the generic quadrature
method using reconfigurable hardware. Our novel methodology optimises the
performance by considering both integration grid density and mantissa bit-width
of the floating-point operators. Increasing the integration grid density reduces
integration error but increases the required amount of computation, while in-
creasing the mantissa bit-width improves precision but decreases the compu-
tation speed, due to reduced parallelism. Our proposed algorithm allows us to
identify the optimal balance between the number of integration points and the
precision of the floating-point operator, such that the throughput is maximised
while the accuracy remains in a given error tolerance level.

Our three case studies demonstrate that using our proposed optimisation
methodology, the reduced precision FPGA designs are up to 6 times faster than
comparable FPGA designs with double precision arithmetic. They are up to
15.1 times faster and 234.9 times more energy efficient than an i7-870 quad-core
CPU, and are 1.2 times faster and 42.2 times more energy efficient than a Tesla
C2070 GPU.

Current and future work includes exploring the adaptive quadrature method
on reconfigurable hardware [18]. We are also interested in extending the mantissa
bit-width optimisation technique for other numerical methods.

Acknowledgment. The support of the Croucher Foundation, the UK Engi-
neering and Physical Sciences Research Council, Maxeler, and Xilinx is grate-
fully acknowledged. The research leading to these results has received funding
from the European Union Seventh Framework Programme under grant agree-
ment number 248976 and 257906.

References

1. Andricopoulos, A.D., Widdicks, M., Newton, D.P., Duck, P.W.: Extending quadra-
ture methods to value multi-asset and complex path dependent options. Journal
of Financial Economics 83(2), 471–499 (2007)

Optimising Performance of Quadrature Methods with Reduced Precision 263

2. Black, F., Scholes, M.S.: The pricing of options and corporate liabilities. Journal
of Political Economy 81(3), 637–654 (1973)

3. Boland, D., Constantinides, G.: Automated precision analysis: A polynomial alge-
braic approach. In: Proc. IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), pp. 157–164 (2010)

4. Chow, G., Kwok, K., Luk, W., Leong, P.: Mixed precision processing in recon-
figurable systems. In: Proc. IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 17–24 (May 2011)

5. Davis, M.H.A., Esparragoza-Rodriguez, J.C.: Large portfolio credit risk modeling.
International Journal of Theoretical and Applied Finance 10(04), 653–678 (2007)

6. Fang, C.F., Rutenbar, R.A., Chen, T.: Fast, accurate static analysis for fixed-point
finite-precision effects in DSP designs. In: IEEE/ACM international Conference on
Computer-Aided Design, pp. 275–282 (2003)

7. Gaffar, A.A., Mencer, O., Luk, W., Cheung, P.Y.K.: Unifying bit-width optimisa-
tion for fixed-point and floating-point designs. In: FCCM, pp. 79–88 (2004)

8. Humphries, T., Celler, A., Trammer, M.: Improved numerical integration for ana-
lytical photon distribution calculation in spect. In: IEEE Symposium Conference
on Nuclear Science, vol. 5, pp. 3548–3554 (2007)

9. Kinsman, A., Nicolici, N.: Finite precision bit-width allocation using SAT-Modulo
theory. In: Proc. Design Automation and Test in Europe (DATE), pp. 1106–1111
(2009)

10. Kum, K.I., Sung, W.: Combined word-length optimization and high-level synthesis
of digital signal processing systems, vol. 20(8), pp. 921–930 (2001)

11. Lee, A., Yau, C., Giles, M.B., Doucet, A., Holmes, C.C.: On the utility of graphics
cards to perform massively parallel simulation of advanced Monte Carlo methods.
Journal of Computational and Graphical Statistics, 769–789 (2010)

12. Lee, D.U., Gaffar, A.A., Cheung, R.C.C., Mencer, O., Luk, W., Constantinides,
G.A.: Accuracy-guaranteed bit-width optimization. IEEE Trans. on CAD of Inte-
grated Circuits and Systems 25(10), 1990–2000 (2006)

13. Lee, D.U., Gaffar, A.A., Mencer, O., Luk, W.: Minibit: bit-width optimization via
affine arithmetic. In: DAC, pp. 837–840 (2005)

14. Masserey, A., Rappaz, J., Rozsnyo, R., Swierkosz, M.: Numerical integration of the
three-dimensional green kernel for an electromagnetic problem. Journal of Com-
putational Physics 205(1), 48–71 (2005)

15. Mencer, O.: ASC: a stream compiler for computing with FPGAs, vol. 25(9), pp.
1603–1617 (2006)

16. Osborne, W., Coutinho, J., Cheung, R., Luk, W., Mencer, O.: Instrumented multi-
stage word-length optimization. In: Proc. International Conference on Field Pro-
grammable Technology (FPT), pp. 89–96 (2007)

17. Osborne, W.G., Cheung, R.C.C., Coutinho, J.G.F., Luk, W., Mencer, O.: Au-
tomatic accuracy-guaranteed bit-width optimization for fixed and floating-point
systems. In: Proc. International Conference on Field Programmable Logic and Ap-
plications (FPL), pp. 617–620 (2007)

18. Rice, J.R.: A metalgorithm for adaptive quadrature. Journal of the ACM 22, 61–82
(1975)

19. Sueli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge Uni-
versity Press (2006)

20. Tse, A.H.T., Thomas, D., Luk, W.: Design exploration of quadrature methods in
option pricing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
(2011) (accepted for publication)

	Optimising Performance of Quadrature Methods with Reduced Precision
	Introduction
	Background
	Optimisation Modeling
	Accuracy Analysis
	Performance Modeling
	Optimisation Objective Equation

	Optimisation Algorithm and Methodology
	Case Studies
	Discrete Moving Barrier Option Pricer
	Multi-dimensional European Option pricer
	Genz's ``Discontinuous'' Benchmark Integral

	Result and Evaluation
	Performance Comparison
	Energy Comparison

	Conclusion
	References

