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Abstract. One of the main challenges when accelerating financial applications using recon-
figurable hardware is the management of design complexity. This paper proposes a multi-level
customisation framework for automatic generation of complex yet highly efficient curve based
financial Monte Carlo simulators on reconfigurable hardware. By identifying multiple levels
of functional specialisations and the optimal data format for the Monte Carlo simulation, we
allow different levels of programmability in our framework to retain good performance and
support multiple applications. Designs targeting a Virtex-6 SX475T FPGA generated by our
framework are about 40 times faster than single-core software implementations on an i7-870
quad-core CPU at 2.93 GHz; they are over 10 times faster and 20 times more energy efficient
than 4-core implementations on the same i7-870 quad-core CPU, and are over three times
more energy efficient and 36% faster than a highly optimised implementation on an NVIDIA
Tesla C2070 GPU at 1.15 GHz. In addition, our framework is platform independent and can
be extended to support CPU and GPU applications.

1 Introduction

Numerical methods such as Monte Carlo simulations play an important role in the finance industry,
as complex mathematical models without closed form solutions are created to accommodate the
growing complexity of financial products. Interest rate modelling is one of the most important fields
in mathematical finance research to price fixed income products. In the past two decades this field
has evolved from modelling a single instantaneous interest rate [8] to modelling the dynamics of an
entire forward rate curve [7]. Modelling each curve has a complexity of O(n2) in the number of time-
steps, compared to the conventional single-point modelling (such as stock option payoff evaluation)
which has a complexity of O(n). In a large financial institution where overnight sensitivity tests and
risk management are vital and required by regulators, curve based Monte Carlo modelling consumes
over 30% of the total computational capacity on the corporate compute grid. With computational
requirements doubling every year, hardware accelerators such as FPGAs and GPUs are increasingly
being used to offload computationally demanding tasks from CPUs, in order to improve performance
while reducing power consumption and data center space.

This paper proposes a customisable Monte Carlo framework for the automated generation of
highly efficient curve based payoff evaluation accelerator, based on the Heath-Jarrow-Morton (HJM)
mathematical framework. The main contributions are:

– a flexible Monte Carlo framework with multiple levels of functional specialisations which can be
used to generate FPGA solutions for different applications without using a soft processor. The
framework is designed to be platform independent and easily extendible to support CPU and
GPU implementations (Section 3);

– a domain specific language to enable automatic generation of application-specific components
and to support architecture specialisation to a particular application (Section 4);



– a process to identify the optimal floating point data format on target reconfigurable hardware
for our architecture (Section 4);

– an evaluation of the proposed framework by comparing processing speed and energy efficiency
to general purpose processors and graphics processing units over three case studies (Section 5).

2 Background

FPGAs are increasingly being used for acceleration of Monte Carlo models used in financial simula-
tions. For instance, a platform independent domain specific language has been invented to produce
optimised pipelined designs with thread level parallelism for Monte Carlo simulations from a high
level abstraction [15]; an FPGA-based stream accelerator with higher performance than GPUs and
Cell processors has been proposed for evaluating European options [13]; an architecture with a
pipelined datapath and an on-chip instruction processor has been reported for speeding up the
Brace, Gatarek and Musiela (BGM) interest rate model for derivatives evaluation [20]; an Ameri-
can option valuator using least-squares Monte Carlo method has been implemented [17]; a control
variate Monte Carlo design for Asian options is presented [18], and a successful FPGA project in
industry has been reported for collateralised default obligation (CDO) pricing [19]. However, most
of the existing work seeks optimisations and generalisations for single-point simulations, while the
more complex implementations usually involve a less efficient FPGA-based softcore to handle gen-
eral control functions [20]. Moreover, a highly optimised complex hardware design is usually less
flexible, hence problematic when changes occur frequently. The appropriate balance of performance
and programmability of designs remains a challenging problem. We use the Heath-Jarrow-Morton
mathematical framework to illustrate our approach to design space exploration for Monte Carlo
designs with complex control.

Algorithm 1 HJM Monte Carlo Algorithm: a Single Path

Input: f(0, T ) = initial forward curve, σ = volatility model
Output: f(t, T ) = forward surface

1: for t=0 to tmax do

2: for T ′=0 to T ′

max do

3: Calculate Drift: obtain σ(t, T ) and get µ(t− δt, t+ T ′) using Equation 2
4: Update forward Surface: get f(t, t+ T ′) using Equation 1
5: Price Derivative State 1: Use f(t, t+ T ′) to price the target derivative
6: end for

7: Price Derivative State 2: Use result from State 1 to price the target derivative
8: end for

The Heath-Jarrow-Morton (HJM) Framework [7] is a general framework for modelling instanta-
neous forward interest rate curve. It differs from short rate models in the way that it models the full
dynamics of the entire forward interest rate curve, as opposed to a single point on the curve which
is the short rate r(t). The equation of the framework is shown in Equation 1:

df(t, T ) = µ(t, T )dt+ σ(t, T )T dW (t) (1)

µ(t, T ) = σ(t, T )
T

∫ T

t

σ(t, u)du (2)

where f(t, T ) is the instantaneous forward rate at time T as seen from time t and 0 ≤ t ≤ T ; σ(t, T )
is the forward volatility column vector of size d, where d is the number of factors in the framework;
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Fig. 1. The evolution of the forward rate curve from t = 0 to t = tmax in one Monte Carlo path, giving
ti = Ti = ti + T ′

i−1

W (t) is a random variable under standard normal distribution. For convenience we call t the time
and T ′ the time offset from time t, with T = t+ T ′, therefore f(t, T ) ≡ f(t, t+ T ′).

It can be seen that along each Monte Carlo path, a surface constructed by f(t, T ) is generated.
Figure 1 shows the evolution of the forward rate curve over time for an arbitrary path of a Monte
Carlo simulation. A general Monte Carlo algorithm for the HJM model is shown in Algorithm 1.

From line 5 of Algorithm 1, the forward curve f(t, T ) is used as a basic building block to evaluate
interest rate products. The HJM framework is flexible in two ways: (a) the user can choose which
volatility model to use (line 3 in Algorithm 1) and (b) the payoff evaluation function differs for
different financial products (lines 5 and 7 in Algorithm 1). Based on different assumptions and
applications, different volatility functions σ(t, T ) can be chosen. Table 3 shows some parameter
settings for Equation 4 under different volatility models. Forward curves generated by the HJM
framework are used to value different financial products. Table 4 shows a non-exhaustive list of
valuation functions for different interest rate products.

Table 1. Parameters in our framework

Model Parameters

d number of factors in the framework

t the variable that tracks time in the
model

T another time in the future, given
current time is t

T ′ time offset from t to T , T = t+ T ′

f(t, T ) the instantaneous forward rate at
time T , as seen from time t

r(t) short rate at time t

σ(t, T ) forward volatility, a d-dimensional
column vector

W (t) d-dimensional standard random
process

Statistical Test Parameters

X1 mean of the reduced precision result

X2 mean of the “true” result

σ1 standard deviation of the reduced
precision result

σ2 standard deviation of the “true” re-
sult

n1, n2 number of sampling in the simula-
tion to get the reduced precision re-
sult and the “true” result

t the t-statistic to test whether the
population means are different

d.f. degrees of freedom in significance
testing

wE,wF number of exponent bits and man-
tissa bits in a floating point number
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Fig. 3. Proposed workflow for our Monte
Carlo framework. Refer to Table 2 for de-
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bered).

3 Multi-level Customisation Framework

Figure 2 shows our proposed framework for the HJM model, which is independent of the choice of
volatility structure and interest rate product. We define our framework based on a procedure for
developing evaluators of financial product payoff, in which three levels of functional specialisations
can be identified:

– heavily specialised modules do not change with applications and are platform dependent;
– mediumly specialised modules change occasionally with applications and can be platform

dependent;
– lightly specialised modules are application dependent but platform independent.

The procedure has two phases: in the model developing phase platform experts develop heavily
specialised modules and define templates for mediumly specialised modules and optimise them for
potential target platforms; in the payoff evaluator developing phase users choose a mediumly
specialised module as a base component and a target platform, on which platform dependent financial
product payoff evaluators are generated using a platform independent domain specific language and
a special compiler. Since the user only programmes the platform independent lightly-specialised
module in the framework, we have a clear separation of tasks in the financial product payoff evaluator
development procedure. In addition, since we expect the model developing phase to be an one-off
effort and the payoff evaluator developing phase to be a continuous effort thereafter, we have created
an acceleration procedure in which platform dependent expertise is not required from application
developers (users).

The main part of the framework is the HJM payoff evaluation kernel, which consists of three
components: volatility logic (mediumly specialised), interest rate generator (heavily specialised) and
payoff evaluation logic (lightly specialised). Volatility logic, corresponding to line 3 of Algorithm 1,
is flexible in the model developing phase and it is stable in the payoff evaluator developing phase.
Pre-defined templates are used to allow limited flexibility in volatility logic; this part is developed by
collaboration between platform experts and users. Platform experts need to understand the user’s
requirements which are usually platform dependent. The interest rate generator, corresponding to
line 4 of Algorithm 1, is stable by nature and can be developed by platform experts who also define
the interface between the module and the payoff evaluation logic. On the other hand, the payoff



Table 2. Explanation of input and output files in our framework as illustrated in Figure 3.

Idx1 Created By Phase2 Specialisation3 P.D. 4 Purpose

1 User M low No For non-expert users to target his/her de-
sign to a particular platform

2 User & Expert M Medium Maybe Optimised volatility model design

3 Expert M High Yes Optimised interest rate generator design

4 User P low No Payoff evaluation logic design without the
need of knowing the underlying platform

5 Expert M high Yes Platform dependent glue logic, e.g. moving
data around, etc.

6 Framework P high Yes Platform dependent programming file, e.g.
VHDL, etc.

1 These indices identity the six types of files in Figure 3
2 The phase that creates the file. M stands for the model developing phase and P stands for the payoff
evaluator developing phase

3 Level of functional specialisation
4 Whether the file is platform dependent

Table 3. Volatility structures used in the HJM framework

Volatility Structure σ(t, T ) µ(t, T )

Constant1 α 1
2α

2[T 2 − (T − t)2]

Exponential1 αe−β(T−t) α2

β
(e−2β(T−t) − e−β(T−t))

Stochastic2 σ̃(t, T )f(t, T ) σ(t, T )
∫ T

t
σ(t, u)du

1 α and β are calibrated model constants
2 σ̃ is a stochastic volatility process

evaluation logic is prone to change and we expect many instances of payoff evaluation logic to be
created in the payoff evaluator developing phase over a long time. A platform independent domain
specific language is used to allow non-experts to use the accelerated framework easily.

Figure 3 shows our proposed workflow. The user begins the payoff evaluator developing phase by
defining the choice of underlying platform, volatility model, accuracy requirement and parallelisation
requirement in a configuration file. The choice of underlying platform defines whether the user wants
the application to run on FPGA, CPU, GPU etc.; volatility model defines the interest rate engine;
accuracy requirement defines word length of the datapath, and parallelisation determines the number
of parallel datapaths in the system. Based on the configuration file, the interest rate engine generator
combines an appropriate interest rate generator template and a volatility module template to produce
an interest rate engine description. The engine description is a programming file that describes the
target platform. The user writes domain specific programmes to utilise the interest rates generated
by the engine and then builds appropriate designs to evaluate interest rate derivatives. The platform
independent user programming file is compiled to a payoff evaluation logic description programming
file for the target platform, by the payoff evaluation logic compiler. The HJM kernel generator
combines the interest rate engine description and payoff evaluation logic description to produce a
complete programming file, which is then used as input to the target platform tool chain to generate
executables.



Table 4. Example interest rate products

Target Instrument Payoff Evaluation Function

Bond B(t, T ) = exp
(
−
∫ T

t
f(t, u)du

)

Bond Option1 (B(t, T )−K)+

CMS2 Y (t, T ) = 1−B(t,T )
∑

T

a=t
B(t,a)

Swaption (Y (t, T )−K)+
∑T

a=t B(t, a)
CMS S.O.3 (Y (t, T1)− Y (t, T2)−K)+

1 (x)+ ≡ max(0, x)
2 Constant Maturity Swap
3 CMS Spread Option

4 Application Specialisation Flow

In this section we discuss the specialisation process in our framework. We propose a “C” style
control-based domain specific programming environment to demonstrate the programmability of
our framework. The programming environment has the following assumptions:

– The programming environment provides a set of environment parameters P generated by its
underlying framework at each iteration (one clock cycle for FPGAs, one for-loop iteration for
CPUs, etc.), which can be utilised by the developer (user). This means that data are provided
in a temporal manner as opposed to the conventional spatial manner. Instead of requesting
a piece of desired data, the developer waits until the data are provided by the programming
environment.

– Operator latency is implicit; results appear to be produced instantaneously. This allows the
developer to use the framework without expertise in the target platform.

– The user can create model input variables, intermediate variables, accumulation logic, control
logic and nothing else. The set of input variables V , once declared, is treated as a data environ-
ment, in other words P ′ = P ∪ V .

– The user specifies outputs from intermediate variables, and output conditions.

The language is natively supported by CPU and GPU implementations and can be used to generate
control and datapaths in hardware. We give a simplified definition of the grammar in Listing 1.1 in
order to provide an overview of our domain specific language, it is not intended to be rigorous or
comprehensive.

Listing 1.1. Simplified grammar for the domain specific language used in our frame-
work. Note that the grammar is subject to extension and it is intended to show the
capability of the language, hence it may neither be rigorous nor be comprehensive.

<configuration> ::= <statement>+
<statement> ::= <calc_statement>|<io_statement>
<calc_statement> ::= <ident> = <expression>

| if ( <expression> ) { <calc_statement>+ }
[else { <calc_statement>+ } ]?

<io_statement> ::= input ( <ident> )
| output ( <expression> )

<expression> ::= <literal>
|<unary_op> <expression>
|<expression> <binary_op> <expression>
|<func> ( <expression> [, <expression>]* )

<literal> ::= <env_literal> | <user_literal>

We now demonstrate the application specialisation process for reconfigurable hardware. To begin
with, we map our language to the hardware architecture. We assume P = {fi,j , discounti, dt, i, j},



i j f_ij dt discount_iImax Jmax

Input(Imax); Input(Jmax);

if(i==Imax){

if(j==0) {zero_rate = f_ij*dt;} else{

if(j<Jmax) zero_rate += f_ij*dt;}}

zero_price = exp(zero_rate);

if( i==Imax&&j==(Jmax-1)){

output(zero_price*discount_i,);}

i j f_ij dt discount_iImax Jmax
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Fig. 4. Domain specific language Example 1.

i j f_ij dt discount_iImax Jmax

Input(Imax); Input(Jmax);

if(i==Imax){ if(j==0) {zero_rate = f_ij*dt;} else{

if(j<Jmax){ zero_rate += f_ij*dt;}}}

zero_price = exp(zero_rate);

discounted_price = discount_i*zero_price;

if( i==Imax){if(j==0) {annuity=discounted_price;}  else{

if(j<Jmax) {annuity+=discounted_price;}}}

if( i==Imax&&j==(Jmax-1)){  output(annuity);}

i j f_ij dt discount_iImax Jmax
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Fig. 5. Domain specific language Example 2, extend-
ing Example 1.

V = {Imax, Jmax} and P ′ = P ∪ V , as shown in Figure 4, where i is the index for time step t, the
incrementation of i depends on index j which is the index for time offset T ′; fi,j is the discretised
instantaneous forward rate at time Tj , as seen from time ti; dt is the time difference between Tj and
Tj−1 or ti and ti−1; and discounti is the discount factor to present time. The top box in Figure 4
shows the programming environment in which one P ′ is provided in each clock cycle. The user
relies on the programming environment to provide a correct set of parameters, and assumes that
variable j counts inside each variable i. The bottom box in Figure 4 shows a fully pipelined design
generated from the description in the top box. The n-buffer under the accumulator is to hide pipeline
latency of the accumulator by keeping a history of n previous value. This effectively increases total
pipeline latency of the datapath by n, however it allows full pipelining in the datapath without using
low performance un-pipelined accumulator. Latency balancing buffers are omitted in the figures for
simplicity. Figure 5 shows a possible extension based on Example 1, in which annuity is calculated
based on prices of zero bonds maturing over a time period.

Reconfigurable hardware supports customised word length of its datapath in order to optimise
hardware utilisation based on an accuracy requirement. Previous research focuses on fine-grained
bitwidth optimisation, such as simulation [10], interval arithmetic [4], backward propagation anal-
ysis [6], affine arithmetic [12] and polynomial algebra [2]. However most of them are not straight
forward for complex Monte Carlo problems where multiple levels of combinational logic consisting
of floating point datapath and accumulators are combined with complex control-flow and feedback
paths. We propose a purely statistical method to determine the optimal data format for reconfig-
urable hardware.

The accuracy of a financial instrument payoff calculated by a numerical method is usually affected
by two main factors:

– Discretisation error: the error caused by transforming the model from a continuous mathematical
space to a discretised computational space. In our case when the Monte Carlo method is used,
the discretisation error comes from insufficient sampling of the underlying random source.



– Finite precision error: the error caused by using number representations of insufficient accuracy.
The error can be amplified or diminished by numerical operators in the datapath. In Monte
Carlo simulations we expect the finite precision error to be a normally distributed random
factor, according to the law of large numbers and the central limit theorem.

We therefore define the measure of accuracy to be the observed error due to the combination of
discretisation error and finite precision error. Since Monte Carlo is a statistical method relying on
the law of large numbers, we use Welch’s t-test to assess the statistical significance of the error in
the result [11]. The test determines whether there is any statistical evidence suggesting the Monte
Carlo result is different from the “true result”, which is the result calculated by a high precision
datapath, e.g. double precision. We therefore set the null hypothesis to be that the Monte Carlo
result and the true result are equal, assuming we know the true result and its standard deviation
beforehand. We use Equation 3 to calculate the t-value and Equation 4 to calculate the degree of
freedom (d.f.). These two values can then be used to obtain the p-value via the Students-t CDF. The
definition of the variables are shown in Table 2. The experiment will run the Monte Carlo simulation
using a customised floating point data format with wE bits of exponent and wF bits of mantissa.
For the sake of simplicity from now on we define wE = 8 for all floating point number formats.
We use the custom data format to build the datapath for a given Monte Carlo payoff evaluation
simulation and run different experiments with n1 starting from a smaller number and incrementing
towards infinity. During the experiments we monitor the p-value, and once the p-value falls below
a pre-selected statistically significant threshold (e.g. p=0.05 for 5% significance) the simulator is
considered to have failed. If the test does not fail on the custom data format, we can conclude that
the result from the custom datapath is not statistically different from the data format used to obtain
the “true result”.

t =
X1 −X2√

σ2
1/n1 + σ2

2/n2

(3)

d.f. =
(σ2

1/n1 + σ2
2/n2)

2

(σ2
1/n1)

2
/(n1 − 1) + (σ2

2/n2)
2
/(n2 − 1)

(4)

5 Result

In this section we discuss the applications of our framework over three case studies: bond option,
swaption, and CMS spread option (CMS S.O.). The details of these options are listed in Table 4.

We use the MaxWorkstation reconfigurable accelerating system from Maxeler Technologies to
evaluate our framework. It has one MAX3 card with a Xilinx Virtex-6 SX475T FPGA. The card
is connected to an Intel i7-870 CPU through a PCI express link with a measured bandwidth of 2
GB/s. The general purpose processor (GPP) in our comparison is a 4-core Intel i7-870 CPU running
at 2.93 GHz.

We use the Intel Compiler (ICC) and the Intel Math Kernel Library for our software imple-
mentations. The SFMT random number generator and the Box-Muller transformation provided by
Intel Vector Statistical Library (VSL) are used for random number generation. We have optimised
the software implementations to the best of our knowledge, to ensure the comparisons are fair and
accurate.

The FPGA implementations are generated based on: user programming files compiled automat-
ically by our payoff evaluation logic compiler, and configuration files, volatility templates, glue logic
and interest rate generator template written and optimised by hand. The files are assembled into
a final design following the proposed workflow manually, while a fully automated system is under
development. We use the MaxCompiler as our high level synthesis tool and our payoff evaluation
logic compiler generates intermediate descriptions compatible with the MaxCompiler based on our
domain specific language. We use one CPU core to drive the FPGA in our case studies. The payoff
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Fig. 6. p-value in log scale for Bond Option.
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Fig. 7. p-value in log scale for Swaption.

evaluation logic compiler is generated by ANTLR parser generator [1]. The hand-optimised interest
rate generator consists of a LUT Optimised uniform random number generator [14], a wrapper to
transform uniform random numbers to standard normal random numbers [16] and a floating point
exponential operator [3]; other components are generated by Xilinx CoreGen.

We use Welch’s t-test described in Section 4 to determine the optimal floating point number
format to use on FPGA. The test is designed so that we have a set of applications A, let Ai (i ∈ N)
indicate the ith application in set A, and Ai,wF indicate a variation of application Ai using a specific
floating point data format with wF mantissa bits. We define a test result to be a tuple (Ai,wF , n),
which is obtained from a Monte Carlo simulation of n paths using application Ai,wF . The test result
is then compared to a reference result obtained from (Ai,53, 10

9), which is a double precision variation
of Ai running one billion Monte Carlo paths. We assume that all reduced precision data formats
under consideration have 8 exponent bits (wE = 8). We use Equation 3 to calculate the t-value
and Equation 4 to calculate the degrees of freedom, from which the p-value can be obtained from
standard t-distribution tables. Setting the null hypothesis to state that the result obtained from a
reduced precision datapath is the same as the result obtained from a double precision datapath, if
p-value is smaller than or equal to the significance level (p = 0.05), the reduced precision result is
then rejected, since there is enough information to tell that the reduced precision result and the
double precision result are from two different distributions. Otherwise the observation is consistent
with the null hypothesis and we consider the reduced precision result to be not statistically different
from the double precision result.

In our experiment we have A = { Bond, Bond Option, CMS, Swaption, CMS Spread Option},
8 ≤ wF ≤ 23 and 5000 ≤ n ≤ 5 × 108. We use the MPFR library [5] to build reduced precision
datapaths in order to carry out the experiments in a scalable way; however, because the calculations
mirror those performed in hardware, the results also apply to the FPGA data-path. Due to space
limitation we only discuss two representative cases: Bond Option and Swaption. Figure 6 shows
different p-values of the bond option application with different number of bits for mantissa over
various number of Monte Carlo runs. The data formats with wF ≤ 10 are ignored as they fail the
t-test when n = 5000. The 11-bit mantissa version fails when n = 106, which means there is no
statistically significant evidence to tell the reduced precision result from the double precision result
when n < 106. Therefore if the user only intends to run Monte Carlo simulations of n < 106 paths,
he/she can get an answer not statistically significantly different from the double precision result by
a reduced precision datapath. On the other hand, with a 17-bit mantissa we do not fail until 5× 108

samples, which means the 17-bit version can produce a good enough result for n < 5 × 108. Other
variations all fail t-tests before n = 5× 108.

Figure 6 shows p-values for Swaption application, which is an extreme case where the 17-bit
mantissa version fails t-test when n = 3× 108; it means that we need to increase the mantissa bits if
n exceeds 3×108. However, this is the only application where the 18-bit mantissa version fails t-test.
On the other hand, we don’t see any 23-bit mantissa version fails any t-test during our experiments.



In finance industry Monte Carlo simulations usually use n = 5×104, which is well below the 3×108

threshold, so floating point numbers with 17 to 23 bit mantissas should be good enough to produce
reliable results.

Table 5 shows a resource consumption comparison between double precision and reduced pre-
cision implementations. It can be seen that when double precision is used in the datapath, all
implementations are bounded by Block RAM resource, since the designs require significant amounts
of FIFO buffer to pipeline accumulators and to retime pipelines with long delay. We can only fit 2-3
double precision cores on the FPGA and utilise around 20% of the logical hardware resource. On
the other hand, if we use reduced precision data format (wE = 8, wF = 17), we find Block RAM
resource usage reduced by 15 to 20 times, and the design is now bounded by logic resources instead.
This means that we can utilise more area on the FPGA to do computation and expect a higher
throughput. The top clock frequencies also increase by about 1.4 times accordingly.

Table 5. Resource Comparison: wE = 8, wF = 53 (double precision) and wE = 8, wF = 17 (reduced
precision) on a Virtex-6 SX475T FPGA

Bond Option Swaption CMS S.O. Device

Num. Mantissa Bits 53 17 53 17 53 17 -

LUT (%) 6.2 3.26 7.95 3.77 11.64 5.1 297600
FF (%) 4.04 2.18 5.43 2.5 7.94 3.33 595200

BRAM (%) 28.76 1.88 29.04 1.88 41.82 2.02 1064
DSP (%) 6.55 1.39 7.04 1.49 8.09 1.74 2016

Clock Freq. (MHz) 195 270 185 265 170 230 -

Normalised Area 15x 1x 15x 1x 20x 1x -
Normalised Freq. 1x 1.4x 1x 1.4x 1x 1.35x -

Table 6 contrasts GPP and GPU implementations with the FPGA implementations generated by
our framework. Each FPGA implementation uses about 80% of the total logic resource available on
the FPGA to avoid congestion in the place and route phase. The FPGA implementations are based on
a reduced precision data format (wE = 8, wF = 17). The testing cases are Monte Carlo simulations
of 100 million paths for GPP and FPGA, and an 89.6 million paths Monte Carlo simulation for GPU.
The GPU testing case is designed to fit the GPU parallelism granularity to ensure fair comparison. It
can be seen that the FPGA implementations are about 40 times faster than software implementations
utilising one of the four CPU cores. They are about 10 times faster than the corresponding software
implementations utilising all four CPU cores. It is not surprising to see that the FPGA CMS spread
option implementation is the slowest, since it requires complex logic to sample two different sections
on the forward curve, which implies larger kernels, slower clock frequency and fewer parallel kernels
in the FPGA. The software implementation suffers less from the increase of complexity since the
two samplings are independent of each other and the instructions can be efficiently pipelined.

We use an Ethernet-connected power measuring socket from Oslon electronics to measure average
power consumption of the system, with a measuring resolution of 1 sample per second. As shown in
Table 6, it is not surprising to see that FPGA implementations are generally about 20 times more
energy efficient than software implementations, given that all power readings include idle power
consumption of the system.

We now discuss our Graphics Processing Unit (GPU) benchmark to compare the FPGA imple-
mentations generated by our framework. The GPU is an NVIDIA Tesla C2070 device with 448 cores
running at 1.15 GHz and has a peak double precision performance of 515 GFlops. The benchmark
implementation on bond option is based on the standard parallel random number generator pro-
vided by CURAND Library and nvcc compiler with maximum optimisation flags turned on. The
implementation is hand optimised so that access to off chip memory only occurs at the beginning



and at the end of the kernel launch. We use warp level control to ensure the kernel only accesses
on chip cache during the execution without any bank conflict or branch divergence. As shown in
Table 6, the GPU implementation is about two times less energy efficient and the corresponding
FPGA implementation is about 36% faster. Given the fact that both devices are using the 40nm
technology, it can be seen that the FPGA implementations are gaining speed advantage and energy
effciency from customisable data format, fully pipelined datapath and lower clock frequency.

It is difficult to make precise qualitative comparison between our approach and the traditional
hand written approach, in terms of development time and quality of code. However, when compared
with simple hand-written designs using a high-level programming language [9], which requires the
user to write hundreds of lines of code, our automated approach requires less than ten lines of
code (Figure 4).

Table 6. Comparison of MC simulations using double precision GPP(SW), reduced
precision FPGA and single precision GPU

Bond Option Swaption CMS S.O.6

Device SW1 FPGA GPU5 SW FPGA SW FPGA

Clock Freq. (MHz) 2930 160 1150 2930 150 2930 150

Num. of Cores 4 26 448 4 19 4 16

Num.Evaluations (B)4 177 177 154 177 177 177 177

Exe. Time (Seconds) 476 50.3 50.5 738 69.4 822 73.75

Power Consumption (W)3 183 87 240 184 87 184 85

Energy Efficiency2 2 40.5 12.7 1.3 29.3 1.3 28.2

Speed-up vs Single-Core7 4x 44.8x 32.8x 4x 42.4x 4x 39.2x

Speed-up vs Quad-Core8 1x 11.2x 8.2x 1x 10.6x 1x 9.8x

Normalised Energy 19.9x 1x 3.2x 22.5x 1x 24.1x 1x

1 The software utilises all 4 physical cores by process level parallelism
2 Measured in number of evaluations/second/Joule
3 The idle power consumption of the system is 80W
4 Number of point evaluations in the simulation, measured in billions of f(t, T ) cal-
culation

5 The benchmark GPU is an NVIDIA Tesla C2070 device
6 CMS Spread Option
7 Speedup against one core of a quad-core CPU
8 Speedup against all four cores of a quad-core CPU

6 Conclusion

This paper proposes an application independent Monte Carlo framework for interest rate derivatives
payoff evaluations based on the HJM model. By identifying three levels of functional specialisations
in the model, we allow a hand optimised component, a templated component and a programmable
component in our framework, to retain good performance and to support multiple applications.
The framework is designed to be platform independent and easily extendible to support CPU and
GPU implementations. To specialise our framework to a particular application, we propose a domain
specific language for the programmable component. We also propose a process for the FPGA platform
to identify the optimal floating point data representation to ensure maximum utilisation of hardware
resource. We have shown that, by adopting optimal number representation in the datapath, we can
reduce the memory resource usage by 15 to 20 times, allowing better utilisation of logic resource.



The designs generated by our framework for a Xilinx Virtex-6 SX475T FPGA are generally about
40 times faster than a single-core implementation on a i7-870 quad-core CPU at 2.93 GHz, are over
10 times faster and 20 times more energy efficient than 4-core implementations on the same i7-870
quad-core CPU, and are three times more energy efficient and 36% faster than an NVIDIA Tesla
C2070 GPU at 1.15 GHz.

Current and future work includes the following. First, explore effective automation of the pro-
posed workflow while allowing user guidance where essential. Second, extend our framework to cover
other numerical methods and other applications. Third, explore how advanced techniques, such as
run-time reconfiguration, can further improve performance and energy efficiency.
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